Impact of El Niño - Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on Air Temperature in Bengkulu City

Authors

  • Mardho Tillah Edkayasa Department of Physics, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu 38371
  • Elfi Yuliza Department of Physics, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu 38371 https://orcid.org/0000-0002-5516-5684
  • Lizalidiawati Lizalidiawati Department of Physics, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu 38371 https://orcid.org/0009-0003-0119-7896

DOI:

https://doi.org/10.70561/geocelebes.v9i1.43409

Keywords:

Air temperature, Bengkulu City, Climate Variability, ENSO, IOD

Abstract

Bengkulu City has experienced rising air temperatures due to climate variability events, particularly ENSO and IOD. This study analyzes the relationship between ENSO, IOD, and air temperature in Bengkulu over the past 20 years (2004-2023) using data from Meteorological and Climatology stations, as well as ONI and DMI indices from NOAA. Pearson and multiple correlation analyses show a temperature increase of 0.08-0.1°C per year. ENSO has a stronger influence than IOD, especially on maximum temperature ( r = 0.28-0.38). To strengthen the analysis, multiple linear regression was applied, revealing that ONI had a statistically significant positive effect on average air temperature, while DMI showed a weaker and insignificant influence ( r = 0.10-0.11). A phase-based composite analysis revealed that average temperatures peaked during El Niño combined with Positive IOD phases, highlighting their synergistic warming effect, with maximum temperature reaching 35.9°C (February 2019), and the lowest minimum temperature recorded at 18°C (September 2019). The temperature increase during El Niño poses risks such as prolonged dry seasons, increased drought, and disruption of coastal ecosystems. Therefore, adaptation measures such as early warning systems and water resource management must be integrated into regional planning, particularly in agriculture and health sectors in Bengkulu.

References

Abudukade, S., Yang, F., Liu, Y., Mamtimin, A., Gao, J., Ma, M., Wang, W., Cui, Z., Wang, Y., Zhang, K., Song, M., & Zhang, J. (2023). Effects of Artificial Green Land on Land-Atmosphere Interactions in the Taklamakan Desert. Land, 12(8), 1541. https://doi.org/10.3390/land12081541

Akhsan, H., Irfan, M., & Iskandar, I. (2023). El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and the Rise of Extreme Temperatures in Eastern Sumatra: Exploring Climate Change Dynamics. Jurnal Penelitian Pendidikan IPA, 9(2), 600–608. https://doi.org/10.29303/jppipa.v9i2.3084

Andrian, L. G., Osman, M., & Vera, C. S. (2024). The role of the Indian Ocean Dipole in modulating the austral spring ENSO teleconnection to the Southern Hemisphere. Weather and Climate Dynamics, 5(4), 1505–1522. https://doi.org/10.5194/wcd-5-1505-2024

Ariska, M., Akhsan, H., Muslim, M., Romadoni, M., & Putriyani, F. S. (2022) ‘Prediksi Perubahan Iklim Ekstrem di Kota Palembang dan Kaitannya dengan Fenomena El Niño-Southern Oscillation (ENSO) Berbasis Machine Learning’, JIPFRI (Jurnal Inovasi Pendidikan Fisika dan Riset Ilmiah), 6(2), 79–86. https://doi.org/10.30599/jipfri.v6i2.1611

Eboy, O. V., & Kemarau, R. A. (2023). Study Variability of the Land Surface Temperature of Land Cover during El Niño Southern Oscillation (ENSO) in a Tropical City. Sustainability, 15(11), 8886. https://doi.org/10.3390/su15118886

Ferreira, D. H. L., & Badinger, A. (2023). Study Over El Niño and La Niña Influence on Mean Temperature Trends and Precipitation in Brazilian Regions. Revista Geointerações, 7(1), 1–14. https://doi.org/10.59776/2526-3889.2023.4890

Hansen, J., Sato, M., Kharecha, P., von Schuckmann, K., Beerling, D. J., Cao, J., Marcott, S., Masson-Delmotte, V., Prather, M. J., Rohling, E. J., Shakun, J., Smith, P., Lacis, A., Russell, G., & Ruedy, R. (2017). Young people's burden: Requirement of negative CO₂ emissions. Earth System Dynamics, 8(4), 577–616. https://doi.org/10.5194/esd-8-577-2017

IPCC (Intergovernmental Panel on Climate Change). (2021). Global warming of 1.5°C. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf

Ismail, M. R., A. Zakaria., & Susilo, G. E. (2020). Analisis pengaruh anomali iklim terhadap curah hujan di Provinsi Bengkulu. Rekayasa: Jurnal Ilmiah Fakultas Teknik Universitas Lampung, 24(1), 10–14. https://doi.org/10.23960/REKRJITS.V24I1.11.

Jiang, N., Zhu, C., Hu, Z-Z., McPhaden, M. J., Lian, T., Zhou, C., Qian, W., & Chen, D. (2025). El Niño and Sea Surface Temperature Pattern Effects Lead to Historically High Global Mean Surface Temperatures in 2023. Geophysical Research Letters, 52(2), e2024GL113733. https://doi.org/10.1029/2024gl113733

Kaboth‐Bahr, S., Kern, O. A., & Bahr, A. (2024). Developing a 3.5-million-year benchmark record of Indian Ocean Dipole variability. EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12377. https://doi.org/10.5194/egusphere-egu24-12377

Kong, Y. S. (2025). The Relationship Between Urban Morphology and the Urban Heat Island Effect: A Study of Cooling Strategies in Urbanized Areas. Applied and Computational Engineering, 122(1), 77–82. https://doi.org/10.54254/2755-2721/2025.19604

Liu, G., Guo, Y., Xia, H., Liu, X., Song, H., Yang, J., & Zhang, Y. (2024). Increase Asymmetric Warming Rates Between Daytime and Nighttime Temperatures Over Global Land During Recent Decades. Geophysical Research Letters, 51(24), e2024GL112832. https://doi.org/10.1029/2024gl112832

Loeb, N. G., Ham, S-H., Allan, R. P., Thorsen, T. J., Meyssignac, B., Kato, S., Johnson, G. C., & Lyman, J. M. (2024). Observational Assessment of Changes in Earth’s Energy Imbalance Since 2000. Surveys in Geophysics, 45, 1757–1783. https://doi.org/10.1007/s10712-024-09838-8

McPhaden, M. J., Hasan, N., & Chikamoto, Y. (2023). Causes and Consequences of the Prolonged 2020-2023 La Niña. EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10801, https://doi.org/10.5194/egusphere-egu23-10801

Marathe, S., & Karumuri, A. (2021). Chapter 4 – The El Niño Modoki. In S. K. Behera, Tropical and Extratropical Air-Sea Interactions; Modes of Climate Variations (pp. 93–114). Elsevier. https://doi.org/10.1016/B978-0-12-818156-0.00009-5

Millenia, Y. W., Helmi, M., & Maslukah, L. (2023). Analisis Mekanisme Pengaruh IOD, ENSO dan Monsun terhadap Suhu Permukaan Laut dan Curah Hujan di Perairan Kepulauan Mentawai, Sumatera Barat. Indonesian Journal of Oceanography, 4(4), 87–98. https://doi.org/10.14710/ijoce.v4i4.14414

Mishra, V., Tiwari, A. D., & Kumar, R. (2022). Warming climate and ENSO variability enhance the risk of sequential extremes in India. One Earth, 5(11), 1250–1259. https://doi.org/10.1016/j.oneear.2022.10.013

Najarzadeh, D. (2020). Conservative confidence intervals on multiple correlation coefficient for high-dimensional elliptical data using random projection methodology. Journal of Applied Statistics, 49(1), 64–85. https://doi.org/10.1080/02664763.2020.1796937

Nasution, C. N., Fajary, F. R., Abdillah, M. R., & Kartadikaria, A. R. (2023). Significant Precipitation Anomalies over Indonesia in the Aftermath of Iod Events. IOP Conference Series: Earth and Environmental Science, 1245, 012032. https://doi.org/10.1088/1755-1315/1245/1/012032

Novianti, L., Safrina, S., Satya, O. C., Hadi, H., Affandi, A. K., Virgo, F., & Irwan, M. (2023). Dampak Enso Dan IOD Terhadap Dinamika Kelembaban Udara dan Temperatur di Kota Palembang Pada Tahun 2017-2021. Jurnal Penelitian Sains, 25(1), 67–72. https://doi.org/10.56064/jps.v25i1.783

Pillai, P. A., Kiran, V. G., & Suneeth, K. V. (2024). The strengthened role of new predictors of Indian Ocean Dipole (IOD) during the recent decades of weakened ENSO-IOD relationship. Dynamics of Atmospheres and Oceans, 106, 101432. https://doi.org/10.1016/j.dynatmoce.2023.101432

Prasetyo, S., Hidayat, U., Haryanto, Y. D., & Riama, N. F. (2021). Karakteristik Suhu Udara di Pulau Jawa Kaitannya dengan Kelembapan Udara, Curah Hujan, SOI, dan DMI. Jurnal Geografi, Edukasi dan Lingkungan, 5(1), 15–26. https://doi.org/10.22236/jgel.v5i1.5971

Purohit, S. (2024). The Role of Urban Green Spaces in Mitigating Urban Heat Island Effect Amidst Climate Change. Research Journal of Chemistry and Environment, 29(1), 75–84. https://doi.org/10.25303/291rjce075084

Stuivenvolt‐Allen, J., Fedorov, A. V., Fu, M., & Heede, U. (2024). Widening of wind-stress anomalies amplifies ENSO in a warming climate. Journal of Climate, 38, 497–512. https://doi.org/10.1175/JCLI-D-24-0126.1

Tan, S. (2024). The Effects of Climate Change on the Global Meteorological System and Trend Analysis. Interdisciplinary Humanities and Communication Studies, 1(7), 1–6. https://doi.org/10.61173/7b26qs93

Turney, S. (2024). Pearson correlation coefficient (r): Guide & examples. https://www.scribbr.com/statistics/pearson-correlation-coefficient/

Wardani, A., Akbar, A. J., Handayani, L., & Lubis, A. M. (2023). Correlation Among Rainfall, Humidity, and The El Niño-Southern Oscillation (ENSO) Phenomena in Bengkulu City During the Period from 1985-2020. Jurnal Penelitian Pendidikan IPA, 9(4), 1664–1671. https://doi.org/10.29303/jppipa.v9i4.2971

Xia, Y., Sun, X-G., Yan, Y., Feng, W-Y., Huang, F., & Yang, X-Q. (2017). Change of ENSO characteristics in response to global warming. Chinese Science Bulletin, 62(16), 1738–1751. https://doi.org/10.1360/N972016-01225

Xiao, H.-M., Lo, M.-H., & Yu, J-Y. (2022). The increased frequency of combined El Niño and positive IOD events since 1965s and its impacts on maritime continent hydroclimates. Science Reports, 12(1), 7532. https://doi.org/10.1038/s41598-022-11663-1

Yu, J.-Y., Wang, X., Yang, S., Paek, H., & Chen, M. (2017). The Changing El Niño–Southern Oscillation and Associated Climate Extremes. In S.-Y. S. Wang, J-H. Yoon, C. C. Funk, R. R. Gillies. Climate Extremes: Patterns and Mechanisms (pp. 1–38). American Geophysical Union (AGU). https://doi.org/10.1002/9781119068020.CH1

Yuniasih, B., Harahap, W. N., & Wardana, D. A. S. (2022). Anomali Iklim El Nino dan La Nina di Indonesia pada 2013-2022. Agroista Jurnal Agroteknologi, 6(2), 136–143. https://doi.org/10.55180/agi.v6i2.332

Zaini, A. Z. A., Vonnisa, M., & Marzuki, M. (2024). Impact of different ENSO positions and Indian Ocean Dipole events on Indonesian rainfall. Vietnam Journal of Earth Sciences, 46(1), 100–119. https://doi.org/10.15625/2615-9783/19926

Zheng, Y., Tam, C-Y., & Collins, M. (2024). Reduced Indian Ocean Dipole Asymmetry and Increased Extreme Negative Events under Future Greenhouse Warming. Journal of Climate, 37, 5507–5523. https://doi.org/10.1175/JCLI-D-24-0107.1

Zhong, S., Zhang, Y., & Jiang, L. (2024). Impact of different types of La Niña development on the precipitation in the Maritime Continent. Atmosphere-Ocean 62(3), 254–267. https://doi.org/10.1080/07055900.2024.2326611

Downloads

Published

2025-04-30

How to Cite

Edkayasa, M. T., Yuliza, E., & Lizalidiawati, L. (2025). Impact of El Niño - Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on Air Temperature in Bengkulu City. JURNAL GEOCELEBES, 9(1), 59–77. https://doi.org/10.70561/geocelebes.v9i1.43409

Issue

Section

Articles