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Abstract  
The methods to solve the problem of multicollinearity have an important issue in the linear 

regression. The Liu-type estimator is one of these methods used to reduce its effect. This 

estimator is an estimator with two parameters denoted   and  . Kurnaz and Akay (2015) [6] 

introduced a new approach for the Liu-type estimator and called it new Liu-type (NL) estimator. 

This proposed estimator is based on a continuous function of   rather than two parameters and 

includes OLS, ridge estimator, Liu estimator, and some estimators with two biasing parameters 

as special cases. This study aimed to improve the NL estimator by shifting. The performance of 

the shifted NL estimator is compared to the NL estimator and other estimators depending on the 

mean squared error (MSE) criterion. The real data example and simulation study reveal that the 

SNL estimator can be a good selection in the linear regression model. 

 

Keywords:   Multicollinearity, Biased estimation, Ridge estimator, Liu estimator 

 

 

1.  INTRODUCTION 

Consider the linear regression model 

       (1.1) 

where   is an     vector of observations on the dependent variable;   is a     matrix of the 

explanatory variable;   is an     vector of unknown parameters; and   is a     vector of 

errors, with expectation  ( )    and    ( )     . The ordinary least squares (OLS) estimator 

of model (1.1) is given as  ̂  (   )     . 

Multicollinearity is one of the most significant problems in regression analysis. The OLS 

estimate is unstable and often gives rise to misleading information in the presence of 

multicollinearity, despite the fact that it is unbiased. Also, the variance of the estimator may be 

very large. Several biased estimators have been proposed as alternatives to the OLS estimator to 

tackle the multicollinearity problem [2, 14]. More stable estimations can be obtained by adding a 

biasing parameter. Hoerl and Kennard [3, 4] introduced the ridge estimator as an alternative to the 

OLS estimator. The ridge estimates are biased but have a smaller mean square error than OLS 

estimates [1]. It is given as 
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 ̂  (      )     ,     

where   is a biasing parameter. It is one of the most popular biased estimators and attempts to 

overcome the collinearity problem by adding a small biasing parameter   to the diagonal 

elements of the     matrix. However, the ridge estimator is a nonlinear function of  . To resolve 

this problem, Liu [7] combined Stein’s estimator [12] with the ridge estimator and proposed a 

new biased estimator of  , which is known as the Liu estimator  

 ̂     ̂,      (     )  (      ),          

where   is a biasing parameter. The advantage of the Liu estimator is that the   parameter is a 

linear function. Thus, the choice of   in the Liu estimator becomes easier than the selection of   

in the ridge estimator. Liu [8] introduced the Liu-type estimator as 

 ̂    (      )  (      ̂ ) 

where    ,        and  ̂  can be any estimator of  . The Liu-type estimator has two 

biasing parameters:   and  . The first parameter   can be used exclusively to control the 

conditioning of       , while the second parameter   is used to improve the fit and statistical 

properties. Özkale and Kaçıranlar [10] introduced the two-parameter (TP) estimator 

 ̃(   )  (      )  (       ̂),    ,        

which has general applications and includes the OLS, ridge and Liu estimators as special cases. 

Sakallıoğlu and Kaçıranlar [11] proposed  ̂(   ) as a general estimator for  , expressed as 

 ̂  (   )  (     )  (      ̂ ) 

where    ,       . This is called the     class estimator, which is obtained by 

augmenting the equation   ̂       to equation (1.1). Yang and Chang [16] introduced a new 

two-parameter estimator for  , which is given by 

 ̂  (   )     ̂   

where    ,      .  ̂  (   ) is obtained by augmenting the equation (   ) ̂       

to equation (1.1). Kurnaz and Akay [6] suggested an alternative approach based on a function of 

the biasing parameter  . The NL estimator is defined as 

 ̂   (      )  (     ( ) ̂ ) 

where  ( ) is a continuous function of the biasing parameter   and  ̂  is any estimator of  . This 

estimator was obtained by augmenting the equation 
 ( )

     ̂           to equation (1.1). The 

 ̂   estimator is a general estimator for  , including the OLS estimator, ridge estimator, Liu 

estimator and some estimators with two biasing parameters. 

Researchers aim to obtain an estimator that has an optimal performance. It is preferable that 

estimators have a minimum MSE. The appropriate selection of the biasing parameter(s) in biased 

estimators may affect the MSE. Moreover, the selection of   and   may adversely affect the 

performance of the regression coefficients when the estimators have two biasing parameters. It is 

considered that it can be advantageous to use an appropriate function which depends on one 

parameter, as in the NL estimator. Kurnaz and Akay (2015) [6] have shown that the NL estimator 

is a general estimator and have given superiority conditions. The focus of this study is to improve 

the NL estimator via shifting the  ( ) function according to the ridge biasing parameter   and to 

investigate the effect of multicollinearity on MSE. 
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This article is organized as follows. In Section 2, the proposed estimator is introduced and 

some of its properties are discussed. In Section 3, the MSE matrix of the proposed estimator is 

derived and its mean squared error properties are shown to be superior to those of the other 

estimators. In Section 4, the form of the function  ( ) is determined, while Section 5 and Section 

6 considers a numerical example and simulation study. 

 

2. PROPOSED ESTIMATOR 

To obtain more performance, we propose shifting the NL (SNL) estimator. It is defined as  

 ̂    (      )  (    ( ( )   ) ̂ ),     

where  ( ) is a continuous function of the biasing parameter  . The estimator is obtained by 

augmenting the equation 
 ( )  

     ̂           to equation (1.1) and then using the LS method.  

It is now possible to select  ( ) as a linear function of the biasing parameter, such as 

 ( )       where      , and from the definition of  ̂    we can see that it is a general 

estimator, including the OLS estimator, ridge estimator, Liu estimator and some estimators with 

two biasing parameters as special cases: 

1.  ̂     ̂, for  ( )   , the OLS estimator 

2.  ̂     ̂ , for  ( )   , the Ridge estimator 

3.  ̂     ̂ , for  ( )      and  ̂   ̂, the Liu estimator, where       
corresponds to the biasing parameter  ; 

4.  ̂     ̂   , for  ( )     , the Liu-type estimator of [8], where   corresponds to the 

biasing parameter   ; 

5.  ̂     ̃(   ), for  ( )     and  ̂   ̂, the TP estimator, where     corresponds 

to the biasing parameter  ; 

Also, when we take  ̂   ̂ , proposed estimator can be rewritten as 

 ̂    (      )  (     ( ) ) ̂ . 

This estimator includes     class estimator and the two-parameter estimator proposed Yang 

and Chang [16] respectively for  ( )      
 
and  ( )    

 
where   corresponds to the biasing 

parameter  . 

Model (1.1) can be rewritten in canonical form as 

       (2.1) 

where     ,      , and   is the orthogonal matrix whose columns constitute the 

eigenvectors of    . It can then be shown that                  (         ),
 
where 

            are the ordered eigenvalues of    . For model (2.1), we can obtain the 

representations  

 ̂        , 

 ̂   (    )  (   ( ) )      , for  ̂   ̂,
 

 ̂  
  (    )  (  (   ( )) )(    )     , for  ̂   ̂ .

 

The canonical forms of the proposed estimator are given as respectively for  ̂   ̂ and for 

 ̂   ̂  

 ̂    (    )  (  ( ( )   ) )      
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and
  

 ̂   
  (    )  (   ( ) )(    )     . 

 

 

3. PROPERTIES OF SNL ESTIMATOR 

 The MSE criterion is widely used as a measure of the closeness of the estimates to the 

parameter  . This criterion enables to decide the performance of the estimator. The matrix MSE 

of  ̃ for   is    ( ̃)   ( ̃   )
 
( ̃   )     ( ̃)      ( ̃)

 
    ( ̃) where     ( ̃)  

 ( ̃)    is the bias vector of the  ̃ estimator and    ( ̃) is the variance-covariance matrix of 

the  ̃ estimator. The scalar mean square error (mse) is    ( ̃)    (   ( ̃)), where    

denotes trace. In the case of two estimators  ̃  and  ̃  of  , the superiority of  ̃  with respect to 

 ̃  depends on whether the difference between the estimators’ MSE matrix is positive definite 

(pd). The following lemma is of significance for the comparisons given.  

 

Lemma 3.1. (Trenkler and Toutenburg [13]) Let  ̂     ,  ̂      be two linear estimators of 

  such that   (    
      

 )   . Then    ( ̂ )     ( ̂ )          
      

    if 

and only if   
 (        

 )       where    ( ̂ )     ( ̂ )      
 ,        ( ̂ )  

(     ) ,      . 

 

The biasing vector and covariance matrix of the estimator  ̂    for  ̂   ̂ are given as  

    ( ̂   )  ( ( )    )(    )   , 

   ( ̂   )    (    )  (  ( ( )   ) )   (  ( ( )   ) )(    )  . 

Thus, the MSE matrix of the estimator  ̂    is obtained as 

   ( ̂   )    (    )  (  ( ( )   ) )   (  ( ( )   ) )(    )   

                                 ( ( )    ) (    )     (    )   

(3.1) 

Similarly, the MSE matrix of the estimator  ̂   
  is given by 

   ( ̂   
 )    (    )  (   ( ) )(    )   (    )   

                                          (   ( ) )(    )        ( ̂   
 )    ( ̂   

 )  

(3.2) 

where     ( ̂   
 )  [(    )  (   ( ) )(    )     ]  for  ̂   ̂ . 

 

Comparison of SNL and OLS 

It is known that the MSE matrix of the OLS estimator is given as 

   ( ̂)       . (3.3) 

The difference between the MSE matrices is used to compare the OLS estimator and the  ̂    

estimator, using equation (3.1) and equation (3.3). 

 

Theorem 3.1 Let     and       ( )     for all          . Then    ( ̂)  
   ( ̂   ) is pd if and only if  

( ( )    )   (    )    
  (    )      . 

 

Proof. The difference between the covariance matrices for the OLS estimator and new estimator 

is 
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   [    (    )  (  ( ( )   ) )   (  ( ( )   ) )(    )  ]  (3.4) 

The trace operator can be applied to this difference matrix (3.3). This gives 

  (  )  {
(    )  (   ( ( )  ))

 

  (    ) 
}
   

 

. 

The sign of equation (3.4) directly depends on whether the expression (    )  (   

( ( )   ))
 
 is positive or negative. A necessary and sufficient condition for this expression to 

be positive is       ( )     for     and for all          . This theorem is proved by 

application of the Lemma 3.1. 

 

Comparison of SNL and NL 

Firstly, we state the MSE matrices of NL. The MSE matrices are given for  ̂   ̂ 

     ̂   ̂  respectively 

    ( ̂  )    (    )  (   ( ) )   (   ( ) )(    )   

  ( ( )   ) (    )       (    )                   

(3.5) 

and 

   ( ̂  
 )    (    )  (  (   ( )) )(    )   (    )  (  

(   ( )) )(    )       ( ̂  
 )    ( ̂  

 )    

(3.6) 

where     ( ̂  
 )  (    )  (  (   ( )) )(    )     . 

Then, we can express the following theorems. 

 

Theorem 3.2 If     and  ( )  
 

 
    for all          , then  ̂    estimator is superior to 

the  ̂   estimator in the sense of the MSE criterion if and only if 

( ( )    )   (    )  [   ( ( )   ) (    )       (    )  ](    )     . 

 

Proof. Using the covariance matrices of the estimators  ̂   and  ̂   , the difference matrix is 

     [(    )  (   ( ) )   (   ( ) )(    )   (    )  (  
( ( )   ) )   (  ( ( )   ) )(    )  ]                 

(3.7) 

From equation (3.7), it can be seen 

  (  )    {
(    ( ))

 
 (    ( )   ) 

  (    ) 
}

   

 

 

All    are positive and equation (3.7) is a pd matrix when (    ( ))
 
 (    ( )   )   . 

This inequality is positive when  ( )  
 

 
   . Then by applying the Lemma 3.1, we prove the 

theorem. 

 

Theorem 3.3 If     and  ( )   
 

 
    for all          , then  ̂   

  estimator is superior 

to the  ̂  
  estimator in the sense of the MSE criterion if and only if  

   (    )  (  (   ( )) )(    )   

 (   [(    )  (   ( ) )(    )     ]   [(    )  (   ( ) )(    )     ]) 

 (    )  (  (   ( )) )(    )        

 

Proof. Taking account of the estimators  ̂  
  and  ̂   

  , we get the difference of covariance 

matrices as 
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     [(    )  (  (   ( )) )(    )   (    )  (  (   ( )) )(  

  )   (    )  (   ( ) )(    )   (    )  (   ( ) )(    )  ]. 
If the trace of    is taken, equation (3.8) is obtained 

  (  )      {
(    ( )   )  (    ( ))

 

(    ) 
}

   

 

  

  (3.8) 

It can be seen that the  ̂   
   estimator is superior to the  ̂  

   estimator when(    ( )  

 )  (    ( ))
 

  . This inequality is positive for     and  ( )   
 

 
   . By applying 

the Lemma 3.1, this theorem is completed. 

 

4. SELECTION OF THE  ( ) FUNCTION  

Researchers have developed several approaches for estimating the optimal values of the 

biasing parameters   or   in literature. Since the proposed estimator depends on the function of 

the biasing parameter  , selection of this function is an important factor. The problem of 

determining the  ( ) function are deal with in this section. The diagonal elements of the MSE 

matrix given by equation (3.1) are 

   ( ̂   )  ∑ (  (    ( )  ) 

  (    ) 
   

 ( ( )   ) 

(    ) 
)

 
   . (4.1) 

Equation (4.1) can be considered as a  ( ) function. By differentiating  ( ) function with 

respect to  , we obtain 

  ( )  ∑
   

  (    ) 
(    ( )   )[(  ( )   )(    )  (    ( )   )]

 

   

 
   

 ( ( )    )

(    ) 
[(  ( )   )(    )  ( ( )    )] 

or 

  ( )  ∑
   

  (    ) 
(    ( )   )[(  ( )   )(    )  (    ( )   )]

 

   

 
   

 

(    ) 
( ( )    )[(  ( )   )(    )  (    ( )   )]  

After some algebraic simplifications, the derivative of    ( ̂   ) with respect to   is 

  ( )  ∑
 

  (    ) 
[(  ( )   )(    )  (    ( )   )]

 

   

 [  (    ( )   )    
   ( ( )    )]  

Let   ( )   . Setting the derivative to zero gives rise to the following. 

 

Fact 1. (  ( )   )(    )  (    ( )   )    is obtained. Integrating this equation gives 

 ( )      (    )  ,          ,
 

where    is the integration constant.  

 

Fact 2.   (    ( )   )    
   ( ( )    )    is obtained. Solving this equation, it can be 

seen that  
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 ( )  
(      

   )

     
   

  
    

     
   

,           . 

The function  ( ) is a linear function of the biasing parameter  . If we take the form  ( )  
    , where      , the optimal   can be obtained as 

  
 (     

   )     

(      
   )  (     

   )
 ,  (4.2) 

where    
(      

   )

     
  

 and          . Since    and    in equation (4.2) are unknown, they are 

replaced with their estimators respectively the residual mean square estimate and OLS. Thus, the 

estimate of the biasing parameter   is obtained as 

     
 ( ̂   ̂ 

   )  ̂   

( ̂    ̂ 
   )  ( ̂   ̂ 

   )
. (4.3) 

Furthermore, when     and    ,      in equation (4.3) is  

    
 ̂ 

 ̂ 
 , 

which is the estimated value of   (HK) proposed by [3]. Similarly, we can achieve the estimate of 

  proposed by [7] for     and  ( )      where   corresponds to the biasing parameter  . 

By taking derive of equation (4.1), we get 

 ̂    
∑ ( ̂ 

   ̂ ) (    )  
   

∑ ( ̂   ̂ 
  )   (    )  

   

  

To obtain form of the  ( ) function for  ̂   
   estimator, we can write 

  ( )     ( ̂   
  )  ∑ (    (    ( ))

 

(    ) 
   

 (
  (    ( ))

(    ) 
  )

 

)
 
   . 

The derivative of   ( ) with respect to   

   ( )  ∑
   

(    ) 
[  ( )(    )   (    ( ))]

 

   

 [  (    ( ))    
 (  (    ( ))  (    ) )]     

 

Then setting the results to zero we have Fact 3 and Fact 4. 

 

Fact 3.   ( )(    )   (    ( ))    is obtained. Integrating this equation gives 

 ( )  (    )      ,          ,
 

where    is the integration constant.  

 

Fact 4:     (    ( ))      
 (  (    ( ))  (    ) )    is obtained. Solving this 

equation gives, it can be seen that  

 ( )  
  

         
       

(     
   )

,          . 

The function  ( ) is a quadratic function of the biasing parameter  . For  ( )     
      

 , where          , the optimal   can be obtained as 

     
     

    (     
   ) √ 

 (  (     
   )   

 )
,    

  
 

(     
   )

 

where   (  ( 
    

   )       
 )

 
  (  ( 

    
   )    

 )( (     
   )      ). For 

    and the estimators of    and   , we can obtain 



202 

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI 
Funda Erdugan 

 ̂    
    ̂ 

    ( ̂   ̂ 
   ) √ 

 (  ( ̂   ̂ 
   )  ̂ 

 )
. 

 

5. REAL DATA EXAMPLE 
In this section, a real data example is considered to illustrate the performance of the SNL 

estimator. The Portland cement (Woods et al., [15]) data set involves of four explanatory 

variables and each variable consists of 13 observations. We considered the linear model with 

intercept for this data. The model is affected by severe collinearity ( ( )         ), so that   

may be considered as ill-conditioned. It means that the OLS estimator should not be used. 

To compare the performance of the SNL estimator, it is necessary to calculate the scalar 

mean square error values of all the variables examined. This is accomplished by replacing the 

corresponding unknown model parameters with their least squares estimates. The following 

estimators are compared in this example: 

 

 ̂: OLS estimator 

 ̂ : Ridge estimator 

 ̂ : Liu estimator 

 ̂   : Liu-type estimator of Liu (2003) for  ̂   ̂ 

 ̂   
 : Liu-type estimator of Liu (2003) for  ̂   ̂  

 ̃(   ): TP estimator 

 ̂  (   ):     class estimator 

 ̂  (   ): Two-parameter estimator of Yang and Chang [16] 

 ̂  : Liu-type estimator of Kurnaz and Akay [6] for  ̂   ̂ 

 ̂  
 : Liu-type estimator of Kurnaz and Akay [6] for  ̂   ̂  

 ̂   : Shifted NL estimator for  ̂   ̂ 

 ̂   
 : Proposed estimator for  ̂   ̂  

 

The estimated parameters and the mse values of the estimators are presented in Tables 1-8.  

 

Table 1. Estimated values of parameters and MSE for            and        

  ( )                mse 

 ̂
 

- 62.4054 1.5511 0.5102 0.1019 -0.1441 4912.0902 

 ̂  - 27.6342 1.9088 0.8685 0.4677 0.2072 2170.9613 

 ̂  - 59.2913 1.5825 0.5424 0.1342 -0.1125 4443.4372 

 ̂    
- -21488.8573 223.2307 222.6230 226.8463 217.5551 1.048x    

 ̃(   )
 

- 60.6668 1.5690 0.5281 0.1202 -0.1265 4645.0354 

 ̂   I 29.3442 1.8912 0.8509 0.4498 0.1899 2177.7924 

 ̂   III 62.3868 1.5513 0.5104 0.1021 -0.1439 4909.1726 

 ̂    
III 27.6157 1.9090 0.8687 0.4679 0.2074 2170.9597 

 

 

 

 

 

Table 2. Estimated values of parameters and MSE for        
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  ( )                  mse 

 ̂ - - 62.4054 1.5511 0.5102 0.1019 -0.1441 4912.090

2 

 ̂  - 0.00065 40.7072 1.7743 0.7338 0.3302 0.0751 2559.444

8 

 ̂  - - 59.2913 1.5825 0.5424 0.1342 -0.1125 4443.437

2 

 ̂    
- 0.00065 -31672.0592 327.982

9 

327.572

2 

333.990

0 

320.419

3 
2.27x    

 ̃(   )
 

- 0.00065 61.3205 1.5623 0.5213 0.1133 -0.1331 4743.835

0 

 ̂   
I 0.0407 27.6068 1.9087 0.8689 0.4678 0.2075 2170.959

5 

 ̂   III 0.00065 49.2911 1.6860 0.6453 0.2399 -0.0116 3235.349

5 

 ̂    
III 0.00065 27.6068 1.9091 0.8688 0.4680 0.2075 2170.959

5 

 

Table 3. Estimated values of parameters and MSE for            and        

  ( )                mse 

 ̂   
 

 
- -

9491.160

2 

99.8132 98.9734 100.611

3 

96.3620 1.7471x     

 ̂  (   )
 

- 26.2988 1.9218 0.8824 0.4813 0.2208 2174.8318 

 ̂  (   )
 

- 26.2565 1.9222 0.8829 0.4817 0.2212 2175.0863 

 ̂  
 

 
IV 42.8083 1.7527 0.7121 0.3081 0.0539 2694.0545 

 ̂  
 

 
II 28.4791 1.9001 0.8598 0.4589 0.1986 2172.6823 

 ̂   
 

 
IV 27.4257 1.9109 0.8707 0.4699 0.2093 2171.0338 

 

Table 4. Estimated values of parameters and MSE for        

  ( )                  mse 

 ̂   
 

 
-        -

1233.313

9 

14.8666 13.8671 13.7254 12.9465 1.7451x     

 ̂  (   ) -        9.5834 2.0938 1.0547 0.6572 0.3896 2906.2846 

 ̂  (   ) -        9.5196 2.0944 1.0554 0.6578 0.3903 2911.4941 

 ̂  
 

 
IV        35.9832 1.8231 0.7824 0.3800 0.1228 2329.7854 

 ̂  
 

 
II 0.0139 27.6071 1.9098 0.8686 0.4686 0.2073 2170.9596 

 ̂   
 

 
IV        27.6070 1.9092 0.8688 0.4681 0.2074 2170.9596 

 

Table 5. Estimated values of parameters and MSE for            and       

  ( )                mse 
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 ̂
 

- 62.4054 1.5511 0.5102 0.1019 -0.1441 4912.0902 

 ̂  - 27.6342 1.9088 0.8685 0.4677 0.2072 2170.9613 

 ̂  - 6.3512 2.1154 1.0907 0.6828 0.4240 3193.6486 

 ̂    
- -2237.2596 25.2058 24.2111 24.2971 23.0859 1.1614x    

 ̃(   )
 

- 31.1113 1.8730 0.8327 0.4312 0.1721 2198.7615 

 ̂   
I 29.3442 1.8912 0.8509 0.4498 0.1899 2177.7924 

 ̂   III 62.3868 1.5513 0.5104 0.1021 -0.1439 4909.1726 

 ̂    
III 27.6157 1.9090 0.8687 0.4679 0.2074 2170.9597 

 

Table 6. Estimated values of parameters and MSE for       

  ( )                  mse 

 ̂ -  62.4054 1.5511 0.5102 0.1019 -0.1441 4912.0902 

 ̂  -  40.7072 1.7743 0.7338 0.3302 0.0751 2559.4448 

 ̂  -  6.3512 2.1154 1.0907 0.6828 0.4240 3193.6486 

 ̂    
-  -

3297.4788 

36.1120 35.1378 35.4523 33.7956 2.5029x    

 ̃(   )
 

-  42.8770 1.7520 0.7114 0.3074 0.0532 2698.7921 

 ̂   I 0.0407 27.6068 1.9087 0.8689 0.4678 0.2075 2170.9595 

 ̂   
III         49.3050 1.6859 0.6452 0.2397 -0.0117 3236.7074 

 ̂    
III         27.6068 1.9091 0.8688 0.4680 0.2075 2170.9595 

 

Table 7. Estimated values of parameters and MSE for            and       

  ( )                mse 

 ̂   
 

 
- -974.3441 12.2145 11.1954 11.0092 10.3287 1.7472 

     

 ̂  (   )
 

- 2.8783 2.1511 1.1265 0.7193 0.4591 3555.1416 

 ̂  (   )
 

- 2.8360 2.1515 1.1270 0.7198 0.4595 3559.8813 

 ̂  
  II 28.4791 1.9001 0.8598 0.4589 0.1986 2172.6823 

 ̂  
 

 
IV 42.8083 1.7527 0.7121 0.3081 0.0539 2694.0545 

 ̂   
 

 
IV 27.4257 1.9109 0.8707 0.4699 0.2093 2171.0338 

 

 

 

 

Table 8. Estimated values of parameters and MSE for       

  ( )                  mse 

 ̂   
 

 
-  - 3.4348 2.3993 2.0291 1.7074 1.7451x     
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120.8594 

 ̂  (   )
 

-  1.1188 2.1692 1.1446 0.7379 0.4769 3759.1310 

 ̂  (   )
 

-  1.0551 2.1698 1.1453 0.7385 0.4775 3766.7827 

 ̂  
  II 0.0139 27.6071 1.9098 0.8686 0.4686 0.2073 2170.9596 

 ̂  
  IV 0.0064 35.9832 1.8231 0.7824 0.3800 0.1228 2329.7854 

 ̂   
 

 
IV 0.0064 27.6070 1.9092 0.8688 0.4681 0.2074 2170.9596 

 

The  ( ) function for the NL and SNL estimators is also obtained. The functions are numbered 

for convenience as follows: 

Estimator 
Function 

Number 
Function      

 ̂   I  ( )                      

 ̂  
  II  ( )                            

 ̂    III  ( )                          

 ̂   
  IV  ( )                                   

 

Kurnaz and Akay [6] obtained  ( )               and  ( )                     

respectively, for  ̂   and  ̂  
 . Also, optimal   values are             and             

respectively for  ̂   and  ̂  
 . We get the  ( )                  and 

 ( )                            respectively, for  ̂    and  ̂   
 . In this study, optimal 

  values are obtained              and             respectively for  ̂    and  ̂   
 . Hoerl 

et al. [5] proposed a different estimator of   (HKB). That is  ̂    
  ̂ 

 ̂  ̂
 where   is the number of 

regressors. Hoerl and Kennard (1970) [3] estimation of   and Hoerl et al. [5] estimation of   are 

considered in the comparison of the performances of the estimators in this study. Estimation of   

is not a main consideration for this example; however, values of 0.1 and 0.95 were chosen for this 

parameter, in order to determine its effect on the performance of the new estimator.  

From Tables 1-3-5 and 7 we can see that the mse values of the SNL estimator perform 

better than the other estimators. These superiorities are provided when   is selected as     
      . It is also valid when the function  ( ) is linear or quadratic function. NL and SNL 

estimators displayed the same performance when they used their   optimal values.  

 

Table 9. Estimated values of parameters and MSE for             and        

  ( )                mse 

 ̂   I 28.0589 1.9043 0.8642 0.4632 0.2029 2171.4222 

 ̂   III 81.4699 1.3550 0.3137 -0.0987 -0.3366 8738.3004 

 ̂    
III 27.6287 1.9088 0.8686 0.4678 0.2072 2170.9606 

 ̂  
  II 27.6798 1.9085 0.8680 0.4674 0.2067 2170.9716 

 ̂  
  IV 34.9680 1.8336 0.7929 0.3908 0.1331 2293.6215 

 ̂   
  IV 27.6144 1.9092 0.86869 0.46809 0.20735 2170.9597 

 

From Table 9, if the  ( ) function is selected in Kurnaz and Akay [6] ( ( )   ),     value of 

NL estimator is obtained 2171.4222. For  ( )       we get     value of SNL estimator is 

2170.9606. Thus,    ( ̂   )               ( ̂  )           . We can say that the 

results for  ̂  
  and  ̂  

  are similar to obtained from  ̂   and  ̂   . For     ,    ( ̂   
 )  
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             ( ̂  
 )           , when  ( ) is selected as IV and II respectively. 

Moreover, in Figure 1 is shown an estimated MSE values of the estimators.  

 

 
Figure 1. The scalar mean square error values of the estimators 

 

6. SIMULATION RESULTS 

In this section, to compare the proposed estimators we carried out a simulation study. Our 

simulation model is based on [9]. The explanatory variables are generated by 

    (    )
 

        (   ),           ;            

where     are independent standard normal pseudo-random numbers and   is specified so that the 

correlation between any two explanatory variables is given by   .     is the number of the 

explanatory variables and we have simulated the data with sample sizes      and 100. By 

choosing the true coefficient vector   as the normalized eigenvector corresponding to the largest 

eigenvalue of the     matrix, the dependent variable   ,             are then generated by the 

following equation 

                           ,               

where    are independent normal pseudo-random numbers with mean zero and variance   . The 

variables are standardized so that     and     are in correlation form. We choose four different 

values for   as                  and three different values for   are investigated in this study, 

which are         and 1.5. For each choice of  ,   and   the experiment is replicated 1000 

times and the mse is calculated as follows: 

   ( ̂)  
 

    
∑ ∑( ̂     )

 
 

   

    

   

 

where  ̂   denotes the estimate of the i-th parameter in j-th replication and   ,           are the 

true parameter values. The results of the simulation are presented in Table 9. 
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Table 10. Scalar MSE of the estimators 

     ̂    ̂    

      

30 0.8 0.2047 0.2049 

 

0.99 0.3989 0.3813 

 

0.999 1.6660 0.9926 

    

30 0.8 0.3574 0.3461 

 

0.99 2.3110 1.2698 

 

0.999 21.5594 9.2984 

      

30 0.8 0.7406 0.6249 

 

0.99 6.5434 3.0412 

 

0.999 60.5396 25.4627 

      

100 0.8 0.2285 0.2286 

 

0.99 0.3283 0.3270 

 

0.999 0.5994 0.4995 

    

100 0.8 0.3003 0.3003 

 

0.99 0.7904 0.6059 

 

0.999 6.1964 2.9095 

      

100 0.8 0.4891 0.4794 

 

0.99 2.3160 1.2904 

 

0.999 20.0570 8.7287 

The increase in the   or  , leads to an increase in the mse for all the estimators. For       and 

weak collinearity, mse of NL estimator is smaller than mse of proposed estimator, however it may 

be noted that mse of proposed estimator superior to mse of NL estimator under strong and 

severely collinearity cases. The results indicate that this estimator is well behaved under 

multicollinearity conditions. 

 

 

 

 

7. CONCLUSION 

 

In order to overcome the multicollinearity problem in the linear regression model, this 

paper has proposed a shifted Liu-type estimator, which is based on the function of the biasing 

parameter  . Furthermore, this study has shown that proposed estimator has general applications 

and includes the OLS estimator, ridge estimator, Liu estimator and some estimators with two 

biasing parameters. The properties of this estimator have been discussed, together with the 
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conditions under which it exhibits superior mean squared error matrix performance. Finally, these 

findings have been illustrated by a numerical example and a simulation study. The SNL estimator 

has displayed superior for the HK and HKB biasing parameters, while the estimators for the 

optimal biasing parameters have shown the same performance. 
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