Estimasi Parameter Model Poisson Hidden Markov Pada Data Banyaknya Kedatangan Klaim Asuransi Jiwa
Estimation of Parameters in the Poisson Hidden Markov Model on the Data on the Number of Arrivals of Life Insurance Claims
Keywords:
Poisson Hidden Markov Model, MLE, EM Algorithm, Life Insurance, BICAbstract
The Poisson hidden Markov model is a model that consists of two parts. The first part is the cause of events that are hidden or cannot be observed directly and form a Markov chain, while the second part is the process of observation or observable parts that depend on the cause of the event and following the Poisson distribution. The Poisson hidden Markov model parameters are estimated using the Maximum Likelihood Estimator (MLE). But it is difficult to find analytical solutions from the ln-likelihood function. Therefore, the Expectation Maximization (EM) algorithm is used to obtain its numerical solutions which are then applied to life insurance data. The best model is obtained with 2 states or m = 2 based on the smallest Bayesian Information Criterion (BIC) value of 338,778 and the average predicted number of claims arrivals is 0.385 per day.
References
Taylor, H. M., dan Karlin, S. An Introduction to Stochastic Modeling, Third Edition. San Diego: Academic Press. 1998.
Long, J. S. Regression Models for Categorical and Limited Dependent Variables. California: Sage. 1997.
Paroli, R., dan Spezia, L. Gaussian Hidden Markov Models: Parameters Estimation and Applications to Air Pollution Data. Milano: Universita Cattolica Del Sacro Coure. 1999.
Paroli, R., Redaelli, G., dan Spezia, L. Poisson Hidden Markov Models for Time Series of Overdispersed Insurance Count. Astin Colloquium, 461-474, 2000.
Gustra, H. Pemodelan Klaim Asuransi Kerugian Menggunakan Poisson Hidden Markov untuk Data Overdispersi. Bogor: Institut Pertanian Bogor. 2014.
Hogg, R. V., Craig, A. T., dan McKean, J. W. Introduction to Mathematical Statistics, Sixth Edition. New Jersey: Prentice Hall. 2005.
Dempster, A. P., Laird, N., dan Rubin, D. B. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, 39 (1) : 1-38, 1977.
Downloads
Published
Versions
- 2022-02-02 (3)
- 2022-02-02 (2)
- 2022-02-02 (1)
Issue
Section
License
Copyright
It is the author's responsibility to ensure that his or her submitted work does not infringe any existing copyright. Authors should obtain permission to reproduce or adapt copyrighted material and provide evidence of approval upon submitting the final version of a manuscript.