Model Regresi Robust dengan Metode Estimasi M, Estimasi S dan Estimasi MM untuk Produksi Beras di Nusa Tenggara Timur
Keywords:
M estimate, MM estimate, Robust regression, S estimateAbstract
In the regression analysis, the amount of rice production that far exceeds the general production can be categorized as outlier data. The existence of outliers causes the use of the least squares method to estimate parameters to be deemed inappropriate. To deal with outlier data, it is necessary to use methods that are robust or resistant to outlier data. Robust is defined as insensitivity or rigidity to outlier data. The purpose of this study is to obtain a robust regression model using the M estimation, S estimation and MM estimation methods and determine the factors that have a significant effect on rice production in East Nusa Tenggara Province. The model using the S estimation method is the best model, namely y = 3,895.023 + 1.870 X1 - 60.926 X5 and the factors that have a significant effect on rice production are harvested area and air temperature.
References
Soetriono dan A. Suwandari. Pengantar Ilmu Pertanian Agraris Agribisnis Industri. Malang: Intimedia, 2016.
Badan Pusat Statistik (BPS). 2021. Produksi Beras menurut Kabupaten/Kota (Ton).https://ntt.bps.go.id/indicator/53/934/1/produksi-beras-menurut-kabupaten-kota.html (diakses pada tanggal 16 Maret 2022, 12:57 PM)
F. E. Teda, F. L. Benu dan Wiendiyati. Upaya Memperbaiki Ekonomi Beras di Provinsi Nusa Tenggara Timur Analisis Data Sekunder Tahun 2003-2017. Bul. Ilm. Impas, vol. 21(2), pp. 91–101, 2020.
S. Candraningtyas, D. Safitri dan D. Ispriyanti. Regresi robust mm- estimator untuk penanganan pencilan pada regresi linier berganda. vol. 2(2005), pp. 395–404, 2013.
C. Chen. Statistics and Data Analysis Paper 265-27 Robust Regression and Outlier Detection with the Robustreg Procedure.
D. c Montgomery, E. A. Peck dan G. G. Vining. Introduction Linear Regression Analysis Fifth Edition. 2012.
F. P. Hidayatulloh, D. Yuniarti dan S. Wahyuningsih. Regresi Robust Dengan Metode Estimasi-S Robust Regression Method To Estimate S. J. Eksponensial, vol. 6(2), pp. 163–170, 2015.
N. Nurdin, Raupong dan A. Islamiyati. Penggunaan Regresi Robust pada Data yang Mengandung Pencilan Dengan Metode Momen. Jurnal Matematika Statistika dan Komputasi, vol. 10(2), pp. 114–123, 2014.
E. D. Pradewi dan Sudarno. Kajian Estimasi- M IRLS Menggunakan Fungsi Pembobot Huber dan Bisquare Tukey pada data Ketahanan Pangan di Jawa Tengah. pp. 1–10.
N. B. Hartono. Analisis Outlier dan Heteroskedastisitas dengan Menggunakan Regresi Robust Weight Least Square. Universitas Negeri Semarang. 2016.
Mahananto, S. Sutrisno dan C. F. Ananda. Faktor-faktor yang Mempengaruhi Produksi Padi Studi Kasus di Kecamatan Nogosari , Boyolali , Jawa Tengah. Wacana, vol. 12(1), 2009.
Downloads
Published
Issue
Section
License
Copyright
It is the author's responsibility to ensure that his or her submitted work does not infringe any existing copyright. Authors should obtain permission to reproduce or adapt copyrighted material and provide evidence of approval upon submitting the final version of a manuscript.