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Abstract

This paper is aimed to the notion of θ− ϕ−contraction defined on a metric space

with w−distance. Moreover, fixed point theorems are given in this framework. Some

illustrative examples are provided to advocate the usability of our results. As an

application, we prove the existence and uniqueness of a solution for the nonlinear

Fredholm integral equations.

Keywords: Fixed point, Nonlinear θ−ϕ−contraction, w−distance, integral equation.

1. Introduction

By a contraction on a metric space (X, d), we understand a mapping T : X → X

satisfying for all x, y ∈ X: d(Tx, Ty) ≤ kd(x, y), where k is a real in [0, 1).

In 1922 Banach proved the following theorem.

Theorem [2]. Let (X, d) be a complete metric space. Let T : X → X be a

contraction. Then:

(i) T has a unique fixed point x ∈ X.

(ii) For every x0 ∈ X, the sequence (xn), where xn+1 = Txn, converges to x.

(iii) We have the following estimate: d(xn, x) ≤
kn

1− k
d(x0, x1), n ∈ N.
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As the result of its intelligibility and profitableness, the previous theorem has become

a very celebrated and popular tool in solving the existence problems in many branches

of mathematical analysis.

Many mathematicians extended the Banach contraction principle in two major di-

rections, one by stating the conditions on the mapping T and second taking the set X

as more general structure [4, 10, 9, 5].

In 2014 Jleli et al. [11] introduced the concept of θ−contraction, using this concept,

he proved the existence and uniqueness of a fixed point in complete rectangular metric

spaces. This direction has been studied and generalized in different spaces and various

fixed point theorems are developed [6, 7, 8].

In [13], D. Zheng has proved fixed point theorem for θ − ϕ−contraction, which is

perceived to be one of the most general non-linear contraction in complete metric

spaces.

In 1996 Kada et al. [3] initiated the notion of w-distance on a metric space, then

many authors used this concept to prove some results on fixed point theory [1, 5].

Recently Wongyat and Sintunavarat [12] introduced a special w-distance called ceil-

ing distance and proved some fixed point theorems for generalized contraction mappings

with respected to this distance.

In this paper, we shall obtain a fixed point theorem for θ − ϕ−contraction with re-

spect to w-distance on complete metric spaces. Various examples are constructed to

illustrate our results. As an application, we prove the existence and uniqueness of a

solution for the nonlinear Fredholm integral equations.

2. Preliminaries

Kada et al. [3] introduced the concept of w−distance on a metric space as follows:

Definition 0.1. [3] Let (X, d) be a metric space. A function q : X ×X → R+ is called

a w-distance on X, if it satisfies the following three conditions for all x, y, z ∈ X :

(W1) q(x, y) ≤ q(x, z) + q(z, y);

(W2) q(x, .) : X → R+ is lower semicontinuous on for all x ∈ X;

(W3) for each ε > 0 there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ imply

d(y, z) ≤ ε.

Remark:
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Each metric on a nonempty set X is a w-distance on X.

Example 0.2. [12]. Let (X, d) be a metric space. The function q : X × X → R+

defined by q(x, y) = c for every x, y ∈ X is a w-distance on X, where c is a positive

real number. But q is not a metric since q(x, x) = c ̸= 0 for any x ∈ X.

The following lemma is a useful tool for proving our results.

Lemma 0.3. [3]. Let (X, d) be a metric space, q be a w-distance on X, {xn} and {yn}

be two sequences in X, and x, y, z ∈ X.

(i) If lim
n→+∞

q(xn, x) = lim
n→+∞

q(xn, y) = 0 then x = y. In particular, if q(z, x) =

q(z, y) = 0 then x = y.

(ii) If d(xn, yn) ≤ αn and d(xn, y) ≤ βn for all n ∈ N, where {αn} and {βn} are

sequences in [0,+∞[ converging to 0, then {yn} converges to y.

(iii) If for each ε > 0, there exists Nε ∈ N such that m > n > Nε implies q(xn, xm) <

ε, then {xn} is a Cauchy sequence.

Definition 0.4. [12]. A w-distance q on a metric space (X, d) is said to be a ceiling

distance of d if and only if

q(x, y) ≥ d(x, y),

for all x, y ∈ X.

Example 0.5. [12]. Let X = R with the metric d : X ×X → R+ defined by

d(x, y) = |x−y| for all x, y ∈ X, and let a, b ≥ 1. Define the function q : X×X → R+

by

q(x, y) = max{a(y − x), b(x− y)},

for all x, y ∈ X. Ten q is a ceiling distance of d.

The following definition was given by Jleli and Samet in [11].

Definition 0.6. [11]. Let Θ be the family of all functions θ : ]0,+∞[ → ]1,+∞[ such

that

(θ1) θ is increasing, i.e., for all x, y ∈ ]0,+∞[ such that x < y, θ (x) < θ (y);

(θ2) For each sequence xn ∈ ]0,+∞[;

lim
n→0

xn = 0 if and only if lim
n→∞

θ (xn) = 1;
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(θ3) θ is continuous.

In [13]. Zheng et al. Presented the concept of θ − ϕ−contraction on metric spaces

as follows.

Definition 0.7. [13] Let Φ be the family of all functions ϕ: [1,+∞[ → [1,+∞[, such

that

(ϕ1) ϕ is increasing;

(ϕ2) For each t > 1, limn→∞ϕn(t) = 1;

(ϕ3) ϕ is continuous.

Lemma 0.8. [13] If ϕ ∈ Φ. Then ϕ(1)=1, and ϕ(t) < t for all t ∈ ]1,∞[.

Definition 0.9. [13]. Let (X, d) be a metric space and T : X → X be a mapping.

T is said to be a θ− ϕ−contraction if there exist θ ∈ Θ and ϕ ∈ Φ such that for any

x, y ∈ X,

d (Tx, Ty) > 0 ⇒ θ [d (Tx, Ty)] ≤ φ (θ [N (x, y)]) ,

where

N (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty)} .

Theorem 0.10. [13]. Let (X, d) be an complete metric space and let T : X → X be

an θ − ϕ-contraction. Then T has a unique fixed point.

3. Main results

In this paper, using the idea introduce by Wongyat and Sintunavarat [12], we presented

the concept of θ−contraction and θ − ϕ−contraction on a complete metric space with

w−distance.

Definition 0.11. Let q be a w−distance on a metric space (X, d). A mapping T :

X → X is said to be a w−generalized θ−contraction on (X, d) if there exist θ ∈ Θ and

k ∈ [0, 1[ such that

θ(q(Tx, Ty)) ≤ [θ (q(x, y))]r ,(0.1)

for all x, y ∈ X for which Tx ̸= Ty.

Theorem 0.12. Let (X, d) be a complete metric space and q : X × X → [0,+∞[

be a w−distance on X and a ceiling distance of d. Suppose that T : X → X is a

θ−contraction. Then, T has an unique fixed point on X.
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Proof. Let x0 ∈ X be an arbitrary point in X, define a sequence {xn}n∈N by

xn+1 = Txn = Tn+1x0,

for all n ∈ N. If there exists n0 ∈ N such that d (xn0 , xn0+1) = 0, then the proof is

finished.

We can suppose that d (xn, xn+1) > 0 for all n ∈ N.

Since q is a ceiling distance of d, we obtain q (xn, xn+1) > 0 for all n ∈ N.

Substituting x = xn−1 and y = xn, from 0.1, for all n ∈ N, we have

(0.2) θ [q (xn, xn+1)] ≤ [θ (q (xn−1, xn))]
r ,∀n ∈ N.

Implies that

(0.3) θ [q (xn, xn+1)] < θ (q (xn−1, xn)) .

Since θ is increasing, then q (xn, xn+1) < q (xn−1, xn). Therefore, q (xn+1,xn)n∈N is

monotone strictly decreasing sequence of non negative real numbers. Consequently,

there exists α ≥ 0 such that

lim
n→∞

q (xn+1,xn) = α.

The inequality 0.2 implies

θ (q (xn, xn+1)) ≤ [θ (q (xn−1, xn))]
r

≤ [θ (q (xn−2, xn−1))]
2r

≤ ... ≤ [θ (q (x0, x1))]
rn .

Since θ is increasing and continuous function we get

(0.4) q (xn, xn+1) < q (xn−1, xn) .

Therefore, q (xn,xn+1)n∈N is monotone strictly decreasing sequence of non negative real

numbers. Consequently, there exists α ≥ 0 such that

lim
n→∞

q (xn+1,xn) = α.

Now, we claim that α = 0. Arguing by contraction, we assume that α > 0. Since

q (xn,xn+1)n∈N is a non negative decreasing sequence, then we have

q (xn,xn+1) ≥ α ∀n ∈ N.
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By property of θ we get,

(0.5) 1 < θ (α) ≤ [θ (q (x0, x1))]
rn .

By letting n → ∞ in inequality 0.5, we obtain

1 < θ (α) ≤ 1.

It is a contradiction. Therefore,

(0.6) lim
n→∞

q (xn,xn+1) = 0.

Next, we show that {xn}n∈N is a Cauchy sequence. Suppose by contradiction with

Lemma 0.3 (iii) that there exist ε > 0 and sub-sequences
{
n(k)

}
and

{
m(k)

}
of {xn}n∈N

with nk > mk ≥ k such that q
(
xm(k)

, xn(k)

)
≥ ε for all k ∈ N. Choosing nk to be the

smallest integer exceeding mk for which q
(
xm(k)

, xn(k)

)
≥ ε holds. By the triangular

inequality we have,

ε ≤ q
(
xm(k)

, xn(k)

)
≤ q

(
xm(k)

, xn(k)−1

)
+ q

(
xn(k)−1

, xn(k)

)
< ε+ q

(
xn(k)−1

, xn(k)

)
.

Letting k → ∞ the above inequality, we obtain

(0.7) lim
k→∞

q
(
xm(k)

, xn(k)

)
= ε.

Again by the triangular inequality, for all n ∈ N, we have the following two inequalities

(0.8) q
(
xm(k)+1

, xn(k)+1

)
≤ q

(
xm(k)+1

, xm(k)

)
+ q

(
xm(k), xn(k)

)
+ q

(
xn(k), xn(k)+1

)
,

q
(
xm(k)

, xn(k)

)
≤ q

(
xm(k)

, xm(k)+1

)
+ q

(
xm(k)+1, xn(k)+1

)
+ q

(
xn(k)+1, xn(k)

)
.(0.9)

Letting k → ∞ in the above inequalities, we obtain

(0.10) lim
k→∞

q
(
xm(k)+1

, xn(k)+1

)
= ε.

Now, applying 0.1 with x = xm(k)
and y = xn(k)

, we obtain

(0.11) θ
[
q
(
xm(k)+1

, xn(k)+1

)]
≤
[
θ
(
q
(
xm(k)

, xn(k)

))]r
.

Letting k → ∞ the above inequality and using (θ3), we obtain

θ

(
lim
k→∞

q
(
xm(k)+1

, xn(k)+1

))
≤
[
θ

(
lim
k→∞

q
(
xm(k)

, xn(k)

))]r
.
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Therefore,

θ(ε) ≤ [θ(ε)]r < θ(ε).

Since θ is increasing and continuous function we get

ε < ε,

which is a contradiction. Then

(0.12) lim
n,m→∞

q (xm, xn) = 0.

By the Lemma 0.3, we can conclude that {xn} is a Cauchy sequence in X. By the

completeness of (X, d) , there exists z ∈ X such that

(0.13) lim
n→∞

d (xn, z) = 0.

Now, we show that d (Tz, z) = 0, arguing by contradiction, we assume that

(0.14) d (Tz, z) > 0 ⇒ q (Tz, z) > 0.

From 0.12, for each l > 0, there is nl ∈ N such that

(0.15) q (xn, xnl
) <

1

l
,

for all nl > l. Since q (xnl
, .) is lower semicontinuous and xn → x as n → ∞, we get

(0.16) q (xnl
, z) ≤ lim inf

x→∞
q (xnl

, xn) ≤
1

l
,

implies that

(0.17) lim inf
n→∞

q (xnl
, z) = 0.

Now, by triangular inequality we get,

q (Txnl
, T z) ≤ q (Txnl

, z) + q (z, Tz) ,(0.18)

q (z, Tz) ≤ q (z, xnl
) + q (xnl

, T z) .(0.19)

By letting n → ∞ in inequality (3.19) and (3.20) , we obtain

q (z, Tz) ≤ lim
n→∞

q (Txnl
, T z) ≤ q (z, Tz) .

Therefore,

(0.20) lim
n→∞

q (Txnl
, T z) = q (z, Tz) .
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Let A = d(z, Tz) > 0, from the definition of the limit, there exists n2 ∈ N such that

|q (Txnl
, T z)− q (z, Tz) | ≤ A, ∀n ≥ n2,

which implies that

q (Txnl
, T z) > 0, ∀n ≥ n2.

Applying 0.1 with x = z and y = xnl
, we have

(0.21) θ(q(Tz, Txnl
)) ≤ θ(q(z, xnl

))r,

which implies that

θ(q(Tz, Txnk
)) < θ(q(z, xnl

)).

Since θ is increasing, we get

q(Tz, Txnl
) ≤ q(z, xnl

).

By letting n → ∞ in the above inequality, we obtain

(0.22) lim
n→∞

q (Txnl
, T z) = q (z, Tz) = 0.

Which is a contradiction, then d (z, Tz) = q (z, Tz) = 0, so Tz = z.

Uniqueness. Now, suppose that z, u ∈ X are two fixed points of T such that u ̸= z.

Therefore, we have

q (Tz, Tu) = q (z, u) > 0.

Applying 0.1 with x = z and y = u, we have

θ (q (Tu, Tz)) = θ (q (z, u))

≤ [θ (q (z, u))]r

< θ (q (z, u)) ,

implies

q (u, z) < q (u, z) ,

which is a contradiction. Therefore u = z. □

Example 0.13. Let X = [1,+∞[ with the metric d : X ×X → [0,+∞[ defined by

d(x, y) = |x− y|,

for all x, y ∈ X. Define a mapping T : X → X by

Tx =
√
x,
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Suppose that θ(t) = et and r = 1
2 , clearly θ ∈ Θ and r ∈ [0, 1[. Also we define a

w-distance q : X ×X → [0,+∞[ by

q(x, y) = max {x, y} ,

for all x, y ∈ X. It is easy to see that q is a ceiling distance of d. Now, we will show

that T satisfies the condition 0.1.

Case 1. If x ≥ y, then

q(x, y) = x, q(Tx, Ty) =
√
x and θ(q(x, y)) = ex. Thus

[θ(q(x, y))]r = e
√
x

and

θ(q(Tx, Ty)) = e
√
x.

We prove that T is a (θ)-contraction mapping. Indeed

θ(q(Tx, Ty)− [θ(q(x, y))]r = 0.

Therefore,

θ(q(Tx, Ty) ≤ [θ(q(x, y))]r .

Case 2. If x < y, then

q(x, y) = y, q(Tx, Ty) =
√
y and θ(q(x, y)) = ey. Thus

[θ(q(x, y))]r = e
√
y

and

θ(q(Tx, Ty)) = e
√
y.

Therefore,

θ(q(Tx, Ty) ≤ [θ(q(x, y))]r .

Hence, 1 is the unique fixed point of T .

Definition 0.14. Let q be a w-distance on a metric space (X, d). A mapping T : X →

X is said to be a w-generalized θ − ϕ−contraction on (X, d) if there exist θ ∈ Θ and

ϕ ∈ Φ such that

θ(q(Tx, Ty)) ≤ ϕ (θ (q(x, y))) ,(0.23)

for all x, y ∈ X for which Tx ̸= Ty.
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Theorem 0.15. Let (X, d) be a complete metric space and q : X ×X → ]0,+∞[ be a

w-distance on X and a ceiling distance of d. Suppose that T : X → X is a w-generalized

θ − ϕ−contraction. Then, T has a unique fixed point on X.

Proof. As in the proof of the Theorem 0.12 we can conclude that Let x0 ∈ X be an

arbitrary point in X, define a sequence {xn}n∈N by

xn+1 = Txn = Tn+1x0,

for all n ∈ N. If there exists n0 ∈ N such that d (xn0 , xn0+1) = 0, then the proof is

finished.

We can suppose that d (xn, xn+1) > 0 for all n ∈ N.

Since q is a ceiling distance of d, we obtain q (xn, xn+1) > 0 for all n ∈ N.

Substituting x = xn−1 and y = xn, from (0.23), for all n ∈ N, we have

(0.24) θ [q (xn, xn+1)] ≤ ϕ [θ (q (xn−1, xn))] ,∀n ∈ N.

By the lemma 0.8, we get

(0.25) θ [q (xn, xn+1)] < θ (q (xn−1, xn)) .

Since θ is increasing, then q (xn, xn+1) < q (xn−1, xn). Therefore, q (xn+1,xn)n∈N is

monotone strictly decreasing sequence of non negative real numbers. Consequently,

there exists λ ≥ 0 such that

lim
n→∞

q (xn+1,xn) = λ.

The inequality (0.24) implies

θ (q (xn, xn+1)) ≤ ϕ (θ (q (xn−1, xn)))

≤ ϕ2(θ (q (xn−2, xn−1))

≤ ... ≤ ϕn(θ (q (x0, x1)) .

Now, we claim that λ = 0. Arguing by contraction, we assume that λ > 0. Since

q (xn,xn+1)n∈N is a non negative decreasing sequence, then we have

q (xn,xn+1) ≥ λ ∀n ∈ N.

By property of θ and ϕ we get,

(0.26) 1 < θ (α) ≤ ϕn(θ (q (x0, x1)) .
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By letting n → ∞ in inequality (0.26), we obtain

1 < θ (α) ≤ 1.

It is a contradiction. Therefore,

(0.27) lim
n→∞

q (xn,xn+1) = 0.

Next, We shall prove that {xn}n∈N is a Cauchy sequence, i.e, limn→∞ d (xn,xm) = 0,

for all n,m ∈ N. Suppose to the contrary. Then there is an ε > 0 such that for an

integer k there exists two sequences
{
n(k)

}
and

{
m(k)

}
such that

q
(
xm(k)

, xn(k)

)
≥ ε and d

(
xm(k)

, xn(k)−1

)
< ε.

As in the proof of the Theorem 0.12 we can conclude that

(0.28) lim
k→∞

q
(
xm(k)

, xn(k)

)
= ε.

and

(0.29) lim
k→∞

q
(
xm(k)+1

, xn(k)+1

)
= ε.

Now, applying (0.23) with x = xm(k)
and y = xn(k)

, we obtain

(0.30) θ
[
q
(
xm(k)+1

, xn(k)+1

)]
≤ ϕ

[
θ
(
q
(
xm(k)

, xn(k)

))]
.

Letting k → ∞ the above inequality and using (θ3) and (ϕ3), we obtain

θ

(
lim
k→∞

q
(
xm(k)+1

, xn(k)+1

))
≤ ϕ

[
θ

(
lim
k→∞

q
(
xm(k)

, xn(k)

))]
.

Therefore,

θ(ε) ≤ ϕ [θ(ε)] < θ(ε).

By the Lemma 0.8, we get

ε < ε,

which is a contradiction. Then

(0.31) lim
n,m→∞

q (xm, xn) = 0.

By the Lemma 0.3, we can conclude that {xn} is a Cauchy sequence in X. By the

completeness of (X, d) , there exists z ∈ X such that

(0.32) lim
n→∞

d (xn, z) = 0.

Now, we show that d (Tz, z) = 0, arguing by contradiction, we assume that

(0.33) d (Tz, z) > 0 ⇒ q (Tz, z) > 0.

11
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From (0.31), for each h > 0, there is nh ∈ N such that

(0.34) q (xn, xnh
) <

1

h
,

for all nh > h. Since q (xnh
, .) is lower semicontinuous and xn → x as n → ∞, we get

(0.35) q (xnh
, z) ≤ lim inf

x→∞
q (xnh

, xn) ≤
1

h
,

implies that

(0.36) lim inf
n→∞

q (xnh
, z) = 0.

As in the proof of the Theorem 0.12 we can conclude that ,

(0.37) lim
n→∞

q (Txnh
, T z) = q (z, Tz) .

Let B = d(z, Tz) > 0, from the definition of the limit, there exists n1 ∈ N such that

|q (Txnh
, T z)− q (z, Tz) | ≤ B, ∀n ≥ n1,

which implies that

q (Txnh
, T z) > 0, ∀n ≥ n1.

Applying (0.23) with x = z and y = xnh
, we have

(0.38) θ(q(Tz, Txnh
)) ≤ ϕ [θ(q(z, xnh

))] ,

By Lemma 0.8, we get

θ(q(Tz, Txnk
)) < θ(q(z, xnh

)).

Since θ is increasing, we get

q(Tz, Txnh
) ≤ q(z, xnh

).

By letting n → ∞ in the above inequality, we obtain

(0.39) lim
n→∞

q (Txnh
, T z) = q (z, Tz) = 0.

Which is a contradiction, then d (z, Tz) = q (z, Tz) = 0, so Tz = z.

Uniqueness. Now, suppose that z, u ∈ X are two fixed points of T such that u ̸= z.

Therefore, we have

q (Tz, Tu) = q (z, u) > 0.

12
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Applying (0.2) with x = z and y = u, we have

θ (q (Tu, Tz)) = θ (q (z, u))

≤ ϕ [θ (q (z, u))]

< θ (q (z, u)) ,

implies

q (u, z) < q (u, z) ,

which is a contradiction. Therefore u = z. □

Example 0.16. Let X = [0,+∞[ with the metric d : X ×X → [0,+∞[ defined by

d(x, y) = |x− y|,

for all x, y ∈ X. Define a mapping T : X → X by

Tx =
x

4
,

Suppose that θ(t) =
√
t+ 1 and ϕ(t) = t+1

2 , clearly θ ∈ Θ and ϕ ∈ Φ. Also we define a

w-distance q : X ×X → [0,+∞[ by

q(x, y) = max {x, y} ,

for all x, y ∈ X. It is easy to see that q is a ceiling distance of d. Now, we will show

that T satisfies the condition (0.23).

Case 1. If x ≥ y, then

q(x, y) = x, q(Tx, Ty) = x
4 and θ(q(x, y)) =

√
x+ 1. Thus

ϕ [θ(q(x, y))] =

√
x+ 1 + 1

2
=

√
x

2
+ 1

and

θ(q(Tx, Ty)) =

√
x

2
+ 1.

We prove that T is a w-generalized θ − ϕ−contraction. Indeed

θ(q(Tx, Ty)− ϕ [θ(q(x, y))] = 0.

Therefore,

θ(q(Tx, Ty) ≤ ϕ [θ(q(x, y))] .

Case 2. If x < y, then q(x, y) = y, q(Tx, Ty) = y
4 and θ(q(x, y)) =

√
y + 1. Thus

ϕ [θ(q(x, y))] =

√
y + 1 + 1

2
=

√
y

2
+ 1

13
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and

θ(q(Tx, Ty)) =

√
y

2
+ 1.

We prove that T is a w-generalized θ − ϕ−contraction. Indeed

θ(q(Tx, Ty)− ϕ [θ(q(x, y))] = 0.

Therefore,

θ(q(Tx, Ty) ≤ ϕ [θ(q(x, y))] .

Hence, 0 is the unique fixed point of T .

Example 0.17. Let X be the set defined by

X = {λn : n ∈ N∗},

where

λn =
(n)(n+ 1)

2

. Let the metric d : X× → [0,+∞[ defined by

d(x, y) = |x− y|

for all x, y ∈ X. Define a mapping T : X → X by

T (λn) =

 1 if n = 1

n(n− 1) if n ≥ 2.

Clearly, the Banach contraction is not satisfied. In fact, we can check easily that

lim
n→∞

d(T (λn), T (λ1))

d(λn, λ1)
= lim

n→∞

n2 − n− 2

n2 + n− 2
= 1.

Now, let the function θ(t) = et and

ϕ(t) =

 1 if 1 ≤ t ≤ 2

t− 1 if t ≥ 2.

Obviously, θ ∈ Θ and ϕ ∈ Φ. Also we define a w-distance q : X× → [0,+∞[ by

q(x, y) = max {x, y}

for all x, y ∈ X. It is easy to see that q is a ceiling distance of d. Now, we will show

that T satisfies the condition (0.2).

Case 1. m = 1 and n ≥ 2 . In this case, we have

q(λn, λ1) =
n(n+ 1)

2
, q(T (λn), T (λ1)) =

n(n− 1)

2

14
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and

θ(q(Tλn, Tλ1)) = e
n(n−1)

2 .

and

ϕ [θ(q(λn), λ1))] = e
n(n+1)

2 − 1,

On the other hand

θ(q(Tλn, Tλ1))− ϕ [θ(q(λn), λ1))] = e
n(n−1)

2 − e
n(n+1)

2 + 1

= e
n(n−1)

2

[
1− e

n(n+1)
2

e
n(n−1)

2

]
+ 1

= e
n(n−1)

2 [1− en] + 1

≤ 0.

Therefore,

θ(q(Tλn, Tλ1)) ≤ ϕ [θ(q(λn), λ1))] .

Case 2. m > n > 1. In this case, we have

q(λn, λm) =
m(m+ 1)

2
, q(T (λn), T (λm)) =

m(m− 1)

2

and

θ(q(T (λn), T (λm))) = e
m(m−1)

2 .

and

ϕ [θ(q(λn, λm))] = e
m(m+1)

2 − 1,

On the other hand

θ(q(λn, λm))− ϕ [θ(q(λn, λm))] = e
m(m−1)

2 − e
m(m+1)

2 + 1

≤ 0.

Therefore,

θ(q(λn, λm)) ≤ ϕ [θ(q(λn, λm))] .

Thus, the inequality (0.23) is satisfied implies that T has a unique fixed point. In this

example λ1 is the unique fixed point of T .

Taking q = d in Theorems 0.12 and 0.15, we obtain the following result.

Corollary 0.18. Let (X, d) be a complete metric space and T : X → X be a θ−contraction

. Then T has a unique fixed point.

15
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Corollary 0.19. Let (X, d) be a complete metric space and T : X → X be a θ −

ϕ−contraction. Then T has a unique fixed point.

1. Application to nonlinear integral equations

In this section, we endeavor to apply the Theorems 0.12 and 0.15 to prove the

existence and uniqueness of the integral equation of Fredholm type:

(1.1) x(t) = λ

∫ b

a
K(t, s, x(s))ds,

where a, b ∈ R, x ∈ C([a, b] ,R) and K : [a, b]2 ×R → R is a given continuous function.

Theorem 1.1. Consider the nonlinear integral equation problem: (4.1) and assume that

the kernel function K satisfies the condition |K(t, r, x(r))|+|K(t, r, y(r))| ≤ k (|x(t) + y(t)|)

for all t, r ∈ [a, b], k ∈ ]0, 1[ and x, y ∈ R. Then the equation (4.1) has a unique solution

x ∈ C([a, b] for some constant λ depending on the constants k.

Proof. Let X = C([a, b] and T : X → X defined by

T (x)(t) = λ

∫ b

a
K(t, s, x(s))ds,

for all x ∈ X. Clearly, X with the metric d : X ×X → [0,+∞[ given by

d(x, y) = sup
t∈[a,b]

|x(t)− y(t)|,

for all x, y ∈ X, is a complete metric space. Next, define the function q : X × X →

[0,+∞[ by

q(x, y) = sup
t∈[a,b]

|x(t)|+ |y(t)|,

for all x, y ∈ X.

Clearly, q is a w-distance on X and a ceiling distance of d. We will find the condition

on λ under which the operator has a unique fixed point which will the solution of the

integral equation (4.1). Assume that, x, y ∈ X and t, s ∈ [a, b]. Then we get

|Tx(t)|+ |Ty(t)| = |λ|
(
|
∫ b

a
K(t, s, x(s))ds|+ |

∫ b

a
K(t, s, y(s))ds|

)
≤ |λ|

∫ b

a
|K(t, s, x(s))ds|+ |λ|

∫ b

a
|K(t, s, y(s))ds|

≤ k|λ|
∫ b

a
(|x(s)|+ |y(s)|) ds,

16
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which implies that

sup
t∈[a,b]

(|Tx(t)|+ |Ty(t)|) = sup
t∈[a,b]

(
|λ||

(∫ b

a
K(t, x(s))ds|+ |

∫ b

a
K(t, y(s))ds|

))

≤ sup
t∈[a,b]

≤ |λ|
∫ b

a
|K(t, s, x(s))ds|+ |λ|

∫ b

a
|K(t, s, y(s))ds|

≤ k|λ|
∫ b

a

((
sup

s∈[a,b]
|x(s)|+ |y(s)|

))
ds.

Since by the definition of the w-distance on X and a ceiling distance of d, we have

q(Tx, Ty) > 0 and q(x, y) > 0 for any x ̸= y, then we can take natural exponential

sides and get

e[q(Tx,Ty)] = e

[
|λ|maxt∈[a,b]

∫ b
a |K(t,r,x(r))+K(t,r,y(r))dr|

]

≤ e

[
k|λ|

∫ b
a ((maxr∈[a,b] |x(r)+y(r)|)dr)

]

=

[
e

[∫ b
a ((maxr∈[a,b] |x(r)+y(r)|)dr)

]]k|λ|
.

provided that k|λ| < 1, which implies that

e[q(Tx,Ty)] ≤
[
e

[∫ b
a ((maxr∈[a,b] |x(r)+y(r)|)dr)

]]|λ|k
.

Hence

θ (d(Tx, Ty)) ≤ ϕ [θ (d(x, y))] ,(1.2)

for all x,y ∈ X with θ(t) = et, ϕ(t) = tr and r = |λ|k. It follows that T satisfies the

condition (0.1) and (0.23). Therefore there exists a unique solution of the nonlinear

Fredholm inequality (1.1). □
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