This is an outdated version published on 2022-02-02. Read the most recent version.

Estimasi Parameter Model Poisson Hidden Markov Pada Data Banyaknya Kedatangan Klaim Asuransi Jiwa

Estimation of Parameters in the Poisson Hidden Markov Model on the Data on the Number of Arrivals of Life Insurance Claims

Authors

  • Vieri Koerniawan Hasanuddin University
  • Nurtiti Sunusi Hasanuddin University
  • Raupong Raupong Hasanuddin University

Keywords:

Poisson Hidden Markov Model, MLE, EM Algorithm, Life Insurance, BIC

Abstract

The Poisson hidden Markov model is a model that consists of two parts. The first part is the cause of events that are hidden or cannot be observed directly and form a Markov chain, while the second part is the process of observation or observable parts that depend on the cause of the event and following the Poisson distribution. The Poisson hidden Markov model parameters are estimated using the Maximum Likelihood Estimator (MLE). But it is difficult to find analytical solutions from the ln-likelihood function. Therefore, the Expectation Maximization (EM) algorithm is used to obtain its numerical solutions which are then applied to life insurance data. The best model is obtained with 2 states or m = 2 based on the smallest Bayesian Information Criterion (BIC) value of 338,778 and the average predicted number of claims arrivals is 0.385 per day.

Author Biographies

Vieri Koerniawan, Hasanuddin University

Department of Statistics

Nurtiti Sunusi, Hasanuddin University

Department of Statistics

Raupong Raupong, Hasanuddin University

Department of Statistics

References

Taylor, H. M., dan Karlin, S. An Introduction to Stochastic Modeling, Third Edition. San Diego: Academic Press. 1998.

Long, J. S. Regression Models for Categorical and Limited Dependent Variables. California: Sage. 1997.

Paroli, R., dan Spezia, L. Gaussian Hidden Markov Models: Parameters Estimation and Applications to Air Pollution Data. Milano: Universita Cattolica Del Sacro Coure. 1999.

Paroli, R., Redaelli, G., dan Spezia, L. Poisson Hidden Markov Models for Time Series of Overdispersed Insurance Count. Astin Colloquium, 461-474, 2000.

Gustra, H. Pemodelan Klaim Asuransi Kerugian Menggunakan Poisson Hidden Markov untuk Data Overdispersi. Bogor: Institut Pertanian Bogor. 2014.

Hogg, R. V., Craig, A. T., dan McKean, J. W. Introduction to Mathematical Statistics, Sixth Edition. New Jersey: Prentice Hall. 2005.

Dempster, A. P., Laird, N., dan Rubin, D. B. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, 39 (1) : 1-38, 1977.

Downloads

Published

2022-02-02 — Updated on 2022-02-02

Versions