Identification of Mount Sirung Geothermal Potential based on Land Surface Temperature and 3D Gravity Model

Authors

  • Ayu Alvita Primastika Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Cempaka Putih, Ciputat, Tangerang Selatan, Banten, 15412, Indonesia.
  • Dhika Faiz Fadrian Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Cempaka Putih, Ciputat, Tangerang Selatan, Banten, 15412, Indonesia.
  • Fardhan Rafshan Zani Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Cempaka Putih, Ciputat, Tangerang Selatan, Banten, 15412, Indonesia.
  • Nanda Ridki Permana PT Minelog Services Indonesia, Bumi Serpong Damai (BSD), Kawasan Industri dan Gudang Taman Tekno, Blok G1 No. 10, Jl. Sektor 11, Setu, Tangerang Selatan, Banten, 15220, Indonesia.

DOI:

https://doi.org/10.20956/geocelebes.v7i2.23759

Keywords:

derivative analysis, Mount Sirung, Land Surface Temperature, gravity method, geothermal

Abstract

According to the Ministry of Energy and Mineral Resources 2021 data, first ranks in the list of 10 provinces with the lowest electrification ratio in Indonesia. One of the geothermal prospect areas in East Nusa Tenggara is Mount Sirung. This research was conducted in August 2022 which aims to identify geothermal systems. Gravity data was obtained from the GGMPlus 2013 with a total of 3819 data. Land Surface Temperature (LST) is used as supporting data with a surface temperature approximately 26.1 – 29.5°C because there are manifestations of hot springs at Mount Sirung. Based on the derivative analysis, there are four trajectories in the northwest-southeast direction with reverse faults and normal faults as the geothermal control system of Mount Sirung. The results of 3D gravitational inversion modeling are estimated that there is clay interspersed with breccia with a density of 2.34 – 2.39 g/cm3 as clay cap at 0 – 600 m, and lava interspersed with sandy tuff as a reservoir with a density of 1.98 – 2.03 g/cm3 at 700 – 1400 m. Based on these results and discussions, Mount Sirung is proven to have geothermal potential which can be utilized as a source of electrification in East Nusa Tenggara.

Author Biographies

Ayu Alvita Primastika, Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Cempaka Putih, Ciputat, Tangerang Selatan, Banten, 15412, Indonesia.

Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Cempaka Putih, Ciputat, Tangerang Selatan, Banten, 15412, Indonesia.

Dhika Faiz Fadrian, Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Cempaka Putih, Ciputat, Tangerang Selatan, Banten, 15412, Indonesia.

Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Cempaka Putih, Ciputat, Tangerang Selatan, Banten, 15412, Indonesia.

Fardhan Rafshan Zani, Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Cempaka Putih, Ciputat, Tangerang Selatan, Banten, 15412, Indonesia.

Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Cempaka Putih, Ciputat, Tangerang Selatan, Banten, 15412, Indonesia.

Nanda Ridki Permana, PT Minelog Services Indonesia, Bumi Serpong Damai (BSD), Kawasan Industri dan Gudang Taman Tekno, Blok G1 No. 10, Jl. Sektor 11, Setu, Tangerang Selatan, Banten, 15220, Indonesia.

PT Minelog Services Indonesia, Bumi Serpong Damai (BSD), Kawasan Industri dan Gudang Taman Tekno, Blok G1 No. 10, Jl. Sektor 11, Setu, Tangerang Selatan, Banten, 15220, Indonesia.

References

Ashat, A., Pratama, H. B., & Itoi, R. (2019). Updating conceptual model of Ciwidey-Patuha geothermal using dynamic numerical model. IOP Conference Series: Earth and Environmental Science, 254,012010. http://dx.doi.org/10.1088/1755-1315/254/1/012010

Cahyono, B. E., Jannah, N., & Suprianto, A. (2019). Analisis Sebaran Potensi dan Manifestasi Panas Bumi Pegunungan Ijen berdasarkan Suhu Permukaan dan Geomorfologi. Natural B, 5(1), 19–27. https://natural-b.ub.ac.id/index.php/natural-b/article/view/452/

Darsono., Legowo, B., & Darmanto. (2017). Identifikasi Potensi Akuifer Tertekan berdasarkan Data Resistivitas Batuan (Kasus: Kecamatan Sambirejo Kabupaten Sragen). Jurnal Fisika dan Aplikasinya, 13(1), 34–38. http://dx.doi.org/10.12962/j24604682.v13i1.2151

Google Earth. (2022). Research Location. https://earth.google.com/web/search/GunungSirung

Gunawan, I., Windarta, J., & Harmoko, U. (2021). Overview Potensi Panas Bumi di Provinsi Jawa Barat. Jurnal Energi Baru dan Terbarukan, 2(2), 60–73. https://doi.org/10.14710/jebt.2021.11072

Hadi, M. N., & Kusnadi, D. (2015). Survei Geologi dan Geokimia Daerah Panas Bumi Pulau Pantar Kabupaten Alor, Provinsi Nusa Tenggara Timur. Prosiding Hasil Kegiatan Lapangan Pusat Sumber Daya Geologi Tahun Anggaran.

Hartini. (2020). Pemodelan Inversi Linier Least-Square (LS) pada Anomali Geomagnet Model Dyke. Jurnal Hadron, 2(2), 49–53. https://doi.org/10.33059/jh.v2i2.2689

Ibrahim, M. M., Utami, P., & Raharjo, I. B. (2022). Analisa Struktur Geologi berdasarkan Data Gravitasi Menggunakan Metode Second Vertical Derivative (SVD) Pada Lapangan Panas Bumi “X”. Jurnal Geosains dan Remote Sensing (JGRS), 3(2), 52–59. https://doi.org/10.23960/jgrs.2022.v3i2.76

Imran, P. B., Fernanda, E., & Sudrazat, S. D. (2021). Pengolahan Data Landsat dan Gravitasi Sebagai Indikasi Panasbumi Daerah Rana Kulan, NTT. Jurnal Geofisika Eksplorasi, 7(1), 41–51. https://doi.org/10.23960/jge.v7i1.10

Koesoemadinata, S., & Noya, N. (1969). Geological Map of Lomblen Quadrangle, East Nusa Tenggara Scale 1:250.000. Pusat Penelitian dan Pengembangan Geologi.

Luthfi, M., Haryanto, A. D., Hutabarat, J., & Siagian, H. (2020). Pemodelan Sistem Panasbumi pada Sumur ML-1, ML-2 dan ML-3 berdasarkan Analisis Petrografi dan Magnetotellurik di Lapangan Panasbumi Sorik Marapi, Kabupaten Mandailing Natal, Sumatera Utara. Geoscience Journal, 4(2), 154–162. http://jurnal.unpad.ac.id/geoscience/article/view/29089

Ministry of Energy and Mineral Resources. (2017). Potensi Panas Bumi Indonesia Jilid 2. Badan Geologi.

Ministry of Energy and Mineral Resources. (2021). Triwulan III 2021: Rasio Elektrifikasi 99,40%, Kapasitas Pembangkit EBT 386 MW. Siaran Pers Indonesia. https://ebtke.esdm.go.id/post/2021/11/22/3013/triwulan.iii.2021.rasio.elektrifikasi.9940.kapasitas.pembangkit.ebt.386.mw

Permana, N. R., Gunawan, B., Primastika, A. A., & Novitasari, D. (2022). Characteristics of Palu-Koro Fault based on Derivative Analysis and Euler Deconvolution Model of Gravity Data. Journal of Physics: Conference Series, 2377, 012041. https://doi.org/10.1088/1742-6596/2377/1/012041

Permana, N. R., Gunawan, B., Primastika, A. A., Shafa, D., Fadrian, D. F., & Zani, F. R. (2022b). Identification of Alteration Zone and Gold Mineralization based on Magnetic Anomaly and 3D Model of Geomagnetic Satellite Data Inversion of Mount Pongkor Area, West Java. Journal of Natural Sciences and Mathematics Research, 8(2), 94–102. https://doi.org/10.21580/jnsmr.2022.8.2.13177

Rahadinata, T., Takodama, I., & Zarkasyi, A. (2019). Penerapan Koreksi Topografi pada Data Magnetotellurik dan Analisis Data Gaya Berat dalam Interpretasi Daerah Panas Bumi Pantar, Kabupaten Alor, Provinsi Nusa Tenggara Timur. Buletin Sumber Daya Geologi, 14(3), 156–168. https://doi.org/10.47599/bsdg.v14i3.290

Rey, R. B. & Poluakan, C. (2020). Identifikasi mineral batuan pada daerah manifestasi mata air panas di Koya Kecamatan Tondano Selatan Kabupaten Minahasa menggunakan sem-edx dan ftir. Jurnal Fisika dan Terapannya, 1(1), 12–16. https://eurekaunima.com/index.php/fista/article/view/57/29

Reynolds, J. M. (1997). An Introduction to Applied and Environmental Geophysics. John Wiley and Sons.

Salam, R. A., Harmoko, U., & Yulianto, T. (2017). Pemodelan 2D sistem panas bumi daerah Garut bagian timur menggunakan metode magnetotellurik. Youngster Physics Journal, 6(2), 143–150. https://ejournal3.undip.ac.id/index.php/bfd/article/view/17118

Saptadji, N. (2001). Teknik Panas Bumi. Bandung Institute of Technology Press.

Sari, H. P., Suprianto, A., & Priyantari, N. (2022). Groundwater Distribution and Potency in Faculty of Mathematics and Natural Science, Universitas Jember based on 3-Dimensional Resistivity Data Modeling. Jurnal Berkala Saintek, 10(1), 32–36. https://doi.org/10.19184/bst.v10i1.23025

Sarkowi, M., Sawitri, R. F., Mulyanto, B. S., & Wibowo, R. C. (2021). Wai Selabung geothermal reservoir analysis based on gravity method. Jurnal Ilmiah Pendidikan Fisika Al-BiRuNi, 10(2), 211–229. https://doi.org/10.24042/jipfalbiruni.v10i2.9705

Sehah., Prabowo, U. N., & Raharjo, S. A. (2021). Pemanfaatan Data Anomali Gravitasi Citra Satelit untuk Interpretasi Kualitatif Batas Cekungan Air Tanah Purwokerto-Purbalingga. Prosiding Seminar Nasional dan Call for Papers. http://jurnal.lppm.unsoed.ac.id/ojs/index.php/Prosiding/article/viewFile/1841/1600

Sidik, I. F., Susilo, A., & Sulastomo, G. (2014). Identifikasi Sesar Di Daerah Pongkor Bogor Jawa Barat Dengan Menggunakan Metode Gayaberat. Brawijaya Physics Student Journal, 2(1), 21–25. http://physics.studentjournal.ub.ac.id/index.php/psj/article/view/125

Sugianto, A., Takodama, I., & Rahadinata, T. (2017). Identification of Pantar Geothermal Structures Derived from Gradient Horizontal Analysis and 3D Modeling of Gravity Data. Buletin Sumber Daya Geologi, 12(2), 135–143.

Sugita, M. I., Janah, A. F., Rahmawati, D., Supriyadi., & Khumaedi. (2020). Analisis Data Gaya Berat di Daerah Bendan Duwur Semarang. Journal of Research and Technology. 6(1), 81–90. https://journal.unusida.ac.id/index.php/jrt/article/view/143/152

Sugito., Hartono., Irayani, Z., & Abdullatif, R. F. (2019). Eksplorasi potensi akuifer menggunakan metode geolistrik resistivitas di desa plana Kec. Somagede Kab. Banyumas. Prosiding Seminar Nasional LPPM Unsoed, 9(1), 12–22. http://jurnal.lppm.unsoed.ac.id/ojs/index.php/Prosiding/article/viewFile/1102/956

Wachidah, N. & Minarto, E. (2018). Identifikasi Struktur Lapisan Bawah Permukaan Daerah Potensial Mineral dengan Menggunakan Metode Gravitasi di Lapangan “A”, Pongkor, Jawa Barat. Jurnal Sains dan Seni ITS, 7(1), B32–B37. http://dx.doi.org/10.12962/j23373520.v7i1.28673

Yudha, S. W., Tjahjono, B., & Longhurst, P. (2022). Unearthing the Dynamics of Indonesia’s Geothermal Energy Development. Energies, 15(14), 5009. https://doi.org/10.3390/en15145009

Yulistina, S. (2018). Studi Identifikasi Struktur Geologi Bawah Permukaan untuk Mengetahui Sistem Sesar berdasarkan Analisis First Horizontal Derivative (FHD), Second Vertical Derivative (SVD), dan 2,5D Forward Modeling di Daerah Manokwari Papua Barat. Jurnal Geofisika Eksplorasi, 4(2), 173–186. http://dx.doi.org/10.23960/jge.v4i2.15

Downloads

Published

2023-11-02

How to Cite

Primastika, A. A., Fadrian, D. F., Zani, F. R., & Permana, N. R. (2023). Identification of Mount Sirung Geothermal Potential based on Land Surface Temperature and 3D Gravity Model. JURNAL GEOCELEBES, 7(2), 117–129. https://doi.org/10.20956/geocelebes.v7i2.23759

Issue

Section

Articles