Pemodelan Topik pada Judul Berita Online Detikcom Menggunakan Latent Dirichlet Allocation

Authors

  • Yayang Matira a:1:{s:5:"en_US";s:19:"Tadulako University";}
  • Junaidi
  • Iman Setiawan

Keywords:

Coherence Score, Detikcom, Latent Dirichlet Allocation (LDA), Text Mining, Topic Modeling

Abstract

Detikcom is a very popular news portal today. The news on the portal continues to grow time to time, causing the existing news data to pile up. As a result, this is necessary to utilize this large amount of data. One of the ways that can be used is to extract topics from news text data through topic modeling using the Latent dirichlet allocation (LDA) method. This method is very popular because it can perform analysis on very large documents. This research aims to find certain patterns in a document by generating several different topics so that it does not specifically divide documents into a particular topic. This research has three topics obtained, with a coherence score is 0,7586. The first topic discusses conflicts and crises within a country, the second topic discusses issues related to humanitarian, and the third topic discusses the issues of corruption committed by state officials.

References

Hadi, A. F., Bagus, D., & Hasan, M. 2017. Text mining pada Media Sosial Twitter Studi Kasus : Masa Tenang Pilkada DKI 2017 Putaran 2. Seminar Nasional Matematika Dan Aplikasinya, 21 Oktober 2017 Surabaya, Universitas Airlangga.

Suryawati, I. 2011. Suatu Pengantar Teori dan Praktek. Jurnalistik. Ghalia Indonesia. Bogor.

Nugraha, M. A., & Mungaran, L. C. 2021. Pemodelan Topik Berita pada Portal Berita Online Berbahasa Indonesia Menggunakan Latent dirichlet allocation (LDA). Jurnal Ilmiah Komputasi, 20(2).

Blei, D. M., Ng, A. Y., & Jordan, M. I. 2003. Latent dirichlet allocation. Journal of Machine Learning Research, 3(4–5), 993–1022. https://doi.org/10.1016/b978-0-12-411519-4.00006-9

Campbell, J. C., Hindle, A., & Stroulia, E. 2015. Latent dirichlet allocation: extracting topics from software engineering data. The art and science of analyzing software data (pp. 139–159). Elsevier.

Nugraheni, N., Yansari, B. A. R., Listyawan, D. N., Putrayasa, G. E., Sidik, M. H., & Maulana, A. I. 2020. Analisis Review Pengunjung Hotel pada Website Agoda Menggunakan Metode Lda-Based Topic Modeling (Studi Kasus: Ibis Bandung Trans Studio Hotel). JBMI (Jurnal Bisnis, Manajemen, Dan Informatika), 16(3), 252–257. https://doi.org/10.26487/jbmi.v16i3.8484

Downloads

Published

2023-02-14