Pemodelan Mixed Geographically Weighted Regression yang Mengandung Multikolinearitas dengan Regresi Ridge

Authors

  • Suritman a:1:{s:5:"en_US";s:22:"Universitas Hasanuddin";}
  • Raupong
  • Anisa Kalondeng

Keywords:

Mixed Geographically Weigted Regression, Multicollinearity, Poor Population, Ridge Regression

Abstract

In the Mixed Geographically Weighted Regression (MGWR) model, some variables are local and some are global. In MGWR modeling, it is often found that the data have multicollinearity. To overcome this problem, MGWR models with ridge regression are used. The MGWR model can be applied to poverty cases because it can experience spatial heterogeneity due to differences in geographical, cultural, and economic policies that vary in each region. In this study, the estimation of MGWR model parameters with ridge regression is then applied to data on the poor population of South Sulawesi in 2016. Data on the poor population of South Sulawesi experience multicollinearity, so it is solved using the MGWR model with ridge regression. Variables that have a significant effect globally are x3  and x6. while the variables that have a significant local effect are x2, x4, x5, x7, x8, x9 and x10. The AIC value of the MGWR model with ridge regression of 63.64473 is smaller than the MGWR model, meaning that the addition of ridge regression to the MGWR model makes the model better at overcoming multicollinearity problems.

References

Mahmuda dan Harini, S. Statistik Uji Parsial Pada Model Mixed Geographically Weighted Regression. Malang: UIN Maulana Malik Ibrahim. 2014.

Yulita, T. Pemodelan Geographically Weighted Ridge Regression dan Geographically Weighted Lasso pada Data Spasial dengan Multikolinearitas. Institut Pertanian Bogor. 2016.

Ifadah, A. Analisis Metode Principal Component Analysis (Komponen Utama) dan Regresi Ridge dalam Mengatasi Dampak Multikolinearitas dalam Analisis Regresi Linear Berganda. Semarang: Fakultas MIPA UNS. 2011.

Anselin, L. Spatial Econometrics. Dallas: School of Social Science, 2009.

Fotheringham, A.S., Brundson, C. dan Charlthon, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Ltd. UK. 2002.

Wuryanti, I.F., Purnami, S.W., dan Purhadi. Pemodelan Mixed Geographically Weighted Regression (MGWR) pada Angka Kematian Balita Kabupaten Bojonegoro Tahun 2011. Surabaya: Fakultas MIPA ITS. 2013.

Purhadi dan Yasin, H. Mixed Geographically Weighted Regression Model Case Study: The Percentage Of Poor Households In Mojokerto 2008. European Journal of Scientific Research. 2012.

Downloads

Published

2023-02-14