The Primitive-Solutions of Diophantine Equation $x^{2}+p q y^{2}=z^{2}$, for primes p, q

Solusi Primitif Persamaan Diophantine $x^{2}+p q y^{2}=z^{2}$ untuk bilangan-bilangan prima \boldsymbol{p} dan \boldsymbol{q}

Aswad Hariri Mangalaeng*

Abstract

In this paper, we determine the primitive-solutions of diophantine equations $x^{2}+p q y^{2}=z^{2}$, for positive integers x, y, z and primes p, q. Our work is based on the development of the previous results, namely using the solutions of the Diophantine equation $x^{2}+y^{2}=z^{2}$, and looking characteristics of the solutions of the Diophantine equation $x^{2}+3 y^{2}=z^{2}$ and $x^{2}+9 y^{2}=z^{2}$.

Keywords: composite number, diophantine equation, prime number, primitive solution.

1. INTRODUCTION

A Diophantine equation is an equation of the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

where f is an n-variable function with $n \geq 2$. The solution of Equation (1.1) is an n-uple $x_{1}, x_{2}, \ldots x_{n}$ satisfying the equation [3]. For example, 14,223 is one solution of Diophantine equation $17 x+8 y=2021$, and $3,4,5$ is the solution of Diophantine equation $x^{2}+y^{2}=z^{2}$.

Nowadays, there have been many studies about Diophantine equations. Most of their research is about finding the solutions of a given equation, one of which is the work on the equation $x^{2}+3^{a} 41^{b}=y^{n}$ by Alan and Zengin [2] where a, b are non-negative integers and x, y are realtively prime. There are many forms of Diophantine equations with various variables defined. Rahmawati et al [7] figured out the solutions from the equation $\left(7^{k}-1\right)^{x}+\left(7^{k}\right)^{y}=z^{2}$ where x, y, and z are non-negative integers and k is the positive even integer, Burshtein [4] stated the solutions of Diophantine equation $p^{x}+p^{y}=z^{4}$ when $p \geq 2$ are primes and x, y, z are positive integers, and Chakraborty and Hoque [5] investigated the solvability of the Diophantine equation $d x^{2}+p^{2 a} q^{2 b}=4 y^{p}$, where $d>1$ is a square-free integer, p, q are distinct odd primes and x, y, a, b are positive integers with $\operatorname{gcd}(x, y)=1$.

Another interesting Diophantine equation is $x^{2}+c y^{2}=z^{2}$, where all the variables are integers. Some cases of this problem have been solved, such as for case of $c=1$ (see in [8]).

[^0]This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Jurnal Matematika, Statistika \& Komputasi

Aswad Hariri Mangalaeng

Next, there are Abdealim and Dyani [1] who had given the solutions for case of $c=3$ by using the arithmetic technical. Following this, Rahman and Hidayat [6] presented the primitivesolutions for case of $c=9$ using characteristics of the primitive solutions which are a development of the previous cases.

On this paper, we extend the results of [1], [6] and [8] to determine the primitive-solutions of Diophantine equation $x^{2}+p q y^{2}=z^{2}$ where x, y and z are positive integers, and p and q are primes. We establish results that the equation for case y is odd has no primitive-solution and case y is even have two primitive-solutions.

2. MAIN RESULTS

Before showing our results, firstly, we fix some notation. If not previously defined, then we use Diophantine equation $x^{2}+p q y^{2}=z^{2}$ with x, y, z are positive integers, and p, q are primes. Also, if integers m and n are relatively primes, we write $(m, n)=1$. Sometimes, we just write x, y for indicate x and y.
Definition 2.1. Any triple Phytagoras x, y, z is called a triple primitive Phytagoras if $(x, y, z)=1$ [3].

Next, We note one result from [3],
Theorem 2.2. The positive integers x, y, z is a primitive-solution of Diophantine equation $x^{2}+y^{2}=z^{2}$ with y is even, if and only if there are postive integers m and n such that $x=$ $m^{2}-n^{2}, y=2 m n$, and $z=m^{2}+n^{2}$ with $(m, n)=1, m>n$, and m, n have different parity.

We also share the fundamental theorem of arithmetic without any comment,
Theorem 2.3. Every positive integer can be written uniquely as a product of primes, with the prime factors in the product written in order of non-decreasing size [3].

Now, we begin our work.
Definition 2.4. The positive integers x, y, z is called a primitive-solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$ if $(x, y, z)=1$.

Example 2.5. 2,1,45 is a primitive-solution of Diophantine equation $x^{2}+2021 y^{2}=z^{2}$, because of $2^{2}+2021(1)^{2}=2025=45^{2}$ and $(2,1,45)=1$.

Theorem 2.6. If x, y, z is a solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$ with $(x, y, z)=d$ such that $x=d x_{1}, y=d y_{1}$, and $z=d z_{1}$ for integers x_{1}, y_{1}, z_{1}, then x_{1}, y_{1}, z_{1} is a solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$ with $\left(x_{1}, y_{1}, z_{1}\right)=1$.

Proof. Let integers x, y, z is a solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$, so

$$
\begin{gather*}
x^{2}+p q y^{2}=z^{2} \\
\left(d x_{1}\right)^{2}+p q\left(d y_{1}\right)^{2}=\left(d z_{1}\right)^{2} \\
d^{2}\left(x_{1}^{2}+p q y_{1}^{2}\right)=d^{2} z_{1}^{2} \\
x_{1}^{2}+p q y_{1}^{2}=z_{1}^{2}
\end{gather*}
$$

From Equation (2.1), we can conclude that x_{1}, y_{1}, z_{1} is a solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$. Also, from $(x, y, z)=d$, we have $\left(\frac{x}{d}, \frac{y}{d}, \frac{z}{d}\right)=1$. This is equal to $\left(x_{1}, y_{1}, z_{1}\right)=$ 1 which completes the proof of Theorem 2.3.

Jurnal Matematika, Statistika \& Komputasi

Aswad Hariri Mangalaeng

Example 2.7. $4,2,90$ is a solution of Diophantine equation $x^{2}+2021 y^{2}=z^{2}$. We have $(4,2,90)=2$. Hence, we get $x_{1}=2, y_{1}=1$ and $z_{1}=45$. From Example 2.5, we have $2,1,45$ is also the solution of the equation with $(2,1,45)=1$.

Lemma 2.8. If the integers x, y, z is a primitive-solution of Diophantine equation $x^{2}+p q y^{2}=$ z^{2}, then $(x, y)=(y, z)=(x, z)=1$.

Proof. Suppose $(x, y) \neq 1$, then there a prime p_{1} with $p_{1}=(x, y)$ so that $p \mid x$ and $p \mid y$. Therefore, $p_{1} \mid\left(x^{2}+p q y^{2}=z^{2}\right)$. Hence, $p_{1} \mid z^{2}$ and then $p_{1} \mid z$. Because $p_{1}\left|x, p_{1}\right| y$ and $p_{1} \mid z$, we can conclude that $(x, y, z)=p_{1}$. This contradicts the fact that x, y, z is a primitive-solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$. Consequently, it must be $(x, y)=1$. Using similar techniques, we prove for $(y, z)=1$ and $(x, z)=1$.

Theorem 2.9. If the positive integers $x . y, z$ is a primitve-solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$ and y is even, then x dan z are odd.

Proof. Let y is even and x, y, z is a primitive-solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$. Using Lemma 2.8, we have $(x, y)=1$ and $(y, z)=1$. These equations mean that x and z are odd.

Example 2.10. 95,92,4137 is the primitive-solution of Diophantine equation $x^{2}+2021 y^{2}=z^{2}$ where $y=92$ is even, and $x=95$ and $z=4137$ are odd.

Theorem 2.11. If the positive integers $x . y, z$ is a primitve-solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$ and y is odd, then x dan z are even.

Proof. Let y is odd and x, y, z is a primitive-solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$. Using Lemma 2.8, we have $(x, y)=1$ and $(y, z)=1$. These equations mean that x and z are even.

Theorem 2.12. If r, s, t are positive integers with $(r, s)=1$ and $r s=p q t^{2}$ where p, q are primes, then there are integers m and n such that

$$
\text { i. } \quad r=p q m^{2} \text { and } s=n^{2} \text {, }
$$

ii. $\quad r=m^{2}$ and $s=p q n^{2}$, or
iii. $\quad r=p m^{2}$ and $s=q n^{2}$.

Proof. Based on Theorem 2.3, we can write each positive integers r, s, and t as a single product of their primes. Write $r=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{u}^{\alpha_{u}}, s=p_{u+1}^{\alpha_{u+1}} p_{u+2}^{\alpha_{u+2}} \ldots p_{v}^{\alpha_{v}}$, and $t=q_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{k}^{\beta_{k}}$. So, we get $p q t^{2}=p q q_{1}^{2 \beta_{1}} q_{2}^{2 \beta_{2}} \ldots q_{k}^{2 \beta_{k}}$. Since $(r, s)=1$, It means that prime factors of r and s are different. Because $r s=p q t^{2}$, we get

$$
\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{u}^{\alpha_{u}}\right)\left(p_{u+1}^{\alpha_{u+1}} p_{u+2}^{\alpha_{u+2}} \ldots p_{v}^{\alpha_{v}}\right)=p q q_{1}^{2 \beta_{1}} q_{2}^{2 \beta_{2}} \ldots q_{k}^{2 \beta_{k}}
$$

Case 1. $p=q$
If $p=q$, we can write $p q=q_{k+1}^{2 \beta_{k+1}}$ where $\beta_{k+1}=1$. Hence, we can write Equation (2.2) as the following

$$
\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{u}^{\alpha_{u}}\right)\left(p_{u+1}^{\alpha_{u+1}} p_{u+2}^{\alpha_{u+2}} \ldots p_{v}^{\alpha_{v}}\right)=q_{1}^{2 \beta_{1}} q_{2}^{2 \beta_{2}} \ldots q_{k}^{2 \beta_{k}} q_{k+1}^{2 \beta_{k+1}}
$$

Jurnal Matematika, Statistika \& Komputasi

Aswad Hariri Mangalaeng

If we look at the details on Equations (2.3), two sides of the equation must be equal. Therefore, every p_{i} has to be equal with q_{j}, so that $\alpha_{i}=2 \beta_{j}$. Hence, every exponent α_{i} is even. Consequently, $\beta_{j}=\frac{\alpha_{i}}{2}$ is an integer.
Let m and n are integers with $m=p_{1}^{\frac{\alpha_{1}}{2}} p_{2}^{\frac{\alpha_{2}}{2}} \ldots p_{u}^{\frac{\alpha_{u}}{2}}$ and $n=p_{u+1}^{\frac{\alpha_{u+1}}{2}} p_{u+2}^{\frac{\alpha_{u+2}}{2}} \ldots p_{v}^{\frac{\alpha_{v}}{2}}$. So,

$$
\begin{gathered}
p q q_{1}^{2 \beta_{1}} q_{2}^{2 \beta_{2}} \ldots q_{k}^{2 \beta_{k}}=p q\left(p_{1}^{\frac{\alpha_{1}}{2}} p_{2}^{\frac{\alpha_{2}}{2}} \ldots p_{u}^{\frac{\alpha_{u}}{2}}\right)^{2}\left(p_{u+1}^{\frac{\alpha_{u+1}}{2}} p_{u+2}^{\frac{\alpha_{u+2}}{2}} \ldots p_{v}^{\frac{\alpha_{v}}{2}}\right)^{2} \\
p q t^{2}=p q m^{2} n^{2} \\
p q t^{2}=p q m^{2} n^{2} \\
p q t^{2}=\left(p q m^{2}\right)\left(n^{2}\right) \\
p q t^{2}=\left(m^{2}\right)\left(p q n^{2}\right) \\
p q t^{2}=\left(p m^{2}\right)\left(q n^{2}\right)
\end{gathered}
$$

Case 2. $p \neq q$
If $p \neq q$, then there are two p_{i} which are equal to each p and q. Suppose both are $p_{c}=p$ and $p_{c}=q$. Then, Equation (2.2) can be written as the following

$$
\begin{gather*}
p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{c}^{\alpha_{c}} p_{d}^{\alpha_{d}} \ldots p_{u}^{\alpha_{u}} p_{u+1}^{\alpha_{u+1} \ldots} p_{v}^{\alpha_{v}}=p q q_{1}^{2 \beta_{1}} q_{2}^{2 \beta_{2}} \ldots q_{k}^{2 \beta_{k}} \\
p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{c}^{\alpha_{f}} p_{d}^{\alpha_{g}} \ldots p_{u}^{\alpha_{u}} p_{u+1}^{\alpha_{u+1} \ldots p_{v}^{\alpha_{v}}=q_{1}^{2 \beta_{1}} q_{2}^{2 \beta_{2}} \ldots q_{k}^{2 \beta_{k}}} .
\end{gather*}
$$

where $\alpha_{f}=\alpha_{c}-1$ and $\alpha_{g}=\alpha_{d}-1$. For a note, positions of p_{c} and p_{d} in Equation (2.4) can be randomly in r or s. We don't go into detail about them because they will give the same result later. Using similar techniques in Case 1, we get every exponent α_{i} in Equation (2.4) is even. Hence, $\beta_{j}=\frac{\alpha_{i}}{2}$ is an integer.
Let m and n are integers with $m=p_{1}^{\frac{\alpha_{1}}{2}} p_{2}^{\frac{\alpha_{2}}{2}} \ldots p_{c}^{\frac{\alpha_{f}}{2}} p_{d}^{\frac{\alpha_{g}}{2}} \ldots p_{u}^{\frac{\alpha_{u}}{2}}$ and $n=p_{u+1}^{\frac{\alpha_{u+1}}{2}} p_{u+2}^{\frac{\alpha_{u+2}}{2}} \ldots p_{v}^{\frac{\alpha_{v}}{2}}$. So,

$$
\begin{gathered}
p q q_{1}^{2 \beta_{1}} q_{2}^{2 \beta_{2}} \ldots q_{k}^{2 \beta_{k}}=p q\left(p_{1}^{\frac{\alpha_{1}}{2}} p_{2}^{\frac{\alpha_{2}}{2}} \ldots p_{c}^{\frac{\alpha_{f}}{2}} p_{d}^{\frac{\alpha_{g}}{2}} \ldots p_{u}^{\frac{\alpha_{u}}{2}}\right)^{2}\left(p_{u+1}^{\frac{\alpha_{u+1}}{2}} p_{u+2}^{\frac{\alpha_{u+2}}{2}} \ldots p_{v}^{\frac{\alpha_{v}}{2}}\right)^{2} \\
p q t^{2}=p q m^{2} n^{2} \\
p q t^{2}=p q m^{2} n^{2} \\
p q t^{2}=\left(p q m^{2}\right)\left(n^{2}\right) \\
p q t^{2}=\left(m^{2}\right)\left(p q n^{2}\right) \\
p q t^{2}=\left(p m^{2}\right)\left(q n^{2}\right)
\end{gathered}
$$

Combining Case 1 and Case 2, it has proven that $r=p q m^{2}$ and $s=n^{2}, r=m^{2}$ and $s=p q n^{2}$, or $r=p m^{2}$ and $s=q n^{2}$, where r and s are integers.

Example 2.13. Take $p=3, q=2$ and $t=5$. Hence, we get $r s=p q t^{2}=150$. Next, we can choose integers m and n to define r and s, such as
i. $\quad m=5$ and $n=1$ so that $r=p q m^{2}=150$ and $s=n^{2}=1$,
ii. $\quad m=1$ and $n=5$ so that $r=m^{2}=1$ and $s=p q n^{2}=150$, or
iii. $\quad m=25$ and $n=1$ so that $r=p m^{2}=75$ and $s=q n^{2}=2$.

It is clear that $r s=150$ when $r=150$ and $s=2, r=1$ and $s=150$, or $r=75$ and $s=2$.
Theorem 2.14. The Diophantine equation $x^{2}+p^{2} y^{2}=z^{2}$ with y is odd, and p, q are primes have no primitive-solution.

Jurnal Matematika, Statistika \& Komputasi

Aswad Hariri Mangalaeng

Proof. Using Theorem 2.11, If y is odd then x and z are even. Hence, $z-x$ and $z+x$ are even. Write $z-x=t_{1}$ and $z+x=t_{2}$, for integers t_{1}, t_{2}. From the Diophantine equation $x^{2}+$ $p q y^{2}=z^{2}$, we get $p q y^{2}=(z-x)(z+x)=4 t_{1} t_{2}$. Because y is odd, $p q$ must divide by 4 . The only possible values are $p=2$ and $q=2$. So, we have $4 y^{2}=(z-x)(z+x)$. If $z-x=4 y^{2}$ and $z+x=1$, then $z=\frac{4 y^{2}-1}{2}$ is not an integer. So, this is impossible. Next, if $z-x=1$ and $z+x=4 y^{2}$, then $z=\frac{1-4 y^{2}}{2}$ is not integer. So, this is also impossible. Then, If $z-x=2 y$ and $z+x=2 y$ then we get $x=0$ but this is also not possible since $(x, y, z)=1$. So, we can conclude that the Diophantine equation $x^{2}+p q y^{2}=z^{2}$ with y is odd don't have primitvesolutions.

After we have proved Theorem 2.14, we will share our results on the case y is even.
In the following theorem, we determine the primitive-solutions of Diophantine equation $x^{2}+p q y^{2}=z^{2}$ for case of $p=q$.

Theorem 2.15. The positive integers x, y, z is a primitve-solution of Diophantine equation $x^{2}+p^{2} y^{2}=z^{2}$ with y is even, and p is prime, if and only if $x=m^{2}-n^{2}, y=\frac{2}{p} m n$, and $z=m^{2}+n^{2}$, where $(m, n)=1, m$ and n have different parity, $m>n$, and $m=p a$ or $n=p b$ for any integers a, b.

Proof. (\Rightarrow) Let $t=p y$. Because y is even, t is also even. Based on Theorem 2.2, the primitivesolution of Diophantine equation $x^{2}+t^{2}=z^{2}$ such as $x=m^{2}-n^{2}, t=2 m n$, and $z=m^{2}+$ n^{2}, with $(m, n)=1, m>n$, and m, n has different parity. Because $t=p y$ and $t=2 m n$, we get $y=\frac{2}{p} m n$. Since y is a positive integer and p is prime, $m n$ must be divisible by p. Consequently, $m=p a$ or $n=p b$ for any integers a, b.
(\Longleftarrow) We will show that x, y, z satisfies the Diophantine equation $x^{2}+p^{2} y^{2}=z^{2}$.
Case 1. $m=p a$

$$
\begin{aligned}
x^{2}+p^{2} y^{2} & =\left(m^{2}-n^{2}\right)+p^{2}\left(\frac{2}{p} m n\right)^{2} \\
& =\left(p^{2} a^{2}-n\right)^{2}+(2 p a n)^{2} \\
& =\left(p^{2} a^{2}+n^{2}\right)^{2} \\
& =\left(m^{2}+n^{2}\right)^{2} \\
& =z^{2} .
\end{aligned}
$$

Case 2. $n=p b$

$$
\begin{aligned}
x^{2}+p^{2} y^{2} & =\left(m^{2}-n^{2}\right)+p^{2}\left(\frac{2}{p} m n\right)^{2} \\
& =\left(m-p^{2} b^{2}\right)^{2}+(2 m p b)^{2} \\
& =\left(m^{2}+p^{2} b^{2}\right)^{2} \\
& =\left(m^{2}+n^{2}\right)^{2} \\
& =z^{2} .
\end{aligned}
$$

So, x, y, z is the solution of Diophantine equation $x^{2}+p^{2} y^{2}=z^{2}$. Next, integers x, y, z is called primitive if $(x, y, z)=1$. Suppose $(x, y, z) \neq 1$. This means that there is a prime p such that $p=(x, y, z)$. Hence, $p \mid x$ and $p \mid z$. Furthermore, $p \mid(x+z)=2 m^{2}$ and $p \mid(x-z)=n^{2}$. Because m and n have different parity, we get $p \neq 2$ so that $p \mid m^{2}$ and $p \mid m$. Also, it is clear that $p \mid n^{2}$ and $p \mid n$. Because $p \mid m$ and $p \mid n$, we can conclude that $p=(m, n)$. It contradicts to $(m, n)=1$. However, it must be $(x, y, z)=1$. So, x, y, z is a primitive-solution of Diophantine equation $x^{2}+p^{2} y^{2}=z^{2}$.

Jurnal Matematika, Statistika \& Komputasi

Aswad Hariri Mangalaeng

Example 2.16. Take $m=3$ and $n=2$. Hence, we get $x=m^{2}-n^{2}=5, y=\frac{2}{p} m n=4$ for $p=3$, and $z=m^{2}+n^{2}=13$. It is clear that $5,4,13$ is a primitive-solution of Diophantine equation $x^{2}+9 y^{2}=z^{2}$.

Theorem 2.17. The positive integers x, y, z with y is even is a primitive-solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$ if and only if
i. $\quad x=p q m^{2}-n^{2}, y=2 m n$, and $z=p q m^{2}+n^{2}$,
ii. $\quad x=m^{2}-p q n^{2}, y=2 m n$, and $z=m^{2}+p q n^{2}$, or
iii. $x=p m^{2}-p n^{2}, y=2 m n$, and $z=p m^{2}+q n^{2}$,
where $(m, n)=1, m>n$, and m, n has different parity.
Proof. (\Rightarrow) Based on Theorem 2.9, If y is even, then x and z are odd. Hence, $z+x$ dan $z-x$ are even so that there are two integers $r=\frac{z+x}{2}$ and $s=\frac{z-x}{2}$. Write $y=2 t$, for any integer t. So, we get $x^{2}+p q(2 t)^{2}=z^{2}$ or $p q t^{2}=r s$. Furthermore, using Theorem 2.12, we have
i. $\quad r=p q m^{2}$ and $s=n^{2}$,
ii. $\quad r=m^{2}$ and $s=p q n^{2}$, or
iii. $\quad r=p m^{2}$ and $s=q n^{2}$.

Substituting values of r and s above to the equations $r=\frac{z+x}{2}, s=\frac{z-x}{2}$ and $y=2 t$. We get respectively
i. $\quad x=p q m^{2}-n^{2}, y=2 m n$, and $z=p q m^{2}+n^{2}$,
ii. $\quad x=m^{2}-p q n^{2}, y=2 m n$, and $z=m^{2}+p q n^{2}$, and
iii. $\quad x=p m^{2}-p n^{2}, y=2 m n$, and $z=p m^{2}+q$.
(\Longleftarrow) We substitute values of x, y and z to the Diophantine equation $x^{2}+p q y^{2}=z^{2}$.
i. $\quad x^{2}+p q y^{2}=\left(p q m^{2}-n^{2}\right)^{2}+p q(2 m n)^{2}$

$$
=p^{2} q^{2} m^{4}+2 p q m^{2} n^{2}+n^{4}
$$

$$
=\left(p q m^{2}+n^{2}\right)^{2}
$$

$$
=z^{2} .
$$

ii. $\quad x^{2}+p q y^{2}=\left(m^{2}-p q n^{2}\right)^{2}+p q(2 m n)^{2}$

$$
=m^{4}+2 p q m^{2} n^{2}+p^{2} q^{2} n^{4}
$$

$$
=\left(m^{2}+p q n^{2}\right)^{2}
$$

$$
=z^{2} .
$$

iii.

$$
\begin{aligned}
x^{2}+p q y^{2} & =\left(p m^{2}-q n^{2}\right)^{2}+p q(2 m n)^{2} \\
& =p^{2} m^{4}+2 p q m^{2} n^{2}+q^{2} n^{4} \\
& =\left(p m^{2}+p n^{2}\right)^{2} \\
& =z^{2} .
\end{aligned}
$$

Because $(m, n)=1, m>n$, and m, n has different parity, we can conclude that integers x, y, z is a primitive-solution of Diophantine equation $x^{2}+p q y^{2}=z^{2}$. Also, from $y=2 m n$, we get y which is even.

Example 2.18. Take $p=47, q=43, m=2$ and $n=1$. It is clear that

Jurnal Matematika, Statistika \& Komputasi

Aswad Hariri Mangalaeng

i. $\quad x=p q m^{2}-n^{2}=8083, y=2 m n=4$ and $z=p q m^{2}+n^{2}=8085$, and
ii. $\quad x=p m^{2}-p n^{2}=145, y=2 m n=4$ and $z=p m^{2}+q n^{2}=231$
are two primitive-solutions of Diophantine equation $x^{2}+2021 y^{2}=z^{2}$.
Example 2.19. Take $p=47, q=43, m=46$ and $n=1$. Hence, we get $x=m^{2}-p q n^{2}=95$, $y=2 m n=92$, and $z=m^{2}+p q n^{2}=4137$. From Example 2.10, we get $95,92,4137$ is the primitive-solution of Diophantine equation $x^{2}+2021 y^{2}=z^{2}$.

REFERENCES

[1] Abdelalim and Dyani, 2014. The Solution of Diophantine Equation $x^{2}+3 y^{2}=z^{2}$. International Journal of Algebra, Vol. 8, No. 15, pp. 729-723.
[2] Alan M. and Zengin U. 2020. On the Diophantine equation $x^{2}+3^{a} 41^{b}=y^{n}$. Periodica Mathematica Hungarica, Vol. 81, No. 2, pp. 284-291.
[3] Andreescu T., Andrica D. \& Cucurezeanu I., 2010. An Introduction to Diophantine Equations: A Problem-Based Approach, Birkhäuser (Springer Science+Business Media LLC), Boston.
[4] Burshtein, N. 2020. Solutions of the Diophantine Equation $p^{x}+p^{y}=z^{4}$ when $p \geq 2$ are is Primes and x, y, z are Positive Integers. Annals of Pure and Applied Mathematics, Vol. 21, No. 2, pp. 125-128.
[5] Chakraborty K. and Hoque A. 2021. On the Diophantine Equation $d x^{2}+p^{2 a} q^{2 b}=4 y^{p}$. Results in Mathematics, Vol. 77, pp. 18.
[6] Rahman, S.I. \& Hidayat, N., 2018. Solusi Primitif Persamaan Diophantine $x^{2}+9 y^{2}=z^{2}$. Prosiding Konferensi Nasional Matematika (KNM), XIX, pp. 71-76, Himpunan Matematika Indonesia (IndoMS) Perwakilan Surabaya, Surabaya.
[7] Rahmawati R., Sugandha A., Tripena A. and Prabowo A. 2018. The Solution for the Non linear Diophantine Equation $(7 k-1)^{x}+(7 k)^{y}=z^{2}$ with k as the positive even whole number. Journal of Physics: Conference Series, Vol. 1179, The $1^{\text {st }}$ International Conference on Computer, Science, Engineering and Technology 27-28 November 2018, Tasikmalaya, Indonesia.
[8] Rosen, K.H. 1984. Elementary Number Theory and Its Applications, Perason, Boston.

[^0]: "Email address: aswadh2905@gmail.com

