Pemodelan Regresi Bivariate Poisson Inverse Gaussian pada Kasus Kematian Ibu dan Neonatal di Sulawesi Selatan

Authors

  • Nurul Ikhsani a:1:{s:5:"en_US";s:22:"Universitas Hasanuddin";}
  • Anisa Kalondeng
  • Nirwan Ilyas

Keywords:

BPIG distribution, BPIG regression, Fisher Scoring, MLE, Overdispersion

Abstract

Overdispersion is a state with a variance value greater than the mean value so the Poisson Inverse Gaussian regression model is used. Meanwhile, to model two correlated response variables, the Bivariate Poisson Inverse Gaussian (BPIG) regression model was used. The BPIG model is a mixed- distributed model between the Poisson Bivariate and Gaussian Inverse distributions. The parameters of the BPIG regression model are estimated using Maximum Likelihood Estimation (MLE) with the Fisher Scoring algorithm. This study was applied to data on the number of maternal and neonatal deaths in South Sulawesi in 2019. The results obtained are predictor variables that affect the number of maternal and neonatal deaths in South Sulawesi in 2019, namely K4 services for pregnant women , active birth control participants , handling obstetric complications , handling neonatal complications  and the number of health centers .

References

Sofyan, W. dkk., (2017). Pemodelan Angka Kematian Bayi Di Provinsi Jawa Barat Menggunakan Metode Regresi Poisson Inverse Gaussian ( PIG ).

De Jong, P. & Heller, G.Z. (2008), Generalized Linear Models for Insurance Data, 1st edition, Cambridge University Press, New York.

Purnamasari, I. (2016). Parameter Estimation and Statistical Test in Modeling Geographically Weighted Poisson Inverse Gaussian Regression. Tesis. Surabaya: Institut Teknologi Sepuluh Nopember.

Jamaluddin (2019). Pemodelan Faktor Yang Mempengaruhi Jumlah Kasus Hiv Di Provinsi Sulawesi Selatan Menggunakan Regresi Poisson Inverse Gaussian. Skripsi. Makassar: Universitas Alauddin.

Resmiasih, R. (2019). Estimasi Model Linear Tergeneralisasi Log-Logistik Pada Data Uji Hidup Tersensor II Menggunakan Algoritma Fisher-Scoring. Skripsi. Semarang: Universitas Negeri Semarang.

Kementerian Kesehatan RI (2020). Profil Kesehatan Indonesia Tahun 2019. Jakarta.

Mardalena dkk. (2021). Bivariate Poisson Inverse Gaussian Regression Model With Exposure Variable: Infant And Maternal Death Case Study. Journal of Physics: Conference Series, 1-9.

Purba, S. A. (2018). Maksimum Likelihood Berdasarkan Algoritma Newton Raphson, Fisher Scoring dan Expectation Maximization. Tesis. Sumatera Utara: Universitas Sumatera Utara.

Downloads

Published

2023-02-14