Monitoring Changes in Coastal Mangrove Extents Using Multi-Temporal Satellite Data in Selected Communes, Hai Phong City, Vietnam

Hai-Hoa Nguyen, Lan Thi Ngoc Tran, An Thanh Le, Nghia Huu Nghia, Linh Vo Khanh Duong, Hien Thi Thu Nguyen, Simone Bohm, Charles Finny Sathya Premnath


Mangrove forests are important and known as one of the most productive ecosystems in the tropics. They reduce the impacts of extreme events, provide important breeding grounds for aquatic species and build the resilience of ecosystem-dependent coastal communities. On the contrary, they are also known as one of the most threatened and vulnerable ecosystems worldwide, which have experienced a dramatic decline due to extensive coastal development during the last half-century. Remote sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and its changes, which is reflected by a large number of scientific papers published on this topic. The aim of this study was to investigate the multi-decadal changes of mangrove forests selected communes in Hai Phong city, North Vietnam, based on using Landsat and Sentinel 2 data from 2000 to 2018. The study used these continuous steps: 1) data pre-processing; 2) image classification using Normalized Difference Vegetation Index; 3) accuracy assessments; and 4) multi-temporal change detection and spatial analysis of mangrove forests. The classification maps in comparison with the ground reference data showed the satisfactory agreement with the overall accuracy was higher than 80.0%. From 2000 to 2018, the areas of mangrove forests in the study regions  increased by 584.2 ha in Dai Hop and Bang La communes (Region 1) and by 124.2 ha in Tan Thanh, Ngoc Xuyen and Ngoc Hai communes (Region 2), mainly due to the boom of mangrove planting projects and good mangrove management at the local community level.


GIS; Hai Phong; mangrove dynamics; multi-temporal images; remote sensing

Full Text:



Alongi, D. M. (2015). The impact of climate change on mangrove forests. Current Climate Change Reports, 1(1), 30-39. doi:

Anh, N. N., & Hai-Hoa, N. (2017). Evaluating policy effectiveness on coastal mangrove management: case study in Kien Thuy and Do Son districts, Hai Phong city. Journal of Forestry Science and Technology, 2, 43- 54.

Areendran, G., Rao, P., Raj, K., Mazumdar, S., & Puri, K. (2013). Land use/land cover change dynamics analysis in mining areas of Singrauli district in Madhya Pradesh, India. Tropical Ecology, 54(2), 239-250.

Armitage, D. (2002). Socio-institutional dynamics and the political ecology of mangrove forest conservation in Central Sulawesi, Indonesia. Global Environmental Change, 12(3), 203-217. doi:

Asokan, P. K. (2012). Mangroves and its importance to Fisheries. ISO 690.

Bao, T.Q., & Hoa, L. S. (2018). Using Sentinel satellite image to estimate biomass of mangrove forest in Vinh Quang commune, Tien Lang district, Hai Phong city. Journal of Forestry Science and Technology, 5, 71- 79.

Basyuni, M., Bimantara, Y., Siagian, M., Wati, R., Slamet, B., Sulistiyono, N., ... & Leidonad, R. (2018, March). Developing community-based mangrove management through eco-tourism in North Sumatra, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 126, No. 1, p. 012109). IOP Publishing. doi:

Bhandari, A. K., Kumar, A., & Singh, G. K. (2012). Feature extraction using Normalised Difference Vegetation Index (NDVI): A case study of Jabalpur city. Procedia Technology, 6, 612- 621.

Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85.

Chu, T. H. (2006). Environment and livelihoods in tropical coastal zones: Managing agriculture-fishery-aquaculture conflicts (Vol. 2). CABI.

Cissell, J. R., Delgado, A. M., Sweetman, B. M., & Steinberg, M. K. (2018). Monitoring mangrove forest dynamics in Campeche, Mexico, using Landsat satellite data. Remote Sensing Applications: Society and Environment, 9, 60-68. doi:

Conchedda, G., Durieux, L., & Mayaux, P. (2008). An object-based method for mappng and change analysis in mangrove ecosystem. ISPRS Journal of Photogrammetry and Remote Sensing, 63, 578- 589. doi:

Congedo, L. (2020). Semi-Automatic Classification Plugin documentation. Release 243p.

Dan, T. T., Chen, C. F., Chiang, S. H., & Ogawa, S. (2016). Mapping and change analysis in mangrove forest by using Landsat imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Science, 8, 109- 116.

Dalezios, N. R., Gobin, A., Tarquis, A. M., & Eslamian, S. (2017). Agricultural drought indices: Combining crop, climate and soil factors in Handbook of Drought and Water Scarcity: Principles of Drought and Water Scarcity. CRC Press, Taylor and Francis Group.

Dat, P. T., & Yoshino, K. (2013). Comparing mangrove forest management in Hai Phong City, Vietnam towards sustainable aquaculture. Procedia Environmental Sciences, 17, 109-118. doi:

Dat, P.T., & Yoshino, K. (2011). Monitoring mangrove forest using multi-temporal satellite data in the Northern Coast of Vietnam. In the 32nd Asian Conf. on Remote Sensing.

Dat. P.T., & Yoshino, K. (2015). Mangrove mapping and change detection using multi-temporal Landsat imagery in Hai Phong City, Vietnam. In Int. Symp. on Cartography in Internet and Ubiquitous Environments.

Dat, P. T., & Yoshino, K. (2016). Impacts of mangrove management systems on mangrove changes in the Northern coast of Vietnam. Tropics, 24, 141- 151.

Datta, D., Chattopadhyay, R. N., & Guha, P. (2012). Community- based mangrove management: A review on status and sustainability. J Environ. Manage, 107, 84- 95.

Fensholt, R., Rasmussen, K., Nielsen, T. T., & Mbow, C. (2009). Evaluation of earth observation based on long-term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS, and SPOT VGT data. Remote Sensing of Environment, 113(9), 1886-1898. doi:

Field, C., Osborn, J., Hoffman, L., Polsenberg, J., Ackerly, D., Berry, J., & Mooney, H. (1998). Mangrove biodiversity and ecosystem function. Global Ecology & Biogeography Letters, 7(1), 3-14. doi:

Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany, 89(2), 237-250. doi:

Giri, C. (2016). Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. doi:

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154-159. doi:

Giri, C., Zhu, Z., Tieszen, L. L., Singh, A., Gillette, S., & Kelmelis, J. A. (2008). Mangrove forest distributions and dynamics (1975–2005) of the tsunami‐affected region of Asia. Journal of Biogeography, 35(3), 519-528.

Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International journal of remote sensing, 19(5), 935-956. doi:

Godoy, M. D. P., & Lacerda, L. D. D. (2015). Mangrove response to climate change: A review of recent findings on mangronve extension and distribution. Annals of the Brazilian Academy of Sciences, 87, 651- 667.

Hai- Hoa, N. (2016). Using landsat imagery and vegetation indices differencing to detect mangrove change: a case in Thai Thuy district, Thai Binh province.

Hai-Hoa, N., McAlpine, C., Pullar, D., Johansen, K., & Duke, N. C. (2013). The relationship of spatial-temporal changes in fringe mangrove extent and adjacent land-use: a Case study of Kien Giang coast, Vietnam. Ocean & coastal management, 76, 12-22. doi:

Hanifah, A., & Addiwan, A. (2018). Community-based mangrove forest management action in Rangsang region, district of Kepulauan Meranti, Riau. MOJ Ecology and Environmental Sciences, 3, 339- 347.

Hashim, H., Latif, Z. A., & Adnan, N. A. (2019). Urban vegetation classification with NDVI threshold value method with very high resolution (VHR) Pleiades imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information System. 6th International Conference on Geomatics and Geospatial Technology. Kuala Lumpur, Malaysia.

Hawkins, S., Robertson, S., Thu Thuy, P., Xuan To, P., McNally, R., Van Cuong, C., & Duc Tu, N. (2010). Roots in the water: legal frameworks for mangrove PES in Vietnam.

Hogarth, P. J. (2015). The biology of mangroves and seagrasses. Oxford University Press. doi:

Hong, P. N., & San, H. T. (1993). Mangroves of Vietnam (Vol 7). IUCN.

Hu, L., Li, W., & Xu, B. (2018). The role of remote sensing on studying mangrove forest extent change. International Journal of Remote Sensing, 1-23. doi: .

Hu, Q., Wu, W., Xia, T., Yu, Q., Yang, P., Li, Z., & Song, Q. (2013). Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sensing, 5(11), 6026-6042. doi:

Ibrahim, N. A., Mustapha, M. A., Lihan, T., & Ghaffar, M. A. (2013). Determination of mangrove change in Matang mangrove forest using multi-temporal satellite imageries. AIP. Proc, 1571, 487- 492.

Jhaveri, N. J., Petrova, S., Sommerville, M., Van Hue, L. T., & Ngoc Huy. N. (2017). Red River Delta Coastal Spatial Planning and Mangrove Governance Assessment. Washington, DC: USAID Tenure and Global Climate Change Program.

Kongkeaw, C., Kittitornkool, J., Vandergeest, P., & Kittiwatanawong, K. (2019). Explaining success in community based mangrove management: four coastal communities along the Andaman Sea, Thailand. Ocean and Coastal Management. doi:

Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. Remote Sensing, 3(5), 878-928.

Laengner, M. L., Siteur, K., & Wal, D. V. D. (2019). Trends in the Seaward extent of saltmarshes across Europe from long term satellite data. Remote Sensing,11. doi:

Malarvizhi, K., Kumar, S. V., & Porchelvan, P. (2016). Use of High-Resolution Google Earth Satellite Imagery in Landuse Map Preparation for Urban Related Applications. Procedia Technology, 24, 1835-1842. doi:

Maryantika, N., & Lin C. (2017). Exploring changes of land use and mangrove distribution in the economic area of Sidoarjo district, East Java using multi-temporal Landsat images. Information Processing in Agriculture, 4, 321- 332.

Mas, J. F. (1999). Monitoring land-cover changes a comparison of change detection techniques. International journal of remote sensing, 20(1), 139-152. doi: .

Mohammad, N. A., SA, S. M., & Akhir, J. M. (2017). Land use evaluation for Kuala Selangor, Malaysia using remote sensing and GIS technologies. Geografia-Malaysian Journal of Society and Space, 3(1).

OECD. (2018). Building resilience cities: An assessment of disaster risk management policies in Southeast Asia. OECD Green Growth Studies, OECD Publishing, Paris.

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., & Wulder, M.A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment 148, 42–57.

Primavera, J. H. (1998). Mangroves as nurseries: shrimp populations in mangrove and non-mangrove habitats. Estuarine, Coastal and Shelf Science, 46(3), 457-464. doi:

Richards, D. R., & Friess, D. A., (2012). Rate and drivers of mangrove deforestation in Southeast Asia 2002- 2012. Proc. Natl. Acad. Sci, USA, 113, 3344- 3349.

Romañach, S. S., DeAngelis, D. L., Koh, H. L., Li, Y., Teh, S. Y., Barizan, R. S. R., & Zhai, L. (2018). Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean & Coastal Management, 154, 72-82. doi:

Rouse, J.W., Haas, R.H., Schell, J.A., & Deering, D.W (1973). Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS Symposium. NASA, pp. 309–317.

Satyanarayana, B., Muslim, A. M., Horsali, N. A. I., Zauki, N. A. M., Otero, V., Nadzri, M. I., & Dahdouh-Guebas, F. (2018). Status of the undisturbed mangroves at Brunei Bay, East Malaysia: a preliminary assessment based on remote sensing and ground-truth observations. PeerJ, 6, e4397. doi:

Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International journal of remote sensing, 10(6), 989-1003. doi: .

Spalding, M. (2010). World atlas of mangroves. Routledge.

Taufik, A., Ahmad, S. S. S., & Ahmad, A. (2016). Classification of Landsat 8 satellite data using NDVI thresholds. Journal of Telecommunication, Electronic and Computer Engineering, 8, 37- 40.

Thampanya, U., Vermaat, J. E., Sinsakul, S., & Panapitukkul, N. (2006). Coastal erosion and mangrove progradation of Southern Thailand. Estuarine, coastal and shelf science, 68(1-2), 75-85. doi:

The Government of Vietnam, MARD (Ministry of Agriculture and Rural Development). (2008). A synthesis report on proposed restoration and development of mangrove forest in coastal zones from 2008-2015.

The Government of Vietnam. (2016a). Decree 119/ 2016/ ND-CP. Policy on Coastal forest management, protection, rehabilitation, and development in response to climate change

The Government of Vietnam. (2016b). No 1427/QD-UBND. A decision on the approval of forest inventory results of Hai Phong City.

The Government of Vietnam. (2017). Decree 2964/QĐ-UBND on approving the plan for implementation of the sustainable forest development program of Hai Phong City for 2018-2020.

The Government of Vietnam. (1998). Decision No. 245/1998/QD-TTg on Regulation on State Management of Forest and Forest Land.

The Government of Vietnam. (2001). Decision No. 08/2001/QD-TTg on Management of Natural Forest as Special Use Forest, Protection Forest, and Production Forest.

The Government of Vietnam. (2006). Decision Promulgating the Regulation on Forest Management, No. 186/2006/QD-TTg.

Thomas, M., Lucas, R., Bunting, P., Hardy, A., Rosenqvist, A., & Simard, M. (2017). Distribution and drivers of global mangrove forest change, 1996- 2010. PLoS ONE, 12. doi: .

Thomas, N., Bunting, P., Lucas, R., Hardy, A., Rosenqvist, A., & Fatoyinbo, T. (2018). Mapping mangrove extent and change: A globally applicable approach. Remote Sensing, 10, 1466; doi:

Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R.,& El Saleous, N. (2005). An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485-4498. doi:

Van, T.T., Wilson, N.,Thanh-Tung, H., Quithoudt, K., Quang-Minh, V., Xuan-Tuan, L., Dahdouh-Guebas, F., & Koedam, N. (2015). Changes in mangrove vegetation area and character in a war and land use change affected region of Vietnam (Mui Ca Mau) over six decades. Acta Oecologica, 63, 71- 81.

Vietnam Law on Forestry. (2017). Law on Foretry (both Vietnamese and English versions).

Wang, Q., & Tenhunen, J. D. (2004). Vegetation mapping with multitemporal NDVI in North Eastern China transect (NECT). International Journal of Applied Earth Observation and Geoinformation, 6(1), 17-31. doi:

Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. doi:

Yilmaz, O., Mansuroglu, S., & Yilmaz, R. (2013). SWOT analysis of ecotourism as a tool for sustainable development: A case research in north-west black sea coastal zone of Turkey. J. Environ. Prot. Ecol, 14, 786- 798.

Zhang, Z., Treitz, P., Chen, D., & Quan, C. (2017), Mapping mangrove forests using multi-tidal remotely- sensed data and a decision- tree based procedure. International Journal of Applied Earth Observation and Geoinformations, 62, 201- 2017. doi:



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Forest and Society is licensed under a Creative Commons Attribution 4.0 International License

View My Stats

Forest and Society has been indexed/registered/mentioned in : 


View full indexing services