Impact of El Niño - Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on Air Temperature in Bengkulu City
DOI:
https://doi.org/10.70561/geocelebes.v9i1.43409Keywords:
Air temperature, Bengkulu City, Climate Variability, ENSO, IODAbstract
Bengkulu City has experienced rising air temperatures due to climate variability events, particularly ENSO and IOD. This study analyzes the relationship between ENSO, IOD, and air temperature in Bengkulu over the past 20 years (2004-2023) using data from Meteorological and Climatology stations, as well as ONI and DMI indices from NOAA. Pearson and multiple correlation analyses show a temperature increase of 0.08-0.1°C per year. ENSO has a stronger influence than IOD, especially on maximum temperature ( r = 0.28-0.38). To strengthen the analysis, multiple linear regression was applied, revealing that ONI had a statistically significant positive effect on average air temperature, while DMI showed a weaker and insignificant influence ( r = 0.10-0.11). A phase-based composite analysis revealed that average temperatures peaked during El Niño combined with Positive IOD phases, highlighting their synergistic warming effect, with maximum temperature reaching 35.9°C (February 2019), and the lowest minimum temperature recorded at 18°C (September 2019). The temperature increase during El Niño poses risks such as prolonged dry seasons, increased drought, and disruption of coastal ecosystems. Therefore, adaptation measures such as early warning systems and water resource management must be integrated into regional planning, particularly in agriculture and health sectors in Bengkulu.
References
Abudukade, S., Yang, F., Liu, Y., Mamtimin, A., Gao, J., Ma, M., Wang, W., Cui, Z., Wang, Y., Zhang, K., Song, M., & Zhang, J. (2023). Effects of Artificial Green Land on Land-Atmosphere Interactions in the Taklamakan Desert. Land, 12(8), 1541. https://doi.org/10.3390/land12081541
Akhsan, H., Irfan, M., & Iskandar, I. (2023). El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and the Rise of Extreme Temperatures in Eastern Sumatra: Exploring Climate Change Dynamics. Jurnal Penelitian Pendidikan IPA, 9(2), 600–608. https://doi.org/10.29303/jppipa.v9i2.3084
Andrian, L. G., Osman, M., & Vera, C. S. (2024). The role of the Indian Ocean Dipole in modulating the austral spring ENSO teleconnection to the Southern Hemisphere. Weather and Climate Dynamics, 5(4), 1505–1522. https://doi.org/10.5194/wcd-5-1505-2024
Ariska, M., Akhsan, H., Muslim, M., Romadoni, M., & Putriyani, F. S. (2022) ‘Prediksi Perubahan Iklim Ekstrem di Kota Palembang dan Kaitannya dengan Fenomena El Niño-Southern Oscillation (ENSO) Berbasis Machine Learning’, JIPFRI (Jurnal Inovasi Pendidikan Fisika dan Riset Ilmiah), 6(2), 79–86. https://doi.org/10.30599/jipfri.v6i2.1611
Eboy, O. V., & Kemarau, R. A. (2023). Study Variability of the Land Surface Temperature of Land Cover during El Niño Southern Oscillation (ENSO) in a Tropical City. Sustainability, 15(11), 8886. https://doi.org/10.3390/su15118886
Ferreira, D. H. L., & Badinger, A. (2023). Study Over El Niño and La Niña Influence on Mean Temperature Trends and Precipitation in Brazilian Regions. Revista Geointerações, 7(1), 1–14. https://doi.org/10.59776/2526-3889.2023.4890
Hansen, J., Sato, M., Kharecha, P., von Schuckmann, K., Beerling, D. J., Cao, J., Marcott, S., Masson-Delmotte, V., Prather, M. J., Rohling, E. J., Shakun, J., Smith, P., Lacis, A., Russell, G., & Ruedy, R. (2017). Young people's burden: Requirement of negative CO₂ emissions. Earth System Dynamics, 8(4), 577–616. https://doi.org/10.5194/esd-8-577-2017
IPCC (Intergovernmental Panel on Climate Change). (2021). Global warming of 1.5°C. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf
Ismail, M. R., A. Zakaria., & Susilo, G. E. (2020). Analisis pengaruh anomali iklim terhadap curah hujan di Provinsi Bengkulu. Rekayasa: Jurnal Ilmiah Fakultas Teknik Universitas Lampung, 24(1), 10–14. https://doi.org/10.23960/REKRJITS.V24I1.11.
Jiang, N., Zhu, C., Hu, Z-Z., McPhaden, M. J., Lian, T., Zhou, C., Qian, W., & Chen, D. (2025). El Niño and Sea Surface Temperature Pattern Effects Lead to Historically High Global Mean Surface Temperatures in 2023. Geophysical Research Letters, 52(2), e2024GL113733. https://doi.org/10.1029/2024gl113733
Kaboth‐Bahr, S., Kern, O. A., & Bahr, A. (2024). Developing a 3.5-million-year benchmark record of Indian Ocean Dipole variability. EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12377. https://doi.org/10.5194/egusphere-egu24-12377
Kong, Y. S. (2025). The Relationship Between Urban Morphology and the Urban Heat Island Effect: A Study of Cooling Strategies in Urbanized Areas. Applied and Computational Engineering, 122(1), 77–82. https://doi.org/10.54254/2755-2721/2025.19604
Liu, G., Guo, Y., Xia, H., Liu, X., Song, H., Yang, J., & Zhang, Y. (2024). Increase Asymmetric Warming Rates Between Daytime and Nighttime Temperatures Over Global Land During Recent Decades. Geophysical Research Letters, 51(24), e2024GL112832. https://doi.org/10.1029/2024gl112832
Loeb, N. G., Ham, S-H., Allan, R. P., Thorsen, T. J., Meyssignac, B., Kato, S., Johnson, G. C., & Lyman, J. M. (2024). Observational Assessment of Changes in Earth’s Energy Imbalance Since 2000. Surveys in Geophysics, 45, 1757–1783. https://doi.org/10.1007/s10712-024-09838-8
McPhaden, M. J., Hasan, N., & Chikamoto, Y. (2023). Causes and Consequences of the Prolonged 2020-2023 La Niña. EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10801, https://doi.org/10.5194/egusphere-egu23-10801
Marathe, S., & Karumuri, A. (2021). Chapter 4 – The El Niño Modoki. In S. K. Behera, Tropical and Extratropical Air-Sea Interactions; Modes of Climate Variations (pp. 93–114). Elsevier. https://doi.org/10.1016/B978-0-12-818156-0.00009-5
Millenia, Y. W., Helmi, M., & Maslukah, L. (2023). Analisis Mekanisme Pengaruh IOD, ENSO dan Monsun terhadap Suhu Permukaan Laut dan Curah Hujan di Perairan Kepulauan Mentawai, Sumatera Barat. Indonesian Journal of Oceanography, 4(4), 87–98. https://doi.org/10.14710/ijoce.v4i4.14414
Mishra, V., Tiwari, A. D., & Kumar, R. (2022). Warming climate and ENSO variability enhance the risk of sequential extremes in India. One Earth, 5(11), 1250–1259. https://doi.org/10.1016/j.oneear.2022.10.013
Najarzadeh, D. (2020). Conservative confidence intervals on multiple correlation coefficient for high-dimensional elliptical data using random projection methodology. Journal of Applied Statistics, 49(1), 64–85. https://doi.org/10.1080/02664763.2020.1796937
Nasution, C. N., Fajary, F. R., Abdillah, M. R., & Kartadikaria, A. R. (2023). Significant Precipitation Anomalies over Indonesia in the Aftermath of Iod Events. IOP Conference Series: Earth and Environmental Science, 1245, 012032. https://doi.org/10.1088/1755-1315/1245/1/012032
Novianti, L., Safrina, S., Satya, O. C., Hadi, H., Affandi, A. K., Virgo, F., & Irwan, M. (2023). Dampak Enso Dan IOD Terhadap Dinamika Kelembaban Udara dan Temperatur di Kota Palembang Pada Tahun 2017-2021. Jurnal Penelitian Sains, 25(1), 67–72. https://doi.org/10.56064/jps.v25i1.783
Pillai, P. A., Kiran, V. G., & Suneeth, K. V. (2024). The strengthened role of new predictors of Indian Ocean Dipole (IOD) during the recent decades of weakened ENSO-IOD relationship. Dynamics of Atmospheres and Oceans, 106, 101432. https://doi.org/10.1016/j.dynatmoce.2023.101432
Prasetyo, S., Hidayat, U., Haryanto, Y. D., & Riama, N. F. (2021). Karakteristik Suhu Udara di Pulau Jawa Kaitannya dengan Kelembapan Udara, Curah Hujan, SOI, dan DMI. Jurnal Geografi, Edukasi dan Lingkungan, 5(1), 15–26. https://doi.org/10.22236/jgel.v5i1.5971
Purohit, S. (2024). The Role of Urban Green Spaces in Mitigating Urban Heat Island Effect Amidst Climate Change. Research Journal of Chemistry and Environment, 29(1), 75–84. https://doi.org/10.25303/291rjce075084
Stuivenvolt‐Allen, J., Fedorov, A. V., Fu, M., & Heede, U. (2024). Widening of wind-stress anomalies amplifies ENSO in a warming climate. Journal of Climate, 38, 497–512. https://doi.org/10.1175/JCLI-D-24-0126.1
Tan, S. (2024). The Effects of Climate Change on the Global Meteorological System and Trend Analysis. Interdisciplinary Humanities and Communication Studies, 1(7), 1–6. https://doi.org/10.61173/7b26qs93
Turney, S. (2024). Pearson correlation coefficient (r): Guide & examples. https://www.scribbr.com/statistics/pearson-correlation-coefficient/
Wardani, A., Akbar, A. J., Handayani, L., & Lubis, A. M. (2023). Correlation Among Rainfall, Humidity, and The El Niño-Southern Oscillation (ENSO) Phenomena in Bengkulu City During the Period from 1985-2020. Jurnal Penelitian Pendidikan IPA, 9(4), 1664–1671. https://doi.org/10.29303/jppipa.v9i4.2971
Xia, Y., Sun, X-G., Yan, Y., Feng, W-Y., Huang, F., & Yang, X-Q. (2017). Change of ENSO characteristics in response to global warming. Chinese Science Bulletin, 62(16), 1738–1751. https://doi.org/10.1360/N972016-01225
Xiao, H.-M., Lo, M.-H., & Yu, J-Y. (2022). The increased frequency of combined El Niño and positive IOD events since 1965s and its impacts on maritime continent hydroclimates. Science Reports, 12(1), 7532. https://doi.org/10.1038/s41598-022-11663-1
Yu, J.-Y., Wang, X., Yang, S., Paek, H., & Chen, M. (2017). The Changing El Niño–Southern Oscillation and Associated Climate Extremes. In S.-Y. S. Wang, J-H. Yoon, C. C. Funk, R. R. Gillies. Climate Extremes: Patterns and Mechanisms (pp. 1–38). American Geophysical Union (AGU). https://doi.org/10.1002/9781119068020.CH1
Yuniasih, B., Harahap, W. N., & Wardana, D. A. S. (2022). Anomali Iklim El Nino dan La Nina di Indonesia pada 2013-2022. Agroista Jurnal Agroteknologi, 6(2), 136–143. https://doi.org/10.55180/agi.v6i2.332
Zaini, A. Z. A., Vonnisa, M., & Marzuki, M. (2024). Impact of different ENSO positions and Indian Ocean Dipole events on Indonesian rainfall. Vietnam Journal of Earth Sciences, 46(1), 100–119. https://doi.org/10.15625/2615-9783/19926
Zheng, Y., Tam, C-Y., & Collins, M. (2024). Reduced Indian Ocean Dipole Asymmetry and Increased Extreme Negative Events under Future Greenhouse Warming. Journal of Climate, 37, 5507–5523. https://doi.org/10.1175/JCLI-D-24-0107.1
Zhong, S., Zhang, Y., & Jiang, L. (2024). Impact of different types of La Niña development on the precipitation in the Maritime Continent. Atmosphere-Ocean 62(3), 254–267. https://doi.org/10.1080/07055900.2024.2326611
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JURNAL GEOCELEBES

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).