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Abstract 

A new two-dimensional mathematical model was developed to describe the transport phenomena 
of carbon dioxide in concrete structures. By treating transport phenomena as a concrete 
carbonation process, a two-dimensional linear partial differential equation was derived based on 
the principle of mass balance and convective-dispersive Equation. It was found the analytical 
solution by the separation of variables method combined with some substitution approaches. The 
numerical results from the analytical or exact solution are presented to illustrate the practical 
application of this model. 
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1. INTRODUCTION  

Carbonation in concrete is very costly and has a significant impact on the economies of 
industrial nations. A 2002 study by Koch et al. (see [2]) reported that the annual direct cost of 
corrosion on U.S. highway bridges was estimated at $8.3 billion overall, with $4.0 billion the 
capital cost and maintenance of reinforced concrete highway bridge decks and substructures. 
Indirect costs due to traffic delays were calculated to be more than ten times the direct costs.  

There are numerous studies on concrete carbonation investigations, aiming at developing 
empirical or semiempirical relations for the prediction of the rate carbonation (see [5]), and the 
service life of reinforced concrete under chloride environment (see [1]). Using statistical 
modelling, Silva et al. [6] investigated the estimation of the carbonation coefficient, and 
consequently the carbonation as a function of the variables considered statistically significant in 
explaining the concrete carbonation phenomenon. Based on physio-chemical mechanisms, Zhang 
[7] proposed a mathematical model of carbonation process in porous concrete materials. Liang 
and Lin [3] was developed a one-dimensional mathematical model to describe the transport 
phenomena of carbon dioxide in concrete structures. This model helps to identify the materials 
and environmental parameters that affect the rate of carbonation and can be used for parametric 
studies of their effect on this rate.  

In this paper, we developed mathematical modeling of carbon dioxide transport in the concrete 
carbonation process into a two-dimensional linear partial differential equation. We found the 
analytical or exact solution by the separation of variables method combined with some 
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substitution approaches. Later, the numerical results are presented to illustrate the practical 
application of this model. 
 
 

2. THEORETICAL MODELING OF CONCRETE CARBONATION 

The rate at which carbon dioxide (CO2) enters into concrete structures can be decided 
utilizing several transport components. These instruments regularly act at the same time on the 
concrete structures and may incorporate such forms as convection, diffusion, dispersion, and first-
order production or decay. Liang and Lin [3] proposed a one-dimensional mathematical model 
using these factors. The mathematical model considers the relationships among unsteady state 
and diffusion, pore-water convective effect and chemical reaction and is shown in Table 1 in 
Liang and Lin [3]. 

Similarly, two-dimensional transport phenomena of concrete carbonation can be developed as: 
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(2.1) 

where   is the concentration of carbon dioxide,    is the diffusion coefficient,   is the retardation 
factor (dimensionless),   is the pore-water velocity,    is the rate constant for first-order decay at 
a given temperature  ,   is the rate constant for zero-order production,     is space and   is time. 

Initial and boundary conditions are                                  
                           where              and    are the initial concentration of 
carbon dioxide in concrete, on the surface of the concrete structures,  and at the interface between 
the concrete and steel, respectively.     are the concrete cover thickness on the reinforcing steel. 

Assuming     (This means that the carbonation phenomenon is only concerned in this 

study) and     (This means that in the carbonated zone the reduction of concrete absorbed CO2 

has been finished, in other words, the absorbed CO2 mass per unit volume per unit time equal 

zero), Equation (2.1) becomes 
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3. THE ANALYTICAL SOLUTIONS  

In order to solve the concrete carbonation problem modeled by Equation (2.2), first of all, one 
assumes 

 
                            (3.1) 

 
where     and   are the constant parameters.          is a new function of CO2 concentration. 

By this assumption, we will eliminate each and every one of these objections with a suitable 
change of variables. The plan is to change variables to reduce the equation (2.2) to the diffusion 
equation, and then to use the known solution of the diffusion equation to represent the solution, 
and change variables back. This is a standard technique of solution in partial differential 
equations, and none of the transformations we are making are strange, unmotivated, or unknown. 

Substitution Equation (3.1) into Equation (2.2) gives 
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(3.2) 

 
To reduce Equation (3.2) as a standard form of the two-dimensional diffusion equation, the 

coefficients of the second, third, and fourth terms on the right-hand side should be equal to zero, 
in other words, 

 
                  

                     
 
Simplified, one obtains 
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The solution method of Separation of Variables is described in the following. 

3.1. Separation of Variables Method 

Now the problem formulated by Equation (3.2) changes into the control equation with initial and 
boundary conditions. 
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For solving the problem of concrete carbonation modeled by Equations (3.3) – (3.8), we must 
modify the problem in order to introduce homogenous boundary conditions to the problem. We 
do this by using the physical observance that as      the concrete's temperature does not 
depend on  . Hence, 
 

   
   

                 

 
where we call        in the above Equation the steady-state temperature. Therefore, we let 
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where          is called the variable or transient temperature.  
Substitution Equation (3.9) into Equations (3.3) – (3.8) yields 
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One chooses        as a solution to the problem. We get two-dimensional Laplace's Equation 
with nonhomogeneous boundary conditions. Notice that, for concrete carbonation problems, 
where the diffusion process runs from the outside to the in. The exterior's initial state is always 
the same so that the function   can be considered constant and is combined to the constant values 
of           and    in Equations (3.17) – (3.20) 
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The solution method of Laplace's Equation of Separation of Variables is described in the 

following. 

3.1.1. The Solution of Laplace’s Equation 

Let us notice that while the partial differential equation is both linear and homogenous, the 
boundary conditions are only linear and are not homogenous. This boundary creates a problem 
because the separation of variables requires homogenous boundary conditions. To completely 
solve Laplace's Equation, we are going to have to solve it four times. Each time we solve it, only 
one of the four boundary conditions can be nonhomogeneous, while the remaining three will be 
homogeneous. The following equations show the four problems.  
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Now, once we solve all four of these problems the solution to our original system, will be 
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First, we are going to solve Equation (3.21) 
Start by assuming that our solution will be in the form, 
 

             (3.25) 
 
where      and      are the functions of the independent variables of   and    respectively. 
Substituted Equation (3.25) into Equation (3.21), one obtains 
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where   is an unknown constant. 
Equation (3.26) and the boundary conditions from Equation (3.21) can be rewritten as two 
ordinary differential equations that we will need to solve. 
 

                       (3.27) 

                 (3.28) 
 
We have three cases to deal with, and only     came up with the nontrivial solution. 
Now, one assumes      .  
From Equation (3.27), we have  
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Substituting    (
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 into Equation (3.28). The general solution for Equation (3.28) is 
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Substituting Equations (3.29) and (3.30) into Equation (3.25), one obtains 
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where      is constant.  
Using The principle of Superposition, we get 
 

 
 
      ∑     (

   

 
)     (

   

 
     )

 

   

  (3.31) 

 
Substituting the initial condition in Equation (3.21) into Equation (3.31), one has 
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Equation (3.32) is the Fourier sine series. Thus, one chooses 
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Substituting Equation (3.34) into (3.31), yields 
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The next three problems are similar to the first problem, one obtains 
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After solving the integral, adding Equations (3.35) – (3.38), and change back the value of the 
boundary conditions, we get the general solution of the Laplace's Equation. 
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(3.39) 

3.2. Solution of Diffusion Equation with Homogenous Boundary Conditions 

From Equations (3.10) – (3.15), one has 

 

  

  
   (

   

   
 

   

   ) (3.40) 

                            
                     (3.41) 

           (3.42) 

           (3.43) 

           (3.44) 

            (3.45) 

 

In order to solve the concrete carbonation problem modeled by Equations (3.40) – (3.45), the 

separation of variables method is used, in other words, 

 
                       (3.46) 

 

where           and      are the functions of the independent variables of     and  , 
respectively. Substituted Equation (3.27) into Equation (3.21), one obtains 
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Equation (3.28) can be written as 
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where     is an unknown constant to be determined. 

Equation (3.30) can be rewritten as three ordinary differential equations. 
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where         ,    , and     are others constant.   

The general solution of the Equations (3.30) - (3.32) is 
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Substituting Equations (3.33) - (3.35) into (3.27), one discovers 

 

                              
 

Substituting these results into Equations (3.34) and (3.35), we have 
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Substituting Equations (3.36), (3.37), and (3.38) into Equation (3.27), one obtains 
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where          is constant.  
The principle of Superposition then tells us that a solution to the partial differential equation is, 
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Substituting the initial condition in Equation (3.22) into Equation (3.39), one has 
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Using the Fourier series, we get the value of the coefficient     
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Substituting Equation (3.41) into Equation (3.39) 
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The substitution of Equations (3.42) and (3.39) into Equation (3.9), yields 
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Finally, putting Equation (3.43) into Equation (3.1), one obtains the analytical solution for the 
original problem 
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where           
               and  
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4. NUMERICAL SIMULATION 
The computer package MATLAB [10] was used to show the closed-form solution of 

Equation (3.44). We divide the simulation into three different parts depending on the depth level 
of the concrete, namely the depth of 0-0.5 meters, the depth of 0-1 meters, and the depth of 0-1.5 
meters. It aims to show the concentration distribution for several values of parameters such as 
diffusion coefficient and carbonation depth. Notice that, the parameter value used in this study is 
adapted from the parameter value which is taken from Liang and Lin [3]. 
 

Simulation I 

In this first simulation from a simple domain that is a square domain with domain areas     
    and        , with 
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           and              . The concentration of CO2 distribution at               
and               are displayed in figure 1, and figure 2. From figure 1, one knows the 
carbonation depth                 after      days with                         
and              . For                and                           one needs 
     days at                             from figure 2. 

 

Figure 1. Concentration distribution at                

 

Figure 2. Concentration distribution at                

 
Simulation II 
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The second simulation, we consider a simple unit square domain       and      , with 

                                                              

           and              . The concentration of CO2 distribution at               
and               are displayed in figure 3, and figure 4. If one knows               
and                         , one obtains                             after 
      days from figure 3. For                and                            one 
needs       days at                 from figure 4. 

 

Figure 3. Concentration distribution at                

 

Figure 4. Concentration distribution at                

 
Simulation III 

415



78 

Jurnal Matematika, Statistika & Komputasi 
M N Hidayat, J Kusuma, and N Aris 

 

 

The last simulation, we consider a simple unit square domain         and        , with 

                                                              

           and              . The concentration of CO2 distribution at               
and               are displayed in figure 5, and figure 6. From figure 5, one knows the 
carbonation depth                             after       days with          

               and              . For                and          
                  one needs      days at                             from figure 
6. 

 

Figure 5. Concentration distribution at                

 
Figure 6. Concentration distribution at                
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CONCLUSION 
We have developed the new two-dimensional mathematical model to describe the transport 
phenomena of carbon dioxide in concrete structures. The analytical solution for the two-
dimensional linear partial differential equation obtained using the separation of variables method 
combined with some substitution approaches. The numerical results are presented in figures 
1,2,3,4,5 and 6 to illustrate the concentration distribution for several values of parameters such as 
diffusion coefficient and carbonation depth. Based on this research, we can use to analyze the 
dynamic behavior over a long period of time from a more complex mathematical model of 
concrete carbonation process. 
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