Generalized rational α_{*}-contraction in C^{*}-algebra valued b-metric spaces

Mohamed Rossafi ${ }^{1}$, Hafida Massit ${ }^{2}$, Abdelkarim Kari ${ }^{3}$
${ }^{1}$ Laboratory of Partial Differential Equations, Spectral Algebra and Geometry, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, P. O. Box 133 Kenitra, Morocco
${ }^{2}$ LaSMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco
${ }^{3}$ Laboratory of Analysis, Modeling and Simulation, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco E-mail: ${ }^{1}$ rossafimohamed@gmail.com, ${ }^{2}$ massithafida@yahoo.fr,
${ }^{3}$ abdkrimkariprofes@gmail.com

Abstract

This present paper extends some common fixed point theorems for generalized rational α_{*}-contraction of multi-valued mappings in the setting of C^{*}-algebra valued $b-$ metric spaces.

Keywords: Fixed point, generalized rational α_{*}-contraction, multi-valued mapping, Picard sequences, C^{*}-algebra valued b-metric spaces.

1. Introduction

The concept of multi-valued contraction mappings was introduced by Nadler[7], he etablished that a multi-valued contraction mapping has a fixed point in a complete metric spaces.

Recently, Ma et al. [4] announced the notion of C^{*}-algebra valued metric space and formulated some first fixed point theorems in the C^{*}-algebra valued metric space.

Many authors initiated and studied many existing fixed point theorems in such spaces, see $[5,6,8]$.

Very recently, Amer [1] in 2017 introduced a new concept known as generalized $\alpha_{*}-\psi$-Geraghty contraction type for multivalued mappings.

In this paper, we provide some fixed point results for generalized rational α_{*}-contraction for multi-valued mappings in C^{*}-algebra valued b-metric spaces.

2. Preliminaries

Throughout this paper, we denote by \mathbb{A} an unital (i.e. have an unity element I) C^{*} algebra with linear involution $*$, such that for all $x, y \in \mathbb{A}$,

$$
(x y)^{*}=y^{*} x^{*}, \text { and } x^{* *}=x .
$$

We call an element $x \in \mathbb{A}$ a positive element, denote it by $x \succeq \theta$
if $x \in \mathbb{A}_{h}=\left\{x \in \mathbb{A}: x=x^{*}\right\}$ and $\sigma(x) \subset \mathbb{R}_{+}$,where $\sigma(x)$ is the spectrum of x.Using positive element ,we can define a partial ordering \preceq on \mathbb{A}_{h} as follows :

$$
x \preceq y \text { if and only if } y-x \succeq \theta
$$

where θ means the zero element in \mathbb{A}.
we denote the set $x \in \mathbb{A}: x \succeq \theta$ by \mathbb{A}_{+}and $\|x\|=\left(x^{*} x\right)^{\frac{1}{2}}$.
and \mathbb{A}^{\prime} will denote the set $\left\{a \in \mathbb{A}_{+} ; a b=b a, \forall b \in \mathbb{A}\right\}$
Now, we recollect some definitions and lemmas which will be useful in our main results.

Lemma 0.1. [6] Suppose that \mathbb{A} is a unital C^{*}-algebra with a unit I,
(1) for any $x \in \mathbb{A}_{+}$we have $x \preceq I \Longleftrightarrow\|x\| \leq 1$,
(2) If $a \in \mathbb{A}_{+}$with $\|a\|<\frac{1}{2}$ then $I-a$ is invertible and $\left\|a(1-a)^{-1}\right\|<1$,
(3) Suppose that $a, b \in \mathbb{A}_{+}$and $a b=b a$, then $a b \succeq \theta$,
(4) Let $a \in \mathbb{A}^{\prime}$, if $b, c \in \mathbb{A}$, with $b \succeq c \succeq \theta$, and $I-a \in \mathbb{A}_{+}^{\prime}$ is invertible operator, then $(I-a)^{-1} b \succeq(I-a)^{-1} c$.

Definition 0.2. [8] Let X be a non-empty set, $b \in \mathbb{A}$ and $b \succeq I$.
Suppose the mapping $d: X \times X \rightarrow \mathbb{A}_{+}$satisfies:
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all distinct points $x, y \in X$;
(iii) $d(x, y) \preceq b[d(x, u)+d(u, y)]$ for all $x, y, u \in X$.

Then (X, \mathbb{A}, d) is called a C^{*}-algebra-valued b-metric space with coefficient b .

Example 0.3. Let $X=[-1,1]$ and $A=\mathbb{M}_{2}(\mathbb{R})$. Define partial ordering on \mathbb{A} as

$$
\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \succeq\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)
$$

$\Leftrightarrow a_{i} \succeq b_{i}$ for $i=1,2,3,4$.
Define $d: X \times X \rightarrow \mathbb{M}_{2}(\mathbb{R})+$ by

$$
d(x, y)=\left(\begin{array}{cc}
|x-y|^{2} & 0 \\
0 & |x-y|^{2}
\end{array}\right)
$$

It is easy to verify d is a C^{*}-algebra-valued $b-$ metric with a coefficient $b=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and (X, \mathbb{A}, d) is a complete C^{*} - algebra-valued b-metric space.

Lemma 0.4. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b - metric space with $b \succeq I$.
Suppose that $\left\{x_{n}\right\}$ a sequence in X, such that

$$
d\left(x_{n+1}, x_{n}\right) \preceq \delta d\left(x_{n}, x_{n-1}\right)
$$

for all $n \in \mathbb{N}$ and $\delta \in[0,1)$.
Then $\left\{x_{n}\right\}$ is a Cauchy sequence.

Proof. First let us note that

$$
d\left(x_{n+1}, x_{n}\right) \preceq \delta^{n} d\left(x_{1}, x_{0}\right) \forall n \in \mathbb{N}
$$

we have for $m \geq 1, p \geq 1$

$$
\begin{aligned}
d\left(x_{m}, x_{m+p}\right) & \preceq b\left(d\left(x_{m}, x_{m+1}\right)+d\left(x_{m+1}, x_{m+p}\right)\right) \\
& \preceq b d\left(x_{m}, x_{m+1}\right)+b^{2} d\left(x_{m+1}, x_{m+2}\right)+\ldots+b^{p-1}\left(d\left(x_{m+p-2}, x_{m+p-1}\right)+b^{p-1} d\left(x_{m+p-1}, x_{m+p}\right)\right. \\
& \preceq b \delta^{m} d\left(x_{0}, x_{1}\right)+b \delta^{m+1} d\left(x_{0}, x_{1}\right)+b^{2} \delta^{m+2} d\left(x_{0}, x_{1}\right)+b^{2} \delta^{m+3} d\left(x_{0}, x_{1}\right) \\
& +\ldots \ldots+b^{p-1} \delta^{m+p} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Since $\delta \in[0,1)$ and $b \succeq I$, we have

$$
\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=\theta
$$

We deduce that the sequence x_{n} is a Cauchy sequence

Definition 0.5. [8] Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b - metric space and $\left\{x_{n}\right\}$ a sequence in X.

We have:

1) $\left\{x_{n}\right\}$ converges to $x \in X$ if $d\left(x_{n}, x\right) \rightarrow \theta$ as $n \rightarrow \infty$.
2) $\left\{x_{n}\right\}$ is a Cauchy sequence if $d\left(x_{m}, x_{n}\right) \rightarrow \theta$ as $m, n \rightarrow \infty$
3) (X, \mathbb{A}, d) is complete if very Cauchy sequence in X is convergent.

Definition 0.6. [8] Let $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow \mathbb{A}_{+}^{\prime}$ be two mappings.
T is said to be $\alpha-$ admissible if

$$
\alpha(x, y) \succeq I \Rightarrow \alpha(T x, T y) \succeq I
$$

Definition 0.7. [8] Let $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}{ }_{+}$be two mappings such that T is $\alpha-$ admissible.
T is said to be triangular $\alpha-$ admissible if

$$
\alpha(x, y) \succeq I \text { and } \alpha(y, z) \succeq I \Rightarrow \alpha(x, z) \succeq I
$$

Definition 0.8. [8] Let $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}+$ be two mappings.
T is said to be α - orbital admissible if

$$
\alpha(x, T x) \succeq I \Rightarrow \alpha\left(T x, T^{2} x\right) \succeq I
$$

Definition 0.9. [8] Let $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}{ }_{+}$be two mappings such that T is α - orbital admissible.
T is said to be triangular $\alpha-$ orbital admissible if

$$
\alpha(x, y) \succeq I \text { and } \alpha(y, T y) \succeq I \Rightarrow \alpha(x, T y) \succeq I
$$

Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b - metric space. We will denote By $\mathcal{C B}(X)$ the set of non-empty bounded closed subsets of X. For $M, N \in \mathcal{C B}(X)$ and $x \in X$, we define

$$
d(x, M)=i n f_{a \in M} d(x, a) \quad \text { and } \quad d(M, N)=\sup _{a \in M} d(a, N)
$$

The mapping

$$
h: \mathcal{C B}(X) \times \mathcal{C B}(X) \rightarrow \mathbb{A}_{+}
$$

given by $h(M, N)=\max \left\{\sup _{a \in M} d(a, N), \sup _{b \in N} d(b, M)\right\}$, is the Hausdorff distance between M and N in $\mathcal{C B}(X)$.

A point x is said to be a fixed point of multi-valued mapping $T: X \rightarrow \mathcal{C B}(X)$ provided $x \in T(x)$.

In 2014, Hussain et al.[2] introduced a notion of $\alpha-$ completeness for metric spaces.

Definition 0.10. [1] Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b - metric space and α : $X \times X \rightarrow \mathbb{A}^{\prime}+$ be a mapping. The space X is said to be $\alpha-$ complete, if every Cauchy sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \succeq I$ for all $n \in \mathbb{N}$ converges in X.

Definition 0.11. [1] Let $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}+$ be a mapping and $T: X \rightarrow \mathcal{C B}(X)$ be a multi-valued mapping satisfying the proprety that if

$$
\begin{aligned}
& \alpha(x, y) \succeq I \Rightarrow \alpha_{*}(T x, T y) \succeq I, \text { where } \\
& \alpha_{*}(M, N)=\inf \{\alpha(x, y): x \in M, y \in N\}, \text { then } T \text { is said to be } \alpha_{*}-\text { admissible. }
\end{aligned}
$$

Definition 0.12. [1] Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b - metric space
and $\alpha, \eta: X \times X \rightarrow \mathbb{A}_{+}$be two mappings. T is said to be $\alpha-\eta-$ continuous on (X, \mathbb{A}, d), if for given $x \in X$ and a sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \succeq I \forall n \in \mathbb{N}$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ imply that $T x_{n} \rightarrow T x$ as $n \rightarrow \infty$.

If $\eta\left(x_{n}, x_{n+1}\right)=I$, then T is said an $\alpha-$ continous mapping.
Definition 0.13. [1] Let $T, S: X \rightarrow \mathcal{C B}(X)$ be two multi-valued mappings
and $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}+$ be a function. Then the pair (T, S) is said to be triangular $\alpha_{*}-$ admissible if the following conditions hold:
(i) $\alpha(x, y) \succeq I \Rightarrow \alpha_{*}(T x, S y) \succeq I$ and $\alpha_{*}(S x, T y) \succeq I$
(ii) $\alpha(x, y) \succeq I$ and $\alpha(y, z) \succeq I \Rightarrow \alpha(x, z) \succeq I$.

Definition 0.14. [1] Let $T, S: X \rightarrow \mathcal{C B}(X)$ be two multi-valued mappings and $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}+$ be a function. Then the pair (T, S) is said to be $\alpha_{*}-$ orbital admissible if the following condition hold:

$$
\alpha(x, T x) \succeq I \text { and } \alpha_{*}(x, S x) \succeq I \Rightarrow \alpha_{*}\left(T x, S^{2} x\right) \succeq I \text { and } \alpha_{*}\left(S x, T^{2} x\right) \succeq I .
$$

Definition 0.15. [1] Let $T, S: X \rightarrow \mathcal{C B}(X)$ be two multi-valued mappings and $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}+$ be a function. Then the pair (T, S) is said to be triangular $\alpha_{*}-$ orbital admissible if the following conditions hold:
(i) (T, S) is $\alpha_{*}-$ orbital admissible.
(ii) $\alpha(x, y) \succeq I, \alpha(y, T y) \succeq I$ and $\alpha_{*}(y, S y) \succeq I \Rightarrow \alpha_{*}(x, T y) \succeq I$ and $\alpha_{*}(x, S y) \succeq$ I.

Lemma 0.16. [1] Let $T, S: X \rightarrow \mathcal{B}(X)$ be two multi-valued mappings such that the pair (T, S) is triangular $\alpha_{*}-$ orbital admissible.

Assume that there exists $x_{0} \in X$ such that $\alpha_{*}\left(x_{0}, T x_{0}\right) \succeq I$.
Define a sequence $\left\{x_{n}\right\} \in X$ by $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S\left(x_{2 n+1}\right)$, where $n=$ $0,1,2, \ldots$

Then $\forall n, m \in \mathbb{N} \cup\{0\}$ with $m>n$, we have $\alpha\left(x_{n}, x_{m}\right) \succeq I$.

3. Main results

Using C^{*} - Hausdorff metric on $\mathcal{C B}(X)$ we give a generalization of some common fixed point results for rational contraction of multivalued mappings defined on a C^{*}-algebravalued b - metric space.

The following lemmas will be used later.
Lemma 0.17. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b - metric space. For any $x, y \in X$ and $M, N, C \in \mathcal{C B}(X)$ we have:
(i) $d(x, N) \preceq d(x, u)$, for any $u \in N$
(ii) $d(x, M) \preceq h(M, N)$
(iii) $h(M, C) \preceq b(h(M, N)+h(N, C))$
(iv) $d(x, M) \preceq b[d(x, y)+d(y, M)]$.

Lemma 0.18. Let $M, N \in \mathcal{C B}(X)$ such that (X, \mathbb{A}, d) be a C^{*}-algebra-valued bmetric space and $q \leq 1$. Then, for every $a \in M$ there exists some $u \in N$ such that

$$
q d(a, u) \preceq h(M, N) .
$$

Proof. If $h(M, N)=\theta$, then $a \in M$ and $q d(a, u) \preceq h(M, N)$ holds for $a=u$.
Suppose that $h(M, N) \succ \theta$.
For any $r \succ \theta$ there exists $u \in M$ such that $d(a, u) \preceq d(a, N)+r \preceq h(M, N)+r$.
We may assume $r=\left(\frac{1}{q}-1\right) h(M, N) \succ \theta$, this complete the proof which does not depend on b.

Now, one can give the definition of α - continuous multivalued mapping.
Definition 0.19. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b-metric space.

Let $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}+$ be a mapping and $T: X \rightarrow \mathcal{C B}(X)$ be a multivalued mapping. Then T said to be a α - continuous multivalued mapping on $(\mathcal{C B}(X), h)$,
if $\left\{x_{n}\right\}$ is a sequence in X with $\alpha\left(x_{n}, x_{n+1}\right) \succeq I, \forall n \in \mathbb{N} \cup\{0\}$ and $x \in X$ such that $\lim _{n \rightarrow+\infty} d\left(x_{n}, x\right)=\theta$ then $\lim _{n \rightarrow+\infty} h\left(T x_{n}, T x\right)=\theta$.

We give the definition of $C^{*}-$ multivalued contraction.

Definition 0.20. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b-metric space with a coefficient $b \succeq I$ a mapping $T: X \rightarrow \mathcal{C B}(X)$ is called a C^{*} - multivalued contraction if there exists $\lambda \in \mathbb{A}$ with $\|\lambda\|<1$ and $\|b\|\|\lambda\|^{2}<1$ such that

$$
h(T x, T y) \preceq \lambda^{*} d(x, y) \lambda \quad \forall x, y \in X
$$

The following is nontrivial example of $C^{*}-$ multivalued contraction.
Example 0.21. Let $X=[-1,1], \mathbb{A}=\mathbb{R}^{2}$ and $d: X \times X \rightarrow \mathbb{A}^{+}$given by

$$
d(x, y)=(|x-y|, 0) \forall x, y \in X
$$

It is easy to verify that (X, \mathbb{A}, d) is a C^{*-} algebra valued b metric space with coefficient $(2,0)$.

Let $M, N \in \mathcal{C B}(X)$ be given by the closed intervals in X as

$$
M=\left[0, \frac{1}{4}\right] \text { and } N=\left[\frac{1}{2}, \frac{3}{4}\right]
$$

Then

$$
\begin{aligned}
h(M, N) & =\max \left\{\sup _{a \in M} d(a, N), \sup _{b \in N} d(b, M)\right\} \\
& =\max \left\{\left(\frac{1}{2}, 0\right),\left(\frac{1}{2}, 0\right)\right\} \\
& =\left(\frac{1}{2}, 0\right) .
\end{aligned}
$$

Define $T: X \rightarrow \mathcal{C B}(X)$ by $T x=\left\{y ; 0 \leq y \leq \frac{1}{4} x\right\}$.
Then

$$
h(T x, T y) \preceq \lambda^{*} d(x, y) \lambda \text { with }\|\lambda\|=\frac{1}{2}
$$

Hence T is a $C^{*}-$ multivalued contraction.
We present the following fixed point theorem.

Theorem 0.22. Let (X, \mathbb{A}, d) be a complete C^{*}-algebra-valued b-metric space with a coefficient $b \succeq I$ and $T: X \rightarrow \mathcal{C B}(X)$ be a $C^{*}-$ multivalued contraction. That is, there exists $\lambda \in \mathbb{A}$ with $\|\lambda\|<1$ and $\|b\|\|\lambda\|^{2}<1$ such that

$$
h(T x, T y) \preceq \lambda^{*} d(x, y) \lambda \quad \forall x, y \in X
$$

Then T has a fixed point.

Proof. Let $x_{0} \in X$, consider a point $x_{1} \in T x_{0}$ and $x_{2} \in T x_{1}$ such that

$$
d\left(x_{1}, x_{2}\right) \preceq h\left(T x_{0}, T x_{1}\right)+\lambda^{*} \lambda .
$$

Again, since $T x_{1}$ and $T x_{2}$ are closed and bounded subsets of X and x_{2} lies in $T x_{1}$ there will be a point $x_{3} \in T x_{2}$ which satisfies

$$
d\left(x_{2}, x_{3}\right) \preceq h\left(T x_{1}, T x_{2}\right)+\left(\lambda^{*} \lambda\right)^{2} .
$$

Proceeding in this way we obtain a sequence $\left\{x_{n}\right\}_{n \in\{1,2, . .\}}$ of points of X such that $x_{n+1} \in T x_{n}$ and

$$
d\left(x_{n}, x_{n+1}\right) \preceq h\left(T x_{n-1}, T x_{n}\right)+\left(\lambda^{*} \lambda\right)^{n} \quad \forall n \geq 1 .
$$

We note that for all $n \geq 1$

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \preceq h\left(T x_{n-1}, T x_{n}\right)+\left(\lambda^{*} \lambda\right)^{n} \\
& \left.\preceq \lambda^{*} d\left(x_{n-1}, x_{n}\right) \lambda\right)+\left(\lambda^{*} \lambda\right)^{n} \\
& \preceq \lambda^{*}\left[h\left(T x_{n-2}, T x_{n-1}\right)+\left(\lambda^{*} \lambda\right)^{n-1}\right] \lambda+\left(\lambda^{*} \lambda\right)^{n} \\
& =\lambda^{*}\left[h\left(T x_{n-2}, T x_{n-1}\right)\right] \lambda+2\left(\lambda^{*} \lambda\right)^{n} \\
& \preceq \lambda^{* n} d\left(x_{0}, x_{1}\right) \lambda^{n}+n\left(\lambda^{*} \lambda\right)^{n}
\end{aligned}
$$

Hence for $\forall n, m \geq 1$

$$
\begin{aligned}
d\left(x_{n}, x_{n+m}\right) & \preceq b\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\ldots+d\left(x_{n+m-1}, x_{n+m}\right)\right] \\
& \preceq b\left[\lambda^{* n} d\left(x_{0}, x_{1}\right) \lambda^{n}+n\left(\lambda^{*} \lambda\right)^{n}+\left(\lambda^{*(n+1)} d\left(x_{0}, x_{1}\right) \lambda^{n+1}+(n+1)\left(\lambda^{*} \lambda\right)^{n+1}+\ldots\right.\right. \\
& +\left(\lambda^{*(n+m-1)} d\left(x_{0}, x_{1}\right) \lambda^{n+m-1}+(n+m-1)\left(\lambda^{*} \lambda\right)^{n+m-1}\right] \\
& \leq b\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right)+b^{2}\left(d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)\right) \\
& +\ldots+b^{m-n+1}\left(d\left(x_{n+m-2}, x_{n+m-1}\right)+d\left(x_{n+m-1}, x_{n+m}\right)\right) . \\
& =b\left[\sum_{k=n}^{n+m-1} \lambda^{* k} d\left(x_{0}, x_{1}\right) \lambda^{k}+\sum_{k=n}^{n+m-1}\left(\lambda^{*} \lambda\right)^{k}\right] \\
& =\sum_{k=i}^{n+m-1}\left|\left(b^{\frac{1}{2}} d\left(x_{0}, x_{1}\right)\right)^{\frac{1}{2}} \lambda^{k}\right|^{2}+\sum_{k=i}^{n+m-1}\left|b^{\frac{1}{2}} \lambda^{k}\right|^{2} \\
& \preceq I\|b\|\left\|d\left(x_{0}, x_{1}\right)\right\| \sum_{k=n}^{n+m-1}\left\|\lambda^{2}\right\|^{k}+I\|b\| \sum_{k=n}^{n+m-1}\left\|\lambda^{2}\right\|^{k} \rightarrow \theta \text { as } m \rightarrow \infty .
\end{aligned}
$$

It follows that the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since is complete, the sequence $\left\{x_{n}\right\}$ will converge to some $x_{0} \in X$. Also

$$
h\left(T x_{n}, T x_{0}\right) \preceq \lambda^{*} d\left(x_{n}, x_{0}\right) \lambda
$$

Therefore, the sequence $\left\{T x_{n}\right\}$ converges to $T x_{0}$. Also $x_{n} \in T x_{n-1} \forall n \in\{1,2, \ldots\}$ and $d\left(x_{n}, T x_{0}\right) \rightarrow \theta$ as $n \rightarrow \infty$. We obtain that $x_{0} \in T x_{0}$.

Definition 0.23. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b-metric space.
Let $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}+$ be a mapping and $T, S: X \rightarrow \mathcal{C B}(X)$ two multivalued mappings said to be a pair of generalized rational $\alpha_{*}-$ contraction type for multivalued mappings if there exists $x, y \in X$ with $\alpha(x, y) \succeq I$ and satisfies

$$
\begin{equation*}
h(T x, S y) \preceq \lambda^{*} M(x, y) \lambda, \text { for } \lambda \in \mathbb{A} \text { with }\|\lambda\|<1 \text { and }\|b\|\|\lambda\|^{2}<1 \tag{0.1}
\end{equation*}
$$

where

$$
\begin{equation*}
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{d(x, S y)+d(y, T x)}{2}\right\} \tag{0.2}
\end{equation*}
$$

We prove a common fixed point theorem.
Theorem 0.24. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b-metric space with $b \succeq I$ and $\alpha: X \times X \rightarrow \mathbb{A}_{+}^{\prime}$ be a mapping. Let $T, S: X \rightarrow \mathcal{C B}(X)$ be a pair of generalized rational $\alpha_{*}-$ contraction type for multivalued mappings

Mohamed Rossafi, Hafida Massit, Abdelkarim Kari
(i) (X, \mathbb{A}, d) is an α - complete
(ii) (T, S) is triangular $\alpha_{*}-$ orbital admissible.
(iii) there exists $x_{0} \in X$ such that $\alpha_{*}\left(x_{0}, T x_{0}\right) \succeq I$ for $x_{0} \in X$
(iv) T and S are $\alpha-$ continuous.

Then there exists a common fixed point of T and S in X.

Proof. Let $x_{0} \in X$ such that $\alpha_{*}\left(x_{0}, T x_{0}\right) \succeq I$. Let $x_{1} \in T x_{0}$ so that $\alpha\left(x_{0}, x_{1}\right) \succeq I$ and $x_{1} \neq x_{0}$.

We have

$$
0<d\left(x_{1}, S x_{1}\right) \preceq h\left(T x_{0}, S x_{1}\right) \preceq \lambda^{*} M\left(x_{0}, x_{1}\right) \lambda
$$

there exists $x_{2} \in S x_{1}$ such that

$$
d\left(x_{1}, x_{2}\right) \preceq h\left(T x_{0}, S x_{1}\right) \preceq \lambda^{*} M\left(x_{0}, x_{1}\right) \lambda .
$$

With

$$
\begin{aligned}
M\left(x_{0}, x_{1}\right) & =\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{0}, T x_{0}\right), d\left(x_{1}, S x_{1}\right), \frac{d\left(x_{0}, S x_{1}\right)+d\left(x_{1}, T x_{0}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right), \frac{d\left(x_{0}, S x_{1}\right)+d\left(x_{1}, T x_{0}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right)\right\} \\
& =\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right)\right\} .
\end{aligned}
$$

If $\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right)\right\}=d\left(x_{1}, S x_{1}\right)$, we get

$$
\begin{aligned}
d\left(x_{1}, S x_{1}\right) & \preceq \lambda^{*} d\left(x_{1}, S x_{1}\right) \lambda \\
& \Rightarrow\left\|d\left(x_{1}, S x_{1}\right)\right\| \leq\|\lambda\|\left\|d\left(x_{1}, S x_{1}\right)\right\|
\end{aligned}
$$

which a contradiction, hence $\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right)\right\}=d\left(x_{0}, x_{1}\right)$,
then

$$
d\left(x_{1}, x_{2}\right) \preceq \lambda^{*} d\left(x_{0}, x_{1}\right) \lambda .
$$

In the same way, for $x_{2} \in S x_{1}$ and $x_{3} \in T x_{2}$, we obtain

$$
d\left(x_{2}, x_{3}\right) \preceq h\left(S x_{1}, T x_{2}\right) \preceq \lambda^{*} M\left(x_{1}, x_{2}\right) \lambda
$$

where

$$
\begin{aligned}
M\left(x_{1}, x_{2}\right) & =\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{1}, S x_{1}\right), d\left(x_{2}, T x_{2}\right), \frac{d\left(x_{1}, S x_{2}\right)+d\left(x_{2}, T x_{1}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right)\right\}
\end{aligned}
$$

If $M\left(x_{1}, x_{2}\right)=d\left(x_{2}, T x_{2}\right)$, by

$$
0<d\left(x_{2}, T x_{2}\right) \preceq h\left(S x_{1}, T x_{2}\right) \preceq \lambda^{*} d\left(x_{2}, T x_{2}\right) \lambda
$$

we have

$$
\left\|d\left(x_{2}, T x_{2}\right)\right\|<\|\lambda\|\left\|d\left(x_{2}, T x_{2}\right)\right\|
$$

a contradiction, hence

$$
\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right)\right\}=d\left(x_{1}, x_{2}\right)
$$

and we have $d\left(x_{2}, x_{3}\right) \preceq \lambda^{*} d\left(x_{1}, x_{2}\right) \lambda$.
We define a sequence $\left\{x_{n}\right\}$ by $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n} \in S x_{2 n+1}, n=0,1,2, \ldots$. So

$$
\alpha\left(x_{n}, x_{n+1}\right) \succeq I, \forall n \in \mathbb{N} \cup\{0\}
$$

then

$$
\begin{equation*}
0<d\left(x_{2 n+1}, S x_{2 n+1}\right) \preceq h\left(T x_{2 n}, S x_{2 n+1}\right) \preceq \lambda^{*} M\left(x_{2 n}, x_{2 n+1}\right) \lambda, \tag{0.3}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n+2}\right) \preceq h\left(T x_{2 n}, S x_{2 n+1}\right) \preceq \lambda^{*} M\left(x_{2 n}, x_{2 n+1}\right) \lambda, \tag{0.4}
\end{equation*}
$$

By Lemma 0.17 we have

$$
\begin{aligned}
\frac{d\left(x_{2 n+1}, T x_{2 n}\right)+d\left(x_{2 n}, S x_{2 n+1}\right)}{2} & =\frac{d\left(x_{2 n}, S x_{2 n+1}\right)}{2} \\
& \preceq b\left[\frac{d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n+1}, S x_{2 n+1}\right)}{2}\right] \\
& \preceq b \max \left\{d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, S x_{2 n+1}\right)\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
M\left(x_{2 n}, x_{2 n+1}\right) & =\max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, T x_{2 n}\right), d\left(x_{2 n+1}, S x_{2 n+1}\right),\right. \\
& \left.\frac{d\left(x_{2 n+1}, T x_{2 n}\right)+d\left(x_{2 n}, S x_{2 n+1}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, S x_{2 n+1}\right)\right\} .
\end{aligned}
$$

If

$$
\max \left\{d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, S x_{2 n+1}\right)\right\}=d\left(x_{2 n+1}, S x_{2 n+1}\right),
$$

then from (3.3) we obtain

$$
\begin{aligned}
d\left(x_{2 n+1}, S x_{2 n+1}\right) & \preceq \lambda^{*} d\left(x_{2 n+1}, S x_{2 n+1}\right) \lambda \\
& \Rightarrow\left\|d\left(x_{2 n+1}, S x_{2 n+1}\right)\right\|<\|\lambda\|\left\|d\left(x_{2 n+1}, S x_{2 n+1}\right)\right\|
\end{aligned}
$$

which is a contradiction,
hence $\left\{x_{n}\right\}$ is a Cauchy sequence. By completeness of (X, \mathbb{A}, d), there exists $z \in X$ such

$$
\begin{aligned}
& \forall n \in \mathbb{N} \cup\{0\} \lim _{n \rightarrow+\infty} d\left(x_{n}, z\right)=\theta \\
& \quad \Rightarrow \lim _{n \rightarrow+\infty} d\left(x_{2 n+1}, z\right)=\lim _{n \rightarrow+\infty} d\left(x_{2 n+2}, z\right)=\theta .
\end{aligned}
$$

Since S is $\alpha-$ continuous, $\lim _{n \rightarrow+\infty} h\left(S x_{2 n+2}, S z\right)=\theta$.
Therefore

$$
d(z, S z) \preceq b\left[d\left(z, x_{2 n+1}\right)+d\left(x_{2 n+1}, S z\right)\right] \rightarrow \theta .
$$

So, $z \in S z$. Similarly, $z \in T z$.
Thus, z is a common fixed point of T and S.

Assuming the following conditions, we prove that Theorem 0.25 still hold for T not necessarily continuous: In the following we show that the α continuity proprety is replaced by a new condition.

Theorem 0.25. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b-metric space with $b \succeq I$
and $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}{ }_{+}$be a mapping.

Let $T, S: X \rightarrow \mathcal{C B}(X)$ be a pair of generalized rational $\alpha_{*}-$ contraction type for multivalued mappings
(i) (X, \mathbb{A}, d) is an α - complete
(ii) (T, S) is triangular $\alpha_{*}-$ orbital admissible.
(iii) there exists $x_{0} \in X$ such that $\alpha_{*}\left(x_{0}, T x_{0}\right) \succeq I$ for $x_{0} \in X$
(iv) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \succeq I \forall n \in \mathbb{N} \cup\{0\}$
and $\lim _{n \rightarrow+\infty} d\left(x_{n}, z\right)=\theta$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, z\right) \succeq I \forall k \in \mathbb{N} \cup\{0\}$.

Then there exists a common fixed point of T and S in X.

Proof. Let $\left\{x_{n}\right\}$ be a sequence in X such that $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S x_{2 n+1}$, $n=0,1,2, \ldots$, with $\alpha\left(x_{n}, x_{n+1}\right) \succeq I \forall k \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow z \in X$.

By (iv), we have

$$
\begin{align*}
d(z, T z) & \preceq b\left[d\left(z, x_{2 n(k)+1}\right)+d\left(x_{2 n(k)+1}, T z\right)\right] \tag{0.5}\\
& \preceq b d\left(z, x_{2 n(k)+1}\right)+b h\left(S x_{2 n(k)}, T z\right) \tag{0.6}\\
& \preceq b d\left(z, x_{2 n(k)+1}\right)+b \lambda^{*} M\left(x_{2 n(k)}, z\right) \lambda . \tag{0.7}
\end{align*}
$$

Where
$M\left(x_{2 n(k)}, z\right)=\max \left\{d\left(x_{2 n(k)}, z\right), d\left(x_{2 n(k)}, S x_{2 n(k)}\right), d(z, T z), \frac{d\left(x_{2 n(k)}, S z\right)+d\left(z, T x_{2 n(k)}\right)}{2}\right\}$
Letting $k \rightarrow \infty$, we get $M\left(x_{2 n(k)}, z\right) \rightarrow d(z, T z)$ and by (3.7) we have

$$
d(z, T z) \preceq b d\left(z, x_{2 n(k)+1}\right)+b \lambda^{*} d(z, T z) \lambda \Rightarrow 1<\|b\|\|\lambda\|^{2}
$$

which a contradiction.
Then $z \in T z$ i.e, z is a fixed point of T.
Proceeding in this manner we prove that $z \in S z$ i.e, z is the common fixed point of T and S.

We denote Φ the class of all functions $\phi: \mathbb{A}_{+} \rightarrow \mathbb{A}_{+}$such that for any bounded sequence $\left\{t_{n}\right\}$ of positive real numbers, $\phi\left(t_{n}\right) \rightarrow I \Rightarrow t_{n} \rightarrow \theta$ and $\|\phi\|<1$

And Ψ the class of the functions $\psi: \mathbb{A}_{+} \rightarrow \mathbb{A}_{+}$satisfying the conditions:
(i) ψ is nondecreasing and continuous,
(ii) $\psi(t)=\theta \Leftrightarrow t=\theta$

Definition 0.26. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b - metric space with $b \succ I$ and $\alpha: X \times X \rightarrow \mathbb{A}^{\prime}+$ be a mapping. Let $T, S: X \rightarrow \mathcal{C B}(X)$ be a pair of generalized rational $\alpha_{*}-\psi-$ Geraghty contraction type for multivalued mappings if there exist $\phi \in \Phi$ and $\psi \in \Psi$ such that for $x, y \in X$, with $\alpha(x, y) \succeq I$, the pair (T, S) satisfies the following inequality:

$$
\begin{equation*}
\alpha(x, y) \psi(h(T x, S y)) \preceq \phi(\psi(M(x, y))) \cdot \psi(M(x, y)) \tag{0.8}
\end{equation*}
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{d(x, S y)+d(y, T y)}{2}\right\} .
$$

Theorem 0.27. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b-metric space with $b \succeq I$
and $\alpha: X \times X \rightarrow \mathbb{A}_{+}^{\prime}$ be a mapping. Let $T, S: X \rightarrow \mathcal{C B}(X)$ be a pair of generalized rational $\alpha_{*}-\psi-$ Geraghty contraction type for multivalued mappings
(i) (X, \mathbb{A}, d) is an α - complete
(ii) (T, S) is triangular $\alpha_{*}-$ orbital admissible.
(iii) there exists $x_{0} \in X$ such that $\alpha_{*}\left(x_{0}, T x_{0}\right) \succeq 1$ for $x_{0} \in X$
(iv) T and S are $\alpha-$ continuous.

Then there exists a common fixed point of T and S in X.

Proof. Let $x_{0} \in X$, construct the sequence $\left\{x_{n}\right\}$ such that $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in$ $S x_{2 n+1}, n=0,1,2, \ldots$, with $\alpha\left(x_{n}, x_{n+1}\right) \succeq I \forall k \in \mathbb{N} \cup\{0\}$. By (3.8) we have

$$
\begin{aligned}
0<\psi\left(d\left(x_{1}, S x_{1}\right)\right) & \preceq \psi\left(h\left(T x_{0}, S x_{1}\right)\right) \\
& \preceq \alpha\left(x_{0}, x_{1}\right) \psi\left(h\left(T x_{0}, S x_{1}\right)\right) \\
& \preceq \phi\left(\psi\left(M\left(x_{0}, x_{1}\right)\right)\right) \cdot \psi\left(M\left(x_{0}, x_{1}\right)\right)
\end{aligned}
$$

there exists $x_{2} \in S x_{1}$ such that

$$
\psi\left(d\left(x_{1}, x_{2}\right)\right) \preceq \alpha\left(x_{0}, x_{1}\right) \psi\left(h\left(T x_{0}, S x_{1}\right)\right) \preceq \phi\left(\psi\left(M\left(x_{0}, x_{1}\right)\right)\right) \cdot \psi\left(M\left(x_{0}, x_{1}\right)\right) .
$$

With

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI
 Mohamed Rossafi, Hafida Massit, Abdelkarim Kari

$$
\begin{aligned}
M\left(x_{0}, x_{1}\right) & =\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{0}, T x_{0}\right), d\left(x_{1}, S x_{1}\right), \frac{d\left(x_{0}, S x_{1}\right)+d\left(x_{1}, T x_{0}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right), \frac{d\left(x_{0}, S x_{1}\right)+d\left(x_{1}, T x_{0}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right)\right\} \\
& =\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right)\right\} .
\end{aligned}
$$

If $\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right)\right\}=d\left(x_{1}, S x_{1}\right)$, we get

$$
\begin{aligned}
\psi\left(d\left(x_{1}, S x_{1}\right)\right) & \preceq \phi\left(\psi\left(d\left(x_{1}, S x_{1}\right)\right)\right) \cdot \psi\left(d\left(x_{1}, S x_{1}\right)\right) . \\
& \Rightarrow\left\|\psi\left(d\left(x_{1}, S x_{1}\right)\right)\right\| \leq\left\|\phi\left(\psi\left(d\left(x_{1}, S x_{1}\right)\right)\right)\right\|\left\|\psi\left(d\left(x_{1}, S x_{1}\right)\right)\right\|
\end{aligned}
$$

which a contradiction, hence $\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right)\right\}=d\left(x_{0}, x_{1}\right)$, then

$$
\psi\left(d\left(x_{1}, x_{2}\right)\right) \preceq \phi\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right) \cdot \psi\left(d\left(x_{0}, x_{1}\right)\right)
$$

In the same way, for $x_{2} \in S x_{1}$ and $x_{3} \in T x_{2}$, we obtain

$$
\psi\left(d\left(x_{2}, x_{3}\right)\right) \preceq \alpha\left(x_{1}, x_{2}\right) \psi\left(h\left(S x_{1}, T x_{2}\right)\right) \preceq \phi\left(\psi\left(M\left(x_{1}, x_{2}\right)\right)\right) \cdot \psi\left(M\left(x_{1}, x_{2}\right)\right)
$$

where

$$
\begin{aligned}
M\left(x_{1}, x_{2}\right) & =\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{1}, S x_{1}\right), d\left(x_{2}, T x_{2}\right), \frac{d\left(x_{1}, S x_{2}\right)+d\left(x_{2}, T x_{1}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right)\right\} .
\end{aligned}
$$

If $M\left(x_{1}, x_{2}\right)=d\left(x_{2}, T x_{2}\right)$, we obtain

$$
\begin{aligned}
\psi\left(d\left(x_{2}, x_{3}\right)\right) & \preceq \phi\left(\psi\left(d\left(x_{2}, T x_{2}\right)\right)\right) \cdot \psi\left(d\left(x_{2}, T x_{2}\right)\right) . \\
& \Rightarrow\left\|\psi\left(d\left(x_{2}, T x_{2}\right)\right)\right\| \leq\left\|\phi\left(\psi\left(d\left(x_{2}, T x_{2}\right)\right)\right)\right\|\left\|\psi\left(d\left(x_{2}, T x_{2}\right)\right)\right\|
\end{aligned}
$$

which is a contradiction, hence

$$
\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right)\right\}=d\left(x_{1}, x_{2}\right)
$$

and we have

$$
\psi\left(d\left(x_{2}, x_{3}\right)\right) \preceq \phi\left(\psi\left(d\left(x_{1}, x_{2}\right)\right)\right) \cdot \psi\left(d\left(x_{1}, x_{2}\right)\right)
$$

We define a sequence $\left\{x_{n}\right\}$ by $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n} \in S x_{2 n+1}, n=0,1,2, \ldots$. So

$$
\alpha\left(x_{n}, x_{n+1}\right) \succeq I, \forall n \in \mathbb{N} \cup\{0\},
$$

then
$\psi\left(d\left(x_{2 n+1}, S x_{2 n+1}\right)\right) \preceq \psi\left(h\left(T x_{2 n}, S x_{2 n+1}\right)\right) \preceq \phi\left(\psi\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)\right) \psi\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)$,
and

$$
\begin{equation*}
\psi\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right) \preceq \psi\left(h\left(T x_{2 n}, S x_{2 n+1}\right)\right) \preceq \phi\left(\psi\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)\right) \psi\left(M\left(x_{2 n}, x_{2 n+1}\right)\right) . \tag{0.10}
\end{equation*}
$$

Where

$$
\begin{aligned}
M\left(x_{2 n}, x_{2 n+1}\right) & =\max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, T x_{2 n}\right), d\left(x_{2 n+1}, S x_{2 n+1}\right),\right. \\
& \left.\frac{d\left(x_{2 n+1}, T x_{2 n}\right)+d\left(x_{2 n}, S x_{2 n+1}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, S x_{2 n+1}\right)\right\} .
\end{aligned}
$$

If

$$
\max \left\{d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, S x_{2 n+1}\right)\right\}=d\left(x_{2 n+1}, S x_{2 n+1}\right)
$$

then

$$
\begin{aligned}
\psi\left(d\left(x_{2 n+1}, S x_{2 n+1}\right)\right) & \preceq \phi\left(\psi\left(d\left(x_{2 n+1}, S x_{2 n+1}\right)\right)\right) \cdot \psi\left(d\left(x_{2 n+1}, S x_{2 n+1}\right)\right) . \\
& \Rightarrow\left\|\psi\left(d\left(x_{2 n+1}, S x_{2 n+1}\right)\right)\right\| \leq\left\|\phi\left(\psi\left(d\left(x_{2 n+1}, S x_{2 n+1}\right)\right)\right)\right\|\left\|\psi\left(d\left(x_{2 n+1}, S x_{2 n+1}\right)\right)\right\|
\end{aligned}
$$

which is a contradiction, hence $\max \left\{d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, S x_{2 n+1}\right)\right\}=d\left(x_{2 n+1}, x_{2 n}\right)$ and we have

$$
\psi\left(d\left(x_{2 n+1}, S x_{2 n+1}\right)\right) \preceq \phi\left(\psi\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)\right) \cdot \psi\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) .
$$

Using propreties of ψ and ϕ we conclud that $\left\{x_{n}\right\}$ is a Cauchy sequence. By completeness of (X, \mathbb{A}, d), there exists $z \in X$ such

$$
\begin{aligned}
& \forall n \in \mathbb{N} \cup\{0\} \lim _{n \rightarrow+\infty} d\left(x_{n}, z\right)=\theta \\
& \quad \Rightarrow \lim _{n \rightarrow+\infty} d\left(x_{2 n+1}, z\right)=\lim _{n \rightarrow+\infty} d\left(x_{2 n+2}, z\right)=\theta .
\end{aligned}
$$

Since S is $\alpha-$ continuous, $\lim _{n \rightarrow+\infty} h\left(S x_{2 n+2}, S z\right)=\theta$.
Therefore

$$
d(z, S z) \preceq b\left[d\left(z, x_{2 n+1}\right)+d\left(x_{2 n+1}, S z\right)\right] \rightarrow \theta .
$$

So, $z \in S z$. Similarly, $z \in T z$.

Then T and S have a common fixed point in X.

Assuming the following conditions, we prove that Theorem ?? still hold for T not necessarily continuous: The following theorem is a consequence of the Theorem 0.28 in the case of the generalized rational $\alpha_{*}-\psi-$ Geraghty contraction type for multivalued mappings.

Theorem 0.28. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued b-metric space with $b \succeq I$
and $\alpha: X \times X \rightarrow \mathbb{A}_{+}^{\prime}$ be a mapping. Let $T, S: X \rightarrow \mathcal{C B}(X)$ be a pair of generalized rational $\alpha_{*}-\psi-$ Geraghty contraction type for multivalued mappings
(i) (X, \mathbb{A}, d) is an $\alpha-$ complete
(ii) (T, S) is triangular $\alpha_{*}-$ orbital admissible.
(iii) $\alpha_{*}\left(x_{0}, T x_{0}\right) \succeq I$ for $x_{0} \in X$
(iv) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \succeq I \forall n \in \mathbb{N} \cup\{0\}$ and $\lim _{n \rightarrow+\infty} d\left(x_{n}, z\right)=\theta$,
then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, z\right) \succeq I$ $\forall k \in \mathbb{N} \cup\{0\}$.

Then there exists a common fixed point of T and S in X.

Declarations

Availablity of data and materials

Not applicable.

Competing interest

The authors declare that they have no competing interests.

Fundings

Authors declare that there is no funding available for this article.

Authors' contributions

The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Acknowledgements

The authors are thankful to the area editor and referees for giving valuable comments and suggestions

References

[1] Ameer E, Arshad M, Shatanawi W, 2017. Common fixed point results for generalized $\alpha_{*}-$ ψ-contraction multivalued mappings in b-metric spaces. J. Fixed Point Theory Appl. 19, 3069-3086. https://doi.org/10.1007/s11784-017-0477-2
[2] Hussain N, Kutbi MA, Salimi P, 2014. Fixed Point Theory in α-Complete Metric Spaces with Applications, Abstract and Applied Analysis, vol. 2014, Article ID 280817, 11 pages. https://doi.org/10.1155/2014/280817
[3] Kari A, Rossafi M, Massit H, 2022. On the $\alpha-\psi$-Contractive Mappings in C^{*}-Algebra Valued b-Rectangular Metric Spaces and Fixed Point Theorems, Eur. J. Math. Anal. Vol. 2, 11. DOI: https://doi.org/10.28924/ada/ma.2.11
[4] Ma Z, Jiang L, Sun H, 2014. C^{*}-algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl 2014, 206. https://doi.org/10.1186/1687-1812-2014-206
[5] Massit H, Rossafi M, 2021. Fixed point theorems for ψ-contractive mapping in C^{*}-algebra valued rectangular b-metric spaces, J. Math. Comput. Sci., 11, 6507-6521
[6] Murphy GJ, 1990. C^{*} - Algebra and operator theory, Academic Press, London.
[7] Nadler SB, 1969. Jr.: Multi-valued contraction mappings. Pac. J. Math., 30: 475-488. 10.2140/pjm.1969.30.475
[8] Omran S, Masmali I, 2021. On the $\alpha-\psi$-Contractive Mappings in C^{*}-Algebra Valued $b-$ Metric Spaces and Fixed Point Theorems, Journal of Mathematics, vol. 2021, Article ID 7865976, 6 pages. https://doi.org/10.1155/2021/7865976
[9] Samet B, Vetro C, Vetro P, 2012. Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Analysis. Theory, Methods and Applications, vol. 75, no. 4, pp. 2154-2165.

