# JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Published by Department of Mathematics, Hasanuddin University, Indonesia https://journal.unhas.ac.id/index.php/jmsk/index

Vol. 19, No. 1, September 2022, pp. 33-50 DOI:10.20956/j.v19i1.21301

# Generalized rational $\alpha_*$ -contraction in $C^*$ -algebra valued b-metric spaces

Mohamed Rossafi<sup>1</sup>, Hafida Massit<sup>2</sup>, Abdelkarim Kari<sup>3</sup>

<sup>1</sup>Laboratory of Partial Differential Equations, Spectral Algebra and Geometry, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, P. O. Box 133 Kenitra, Morocco

<sup>2</sup>LaSMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco

<sup>3</sup>Laboratory of Analysis, Modeling and Simulation, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco

 $\label{eq:comparison} \texttt{E-mail:}^1 \texttt{rossafimohamed@gmail.com}, \texttt{^3abdkrimkariprofes@gmail.com}$ 

#### Abstract

This present paper extends some common fixed point theorems for generalized rational  $\alpha_*$ -contraction of multi-valued mappings in the setting of  $C^*$ -algebra valued *b*-metric spaces.

**Keywords:** Fixed point, generalized rational  $\alpha_*$ -contraction, multi-valued mapping, Picard sequences,  $C^*$ -algebra valued b-metric spaces.

#### 1. Introduction

The concept of multi-valued contraction mappings was introduced by Nadler[7], he etablished that a multi-valued contraction mapping has a fixed point in a complete metric spaces.

Recently, Ma et al. [4] announced the notion of  $C^*$ -algebra valued metric space and formulated some first fixed point theorems in the  $C^*$ -algebra valued metric space.



This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Many authors initiated and studied many existing fixed point theorems in such spaces, see [5, 6, 8].

Very recently, Amer [1] in 2017 introduced a new concept known as generalized  $\alpha_* - \psi$ -Geraghty contraction type for multivalued mappings.

In this paper, we provide some fixed point results for generalized rational  $\alpha_*$ -contraction for multi-valued mappings in  $C^*$ -algebra valued b-metric spaces.

#### 2. Preliminaries

Throughout this paper, we denote by  $\mathbb{A}$  an unital (i.e. have an unity element I)  $C^*$ algebra with linear involution \*, such that for all  $x, y \in \mathbb{A}$ ,

$$(xy)^* = y^*x^*$$
, and  $x^{**} = x$ .

We call an element  $x \in \mathbb{A}$  a positive element, denote it by  $x \succeq \theta$ 

if  $x \in \mathbb{A}_h = \{x \in \mathbb{A} : x = x^*\}$  and  $\sigma(x) \subset \mathbb{R}_+$ , where  $\sigma(x)$  is the spectrum of x. Using positive element, we can define a partial ordering  $\leq$  on  $\mathbb{A}_h$  as follows :

$$x \leq y$$
 if and only if  $y - x \succeq \theta$ 

where  $\theta$  means the zero element in A.

we denote the set  $x \in \mathbb{A} : x \succeq \theta$  by  $\mathbb{A}_+$  and  $||x|| = (x^*x)^{\frac{1}{2}}$ .

and  $\mathbb{A}'$  will denote the set  $\{a \in \mathbb{A}_+; ab = ba, \forall b \in \mathbb{A}\}$ 

Now, we recollect some definitions and lemmas which will be useful in our main results.

**Lemma 0.1.** [6] Suppose that  $\mathbb{A}$  is a unital  $C^*$ -algebra with a unit I,

- (1) for any  $x \in \mathbb{A}_+$  we have  $x \preceq I \iff ||x|| \le 1$ ,
- (2) If  $a \in \mathbb{A}_+$  with  $||a|| < \frac{1}{2}$  then I a is invertible and  $||a(1-a)^{-1}|| < 1$ ,
- (3) Suppose that  $a, b \in \mathbb{A}_+$  and ab = ba, then  $ab \succeq \theta$ ,
- (4) Let  $a \in \mathbb{A}'$ , if  $b, c \in \mathbb{A}$ , with  $b \succeq c \succeq \theta$ , and  $I a \in \mathbb{A}'_+$  is invertible operator, then  $(I - a)^{-1}b \succeq (I - a)^{-1}c$ .

**Definition 0.2.** [8] Let X be a non-empty set,  $b \in \mathbb{A}$  and  $b \succeq I$ .

Suppose the mapping  $d: X \times X \to \mathbb{A}_+$  satisfies:

- (i) d(x, y) = 0 if and only if x = y;
- (ii) d(x,y) = d(y,x) for all distinct points  $x, y \in X$ ;
- (iii)  $d(x,y) \leq b[d(x,u) + d(u,y)]$  for all  $x, y, u \in X$ .

Then  $(X, \mathbb{A}, d)$  is called a  $C^*$ -algebra-valued b-metric space with coefficient b.

**Example 0.3.** Let X = [-1, 1] and  $A = M_2(\mathbb{R})$ . Define partial ordering on A as

$$\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \succeq \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$$

 $\Leftrightarrow a_i \succeq b_i \text{ for } i = 1, 2, 3, 4.$ 

Define  $d: X \times X \to \mathbb{M}_2(\mathbb{R}) +$ by

$$d(x,y) = \begin{pmatrix} |x-y|^2 & 0\\ 0 & |x-y|^2 \end{pmatrix}$$

It is easy to verify d is a  $C^*$ -algebra-valued b- metric with a coefficient  $b = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and  $(X, \mathbb{A}, d)$  is a complete  $C^*$ - algebra-valued b-metric space.

**Lemma 0.4.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b- metric space with  $b \succeq I$ . Suppose that  $\{x_n\}$  a sequence in X, such that

$$d(x_{n+1}, x_n) \preceq \delta d(x_n, x_{n-1})$$

for all  $n \in \mathbb{N}$  and  $\delta \in [0, 1)$ .

Then  $\{x_n\}$  is a Cauchy sequence.

*Proof.* First let us note that

$$d(x_{n+1}, x_n) \preceq \delta^n d(x_1, x_0) \ \forall n \in \mathbb{N}$$

we have for  $m \ge 1, p \ge 1$ 

$$\begin{aligned} d(x_m, x_{m+p}) &\leq b \left( d(x_m, x_{m+1}) + d(x_{m+1}, x_{m+p}) \right) \\ &\leq b d(x_m, x_{m+1}) + b^2 d(x_{m+1}, x_{m+2}) + \dots + b^{p-1} (d(x_{m+p-2}, x_{m+p-1}) + b^{p-1} d(x_{m+p-1}, x_{m+p}) \\ &\leq b \delta^m d(x_0, x_1) + b \delta^{m+1} d(x_0, x_1) + b^2 \delta^{m+2} d(x_0, x_1) + b^2 \delta^{m+3} d(x_0, x_1) \\ &+ \dots + b^{p-1} \delta^{m+p} d(x_0, x_1) \end{aligned}$$

Since  $\delta \in [0, 1)$  and  $b \succeq I$ , we have

$$\lim_{n,m\to\infty} d(x_n,x_m) = \theta.$$

We deduce that the sequence  $x_n$  is a Cauchy sequence

35

**Definition 0.5.** [8] Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b- metric space and  $\{x_n\}$  a sequence in X.

We have:

- 1)  $\{x_n\}$  converges to  $x \in X$  if  $d(x_n, x) \to \theta$  as  $n \to \infty$ .
- 2)  $\{x_n\}$  is a Cauchy sequence if  $d(x_m, x_n) \to \theta$  as  $m, n \to \infty$
- 3)  $(X, \mathbb{A}, d)$  is complete if very Cauchy sequence in X is convergent.

**Definition 0.6.** [8] Let  $T: X \to X$  and  $\alpha: X \times X \to \mathbb{A}'_+$  be two mappings.

T is said to be  $\alpha$ - admissible if

$$\alpha(x, y) \succeq I \Rightarrow \alpha(Tx, Ty) \succeq I.$$

**Definition 0.7.** [8] Let  $T: X \to X$  and  $\alpha: X \times X \to \mathbb{A}'_+$  be two mappings such that T is  $\alpha$ - admissible.

T is said to be triangular  $\alpha$ - admissible if

$$\alpha(x,y) \succeq I \text{ and } \alpha(y,z) \succeq I \implies \alpha(x,z) \succeq I$$

**Definition 0.8.** [8] Let  $T: X \to X$  and  $\alpha: X \times X \to \mathbb{A}'_+$  be two mappings.

T is said to be  $\alpha$ - orbital admissible if

$$\alpha(x, Tx) \succeq I \implies \alpha(Tx, T^2x) \succeq I$$

**Definition 0.9.** [8] Let  $T: X \to X$  and  $\alpha: X \times X \to \mathbb{A}'_+$  be two mappings such that T is  $\alpha$ - orbital admissible.

T is said to be triangular  $\alpha$ - orbital admissible if

$$\alpha(x,y) \succeq I \text{ and } \alpha(y,Ty) \succeq I \Rightarrow \alpha(x,Ty) \succeq I$$

Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b- metric space. We will denote By  $\mathcal{CB}(X)$ the set of non-empty bounded closed subsets of X. For  $M, N \in \mathcal{CB}(X)$  and  $x \in X$ , we define

$$d(x, M) = inf_{a \in M}d(x, a) \quad and \quad d(M, N) = sup_{a \in M}d(a, N).$$

The mapping

$$h: \mathcal{CB}(X) \times \mathcal{CB}(X) \to \mathbb{A}_+$$

given by  $h(M, N) = max\{sup_{a \in M}d(a, N), sup_{b \in N}d(b, M)\}$ , is the Hausdorff distance between M and N in  $\mathcal{CB}(X)$ .

A point x is said to be a fixed point of multi-valued mapping  $T : X \to C\mathcal{B}(X)$ provided  $x \in T(x)$ .

In 2014, Hussain et al.[2] introduced a notion of  $\alpha$ - completeness for metric spaces.

**Definition 0.10.** [1] Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b- metric space and  $\alpha$ :  $X \times X \to \mathbb{A}'_+$  be a mapping. The space X is said to be  $\alpha$ - complete, if every Cauchy sequence  $\{x_n\}$  in X with  $\alpha(x_n, x_{n+1}) \succeq I$  for all  $n \in \mathbb{N}$  converges in X.

**Definition 0.11.** [1] Let  $\alpha : X \times X \to \mathbb{A}'_+$  be a mapping and  $T : X \to \mathcal{CB}(X)$  be a multi-valued mapping satisfying the proprety that if

 $\alpha(x,y) \succeq I \Rightarrow \alpha_*(Tx,Ty) \succeq I$ , where  $\alpha_*(M,N) = \inf\{\alpha(x,y) : x \in M, y \in N\}$ , then T is said to be  $\alpha_*$ - admissible.

**Definition 0.12.** [1] Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b- metric space

and  $\alpha, \eta : X \times X \to \mathbb{A}_+$  be two mappings. *T* is said to be  $\alpha - \eta -$  continuous on  $(X, \mathbb{A}, d)$ , if for given  $x \in X$  and a sequence  $\{x_n\}$  in *X* with  $\alpha(x_n, x_{n+1}) \succeq I \ \forall n \in \mathbb{N}$  such that  $x_n \to x$  as  $n \to \infty$  imply that  $Tx_n \to Tx$  as  $n \to \infty$ .

If  $\eta(x_n, x_{n+1}) = I$ , then T is said an  $\alpha$ - continuous mapping.

**Definition 0.13.** [1] Let  $T, S : X \to C\mathcal{B}(X)$  be two multi-valued mappings

and  $\alpha: X \times X \to \mathbb{A}'_+$  be a function. Then the pair (T, S) is said to be triangular  $\alpha_*$ - admissible if the following conditions hold:

- (i)  $\alpha(x,y) \succeq I \Rightarrow \alpha_*(Tx,Sy) \succeq I$  and  $\alpha_*(Sx,Ty) \succeq I$
- (ii)  $\alpha(x,y) \succeq I$  and  $\alpha(y,z) \succeq I \Rightarrow \alpha(x,z) \succeq I$ .

**Definition 0.14.** [1] Let  $T, S : X \to \mathcal{CB}(X)$  be two multi-valued mappings

and  $\alpha: X \times X \to \mathbb{A}'_+$  be a function. Then the pair (T, S) is said to be  $\alpha_*$ - orbital admissible if the following condition hold:

 $\alpha(x,Tx) \succeq I$  and  $\alpha_*(x,Sx) \succeq I \Rightarrow \alpha_*(Tx,S^2x) \succeq I$  and  $\alpha_*(Sx,T^2x) \succeq I$ .

**Definition 0.15.** [1] Let  $T, S : X \to \mathcal{CB}(X)$  be two multi-valued mappings

and  $\alpha: X \times X \to \mathbb{A}'_+$  be a function. Then the pair (T, S) is said to be triangular  $\alpha_*$  - orbital admissible if the following conditions hold:

(i) (T, S) is  $\alpha_*$  – orbital admissible.

(ii)  $\alpha(x,y) \succeq I$ ,  $\alpha(y,Ty) \succeq I$  and  $\alpha_*(y,Sy) \succeq I \Rightarrow \alpha_*(x,Ty) \succeq I$  and  $\alpha_*(x,Sy) \succeq I$ .

**Lemma 0.16.** [1] Let  $T, S : X \to \mathcal{B}(X)$  be two multi-valued mappings such that the pair (T, S) is triangular  $\alpha_*$ - orbital admissible.

Assume that there exists  $x_0 \in X$  such that  $\alpha_*(x_0, Tx_0) \succeq I$ .

Define a sequence  $\{x_n\} \in X$  by  $x_{2n+1} \in Tx_{2n}$  and  $x_{2n+2} \in S(x_{2n+1})$ , where n = 0, 1, 2, ...

Then  $\forall n, m \in \mathbb{N} \cup \{0\}$  with m > n, we have  $\alpha(x_n, x_m) \succeq I$ .

#### 3. Main results

Using  $C^*$  – Hausdorff metric on  $\mathcal{CB}(X)$  we give a generalization of some common fixed point results for rational contraction of multivalued mappings defined on a  $C^*$ -algebravalued b – metric space.

The following lemmas will be used later.

**Lemma 0.17.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b- metric space. For any  $x, y \in X$ and  $M, N, C \in C\mathcal{B}(X)$  we have:

- (i)  $d(x, N) \leq d(x, u)$ , for any  $u \in N$
- (ii)  $d(x, M) \preceq h(M, N)$
- (iii)  $h(M,C) \preceq b(h(M,N) + h(N,C))$
- (iv)  $d(x, M) \leq b[d(x, y) + d(y, M)].$

**Lemma 0.18.** Let  $M, N \in C\mathcal{B}(X)$  such that  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued bmetric space and  $q \leq 1$ . Then, for every  $a \in M$  there exists some  $u \in N$  such that

$$qd(a, u) \preceq h(M, N).$$

*Proof.* If  $h(M, N) = \theta$ , then  $a \in M$  and  $qd(a, u) \preceq h(M, N)$  holds for a = u. Suppose that  $h(M, N) \succ \theta$ .

For any  $r \succ \theta$  there exists  $u \in M$  such that  $d(a, u) \preceq d(a, N) + r \preceq h(M, N) + r$ . We may assume  $r = (\frac{1}{q} - 1)h(M, N) \succ \theta$ , this complete the proof which does not depend on b.

Now, one can give the definition of  $\alpha$ - continuous multivalued mapping.

**Definition 0.19.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b-metric space.

Let  $\alpha: X \times X \to \mathbb{A}'_+$  be a mapping and  $T: X \to \mathcal{CB}(X)$  be a multivalued mapping.

Then T said to be a  $\alpha$ - continuous multivalued mapping on  $(\mathcal{CB}(X), h)$ ,

if  $\{x_n\}$  is a sequence in X with  $\alpha(x_n, x_{n+1}) \succeq I, \forall n \in \mathbb{N} \cup \{0\}$  and  $x \in X$  such that  $\lim_{n \to +\infty} d(x_n, x) = \theta$  then  $\lim_{n \to +\infty} h(Tx_n, Tx) = \theta$ .

We give the definition of  $C^*$  – multivalued contraction.

**Definition 0.20.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued *b*-metric space with a coefficient  $b \succeq I$  a mapping  $T : X \to C\mathcal{B}(X)$  is called a  $C^*$ -multivalued contraction if there exists  $\lambda \in \mathbb{A}$  with  $\|\lambda\| < 1$  and  $\|b\| \|\lambda\|^2 < 1$  such that

$$h(Tx, Ty) \preceq \lambda^* d(x, y) \lambda \ \forall x, y \in X$$

The following is nontrivial example of  $C^*$  – multivalued contraction.

**Example 0.21.** Let X = [-1, 1],  $\mathbb{A} = \mathbb{R}^2$  and  $d: X \times X \to \mathbb{A}^+$  given by

$$d(x,y) = (|x-y|, 0) \quad \forall x, y \in X.$$

It is easy to verify that  $(X, \mathbb{A}, d)$  is a  $C^{*-}$ algebra valued *b* metric space with coefficient (2, 0).

Let  $M, N \in \mathcal{CB}(X)$  be given by the closed intervals in X as

$$M = [0, \frac{1}{4}] \ and \ N = [\frac{1}{2}, \frac{3}{4}]$$

Then

$$\begin{split} h(M,N) &= \max\{\sup_{a \in M} d(a,N), \sup_{b \in N} d(b,M)\}\\ &= \max\{(\frac{1}{2},0), (\frac{1}{2},0)\}\\ &= (\frac{1}{2},0). \end{split}$$

Define  $T: X \to \mathcal{CB}(X)$  by  $Tx = \{y; 0 \le y \le \frac{1}{4}x\}.$ Then

 $h(Tx,Ty) \preceq \lambda^* d(x,y) \lambda \text{ with } \|\lambda\| = \frac{1}{2}$ 

Hence T is a  $C^*$ - multivalued contraction.

We present the following fixed point theorem.

**Theorem 0.22.** Let  $(X, \mathbb{A}, d)$  be a complete  $C^*$ -algebra-valued b-metric space with a coefficient  $b \succeq I$  and  $T: X \to C\mathcal{B}(X)$  be a  $C^*$ -multivalued contraction. That is, there exists  $\lambda \in \mathbb{A}$  with  $\|\lambda\| < 1$  and  $\|b\| \|\lambda\|^2 < 1$  such that

$$h(Tx,Ty) \preceq \lambda^* d(x,y) \lambda \ \forall x,y \in X$$

Then T has a fixed point.

*Proof.* Let  $x_0 \in X$ , consider a point  $x_1 \in Tx_0$  and  $x_2 \in Tx_1$  such that

$$d(x_1, x_2) \preceq h(Tx_0, Tx_1) + \lambda^* \lambda.$$

Again, since  $Tx_1$  and  $Tx_2$  are closed and bounded subsets of X and  $x_2$  lies in  $Tx_1$  there will be a point  $x_3 \in Tx_2$  which satisfies

$$d(x_2, x_3) \preceq h(Tx_1, Tx_2) + (\lambda^* \lambda)^2.$$

Proceeding in this way we obtain a sequence  $\{x_n\}_{n \in \{1,2,..\}}$  of points of X such that  $x_{n+1} \in Tx_n$  and

$$d(x_n, x_{n+1}) \leq h(Tx_{n-1}, Tx_n) + (\lambda^* \lambda)^n \quad \forall n \geq 1.$$

We note that for all  $n \ge 1$ 

$$d(x_n, x_{n+1}) \leq h(Tx_{n-1}, Tx_n) + (\lambda^* \lambda)^n$$
  

$$\leq \lambda^* d(x_{n-1}, x_n)\lambda) + (\lambda^* \lambda)^n$$
  

$$\leq \lambda^* [h(Tx_{n-2}, Tx_{n-1}) + (\lambda^* \lambda)^{n-1}]\lambda + (\lambda^* \lambda)^n$$
  

$$= \lambda^* [h(Tx_{n-2}, Tx_{n-1})]\lambda + 2(\lambda^* \lambda)^n$$
  

$$\leq \lambda^{*n} d(x_0, x_1)\lambda^n + n(\lambda^* \lambda)^n$$

Hence for  $\forall n,m\geq 1$ 

$$\begin{aligned} d(x_n, x_{n+m}) &\leq b[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+m-1}, x_{n+m})] \\ &\leq b[\lambda^{*n} d(x_0, x_1)\lambda^n + n(\lambda^*\lambda)^n + (\lambda^{*(n+1)} d(x_0, x_1)\lambda^{n+1} + (n+1)(\lambda^*\lambda)^{n+1} + \dots \\ &+ (\lambda^{*(n+m-1)} d(x_0, x_1)\lambda^{n+m-1} + (n+m-1)(\lambda^*\lambda)^{n+m-1}] \\ &\leq b(d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2})) + b^2(d(x_{n+2}, x_{n+3}) + d(x_{n+3}, x_{n+4})) \\ &+ \dots + b^{m-n+1} (d(x_{n+m-2}, x_{n+m-1}) + d(x_{n+m-1}, x_{n+m})). \end{aligned}$$

$$= b[\sum_{k=n}^{n+m-1} \lambda^{*k} d(x_0, x_1)\lambda^k + \sum_{k=n}^{n+m-1} (\lambda^*\lambda)^k] \\ &= \sum_{k=i}^{n+m-1} |(b^{\frac{1}{2}} d(x_0, x_1))|^{\frac{1}{2}} \lambda^k|^2 + \sum_{k=i}^{n+m-1} |b^{\frac{1}{2}} \lambda^k|^2 \\ &\leq I ||b|| ||d(x_0, x_1)|| \sum_{k=n}^{n+m-1} ||\lambda^2||^k + I ||b|| \sum_{k=n}^{n+m-1} ||\lambda^2||^k \to \theta \text{ as } m \to \infty. \end{aligned}$$

It follows that the sequence  $\{x_n\}$  is a Cauchy sequence in X. Since is complete, the sequence  $\{x_n\}$  will converge to some  $x_0 \in X$ . Also

$$h(Tx_n, Tx_0) \preceq \lambda^* d(x_n, x_0) \lambda$$

Therefore, the sequence  $\{Tx_n\}$  converges to  $Tx_0$ . Also  $x_n \in Tx_{n-1} \ \forall n \in \{1, 2, ...\}$  and  $d(x_n, Tx_0) \to \theta$  as  $n \to \infty$ . We obtain that  $x_0 \in Tx_0$ .

**Definition 0.23.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b-metric space.

Let  $\alpha : X \times X \to \mathbb{A}'_+$  be a mapping and  $T, S : X \to \mathcal{CB}(X)$  two multivalued mappings said to be a pair of generalized rational  $\alpha_*$ - contraction type for multivalued mappings if there exists  $x, y \in X$  with  $\alpha(x, y) \succeq I$  and satisfies

(0.1) 
$$h(Tx, Sy) \leq \lambda^* M(x, y)\lambda, \text{ for } \lambda \in \mathbb{A} \text{ with } \|\lambda\| < 1 \text{ and } \|b\| \|\lambda\|^2 < 1$$

where

(0.2) 
$$M(x,y) = \max\{d(x,y), d(x,Tx), d(y,Sy), \frac{d(x,Sy) + d(y,Tx)}{2}\}$$

We prove a common fixed point theorem.

**Theorem 0.24.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b-metric space with  $b \succeq I$  and  $\alpha : X \times X \to \mathbb{A}'_+$  be a mapping. Let  $T, S : X \to \mathcal{CB}(X)$  be a pair of generalized rational  $\alpha_*$ - contraction type for multivalued mappings

- (i)  $(X, \mathbb{A}, d)$  is an  $\alpha$  complete
- (ii) (T, S) is triangular  $\alpha_*$  orbital admissible.
- (iii) there exists  $x_0 \in X$  such that  $\alpha_*(x_0, Tx_0) \succeq I$  for  $x_0 \in X$
- (iv) T and S are  $\alpha$  continuous.

Then there exists a common fixed point of T and S in X.

*Proof.* Let  $x_0 \in X$  such that  $\alpha_*(x_0, Tx_0) \succeq I$ . Let  $x_1 \in Tx_0$  so that  $\alpha(x_0, x_1) \succeq I$  and  $x_1 \neq x_0$ .

We have

$$0 < d(x_1, Sx_1) \preceq h(Tx_0, Sx_1) \preceq \lambda^* M(x_0, x_1)\lambda$$

there exists  $x_2 \in Sx_1$  such that

$$d(x_1, x_2) \preceq h(Tx_0, Sx_1) \preceq \lambda^* M(x_0, x_1) \lambda.$$

With

$$\begin{split} M(x_0, x_1) &= max\{d(x_0, x_1), d(x_0, Tx_0), d(x_1, Sx_1), \frac{d(x_0, Sx_1) + d(x_1, Tx_0)}{2}\} \\ &= max\{d(x_0, x_1), d(x_0, x_1), d(x_1, Sx_1), \frac{d(x_0, Sx_1) + d(x_1, Tx_0)}{2}\} \\ &= max\{d(x_0, x_1), d(x_0, x_1), d(x_1, Sx_1)\} \\ &= max\{d(x_0, x_1), d(x_1, Sx_1)\}. \end{split}$$

If  $max\{d(x_0, x_1), d(x_1, Sx_1)\} = d(x_1, Sx_1)$ , we get

$$d(x_1, Sx_1) \preceq \lambda^* d(x_1, Sx_1)\lambda$$
$$\Rightarrow ||d(x_1, Sx_1)|| \le ||\lambda|| ||d(x_1, Sx_1)||$$

which a contradiction, hence  $max\{d(x_0, x_1), d(x_1, Sx_1)\} = d(x_0, x_1),$ 

then

$$d(x_1, x_2) \preceq \lambda^* d(x_0, x_1) \lambda.$$

In the same way, for  $x_2 \in Sx_1$  and  $x_3 \in Tx_2$ , we obtain

$$d(x_2, x_3) \preceq h(Sx_1, Tx_2) \preceq \lambda^* M(x_1, x_2)\lambda$$

where

$$M(x_1, x_2) = max\{d(x_1, x_2), d(x_1, Sx_1), d(x_2, Tx_2), \frac{d(x_1, Sx_2) + d(x_2, Tx_1)}{2}\}$$
$$= max\{d(x_1, x_2), d(x_2, Tx_2)\}.$$

If  $M(x_1, x_2) = d(x_2, Tx_2)$ , by

$$0 < d(x_2, Tx_2) \preceq h(Sx_1, Tx_2) \preceq \lambda^* d(x_2, Tx_2)\lambda$$

we have

$$||d(x_2, Tx_2)|| < ||\lambda|| ||d(x_2, Tx_2)||$$

a contradiction, hence

$$\begin{split} \max\{d(x_1, x_2), d(x_2, Tx_2)\} &= d(x_1, x_2)\\ \text{and we have } d(x_2, x_3) \preceq \lambda^* d(x_1, x_2) \lambda.\\ \text{We define a sequence } \{x_n\} \text{ by } x_{2n+1} \in Tx_{2n} \text{ and } x_{2n} \in Sx_{2n+1}, \, n = 0, 1, 2, \dots.\\ \text{So} \end{split}$$

 $\alpha(x_n, x_{n+1}) \succeq I , \ \forall n \in \mathbb{N} \cup \{0\},\$ 

then

(0.3) 
$$0 < d(x_{2n+1}, Sx_{2n+1}) \leq h(Tx_{2n}, Sx_{2n+1}) \leq \lambda^* M(x_{2n}, x_{2n+1})\lambda,$$

and

$$(0.4) d(x_{2n+1}, x_{2n+2}) \leq h(Tx_{2n}, Sx_{2n+1}) \leq \lambda^* M(x_{2n}, x_{2n+1})\lambda_{2n+1}$$

By Lemma 0.17 we have

$$\frac{d(x_{2n+1}, Tx_{2n}) + d(x_{2n}, Sx_{2n+1})}{2} = \frac{d(x_{2n}, Sx_{2n+1})}{2}$$
$$\leq b[\frac{d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, Sx_{2n+1})}{2}]$$
$$\leq bmax\{d(x_{2n+1}, x_{2n}), d(x_{2n+1}, Sx_{2n+1})\}.$$

Then

$$M(x_{2n}, x_{2n+1}) = max\{d(x_{2n}, x_{2n+1}), d(x_{2n}, Tx_{2n}), d(x_{2n+1}, Sx_{2n+1})\}$$
$$\frac{d(x_{2n+1}, Tx_{2n}) + d(x_{2n}, Sx_{2n+1})}{2}\}$$
$$= max\{d(x_{2n+1}, x_{2n}), d(x_{2n+1}, Sx_{2n+1})\}.$$

 $\mathbf{If}$ 

$$max\{d(x_{2n+1}, x_{2n}), d(x_{2n+1}, Sx_{2n+1})\} = d(x_{2n+1}, Sx_{2n+1}),$$

then from (3.3) we obtain

$$d(x_{2n+1}, Sx_{2n+1}) \preceq \lambda^* d(x_{2n+1}, Sx_{2n+1})\lambda$$
  
$$\Rightarrow \|d(x_{2n+1}, Sx_{2n+1})\| < \|\lambda\| \|d(x_{2n+1}, Sx_{2n+1})\|$$

which is a contradiction,

hence  $\{x_n\}$  is a Cauchy sequence. By completeness of  $(X, \mathbb{A}, d)$ , there exists  $z \in X$  such

$$\forall n \in \mathbb{N} \cup \{0\} \ lim_{n \to +\infty} d(x_n, z) = \theta$$
  
 
$$\Rightarrow lim_{n \to +\infty} d(x_{2n+1}, z) = lim_{n \to +\infty} d(x_{2n+2}, z) = \theta.$$

Since S is  $\alpha$ - continuous,  $lim_{n\to+\infty}h(Sx_{2n+2},Sz) = \theta$ . Therefore

$$d(z, Sz) \preceq b[d(z, x_{2n+1}) + d(x_{2n+1}, Sz)] \rightarrow \theta.$$

So,  $z \in Sz$ . Similarly,  $z \in Tz$ .

Thus, z is a common fixed point of T and S.

Assuming the following conditions, we prove that Theorem 0.25 still hold for T not necessarily continuous: In the following we show that the  $\alpha$  continuity proprety is replaced by a new condition.

**Theorem 0.25.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b-metric space with  $b \succeq I$ and  $\alpha : X \times X \to \mathbb{A}'_+$  be a mapping.

,

Let  $T, S : X \to \mathcal{CB}(X)$  be a pair of generalized rational  $\alpha_*$ - contraction type for multivalued mappings

- (i)  $(X, \mathbb{A}, d)$  is an  $\alpha$  complete
- (ii) (T, S) is triangular  $\alpha_*$  orbital admissible.
- (iii) there exists  $x_0 \in X$  such that  $\alpha_*(x_0, Tx_0) \succeq I$  for  $x_0 \in X$
- (iv) if  $\{x_n\}$  is a sequence in X such that  $\alpha(x_n, x_{n+1}) \succeq I \ \forall n \in \mathbb{N} \cup \{0\}$ and  $\lim_{n \to +\infty} d(x_n, z) = \theta$ , then there exists a subsequence  $\{x_{n(k)}\}$  of  $\{x_n\}$ such that  $\alpha(x_{n(k)}, z) \succeq I \ \forall k \in \mathbb{N} \cup \{0\}.$

Then there exists a common fixed point of T and S in X.

*Proof.* Let  $\{x_n\}$  be a sequence in X such that  $x_{2n+1} \in Tx_{2n}$  and  $x_{2n+2} \in Sx_{2n+1}$ , n = 0, 1, 2, ..., with  $\alpha(x_n, x_{n+1}) \succeq I \ \forall k \in \mathbb{N} \cup \{0\}$  and  $x_n \to z \in X$ .

By (iv), we have

(0.5) 
$$d(z,Tz) \leq b[d(z,x_{2n(k)+1}) + d(x_{2n(k)+1},Tz)]$$

(0.6) 
$$\leq bd(z, x_{2n(k)+1}) + bh(Sx_{2n(k)}, Tz)$$

(0.7) 
$$\leq bd(z, x_{2n(k)+1}) + b\lambda^* M(x_{2n(k)}, z)\lambda.$$

Where

$$M(x_{2n(k)}, z) = max\{d(x_{2n(k)}, z), d(x_{2n(k)}, Sx_{2n(k)}), d(z, Tz), \frac{d(x_{2n(k)}, Sz) + d(z, Tx_{2n(k)})}{2}\}$$

Letting  $k \to \infty$ , we get  $M(x_{2n(k)}, z) \to d(z, Tz)$  and by (3.7) we have

$$d(z,Tz) \preceq bd(z,x_{2n(k)+1}) + b\lambda^* d(z,Tz)\lambda \Rightarrow 1 < \|b\| \|\lambda\|^2$$

which a contradiction.

Then  $z \in Tz$  i.e, z is a fixed point of T.

Proceeding in this manner we prove that  $z \in Sz$  i.e, z is the common fixed point of T and S.

We denote  $\Phi$  the class of all functions  $\phi : \mathbb{A}_+ \to \mathbb{A}_+$  such that for any bounded sequence  $\{t_n\}$  of positive real numbers,  $\phi(t_n) \to I \Rightarrow t_n \to \theta$  and  $\|\phi\| < 1$ 

And  $\Psi$  the class of the functions  $\psi : \mathbb{A}_+ \to \mathbb{A}_+$  satisfying the conditions:

- (i)  $\psi$  is nondecreasing and continuous,
- (ii)  $\psi(t) = \theta \Leftrightarrow t = \theta$

**Definition 0.26.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b- metric space with  $b \succ I$ and  $\alpha : X \times X \to \mathbb{A}'_+$  be a mapping. Let  $T, S : X \to \mathcal{CB}(X)$  be a pair of generalized rational  $\alpha_* - \psi$ - Geraghty contraction type for multivalued mappings if there exist  $\phi \in \Phi$  and  $\psi \in \Psi$  such that for  $x, y \in X$ , with  $\alpha(x, y) \succeq I$ , the pair (T, S) satisfies the following inequality:

(0.8) 
$$\alpha(x,y)\psi(h(Tx,Sy)) \preceq \phi(\psi(M(x,y))).\psi(M(x,y))$$

where

$$M(x,y) = \max\{d(x,y), d(x,Tx), d(y,Sy), \frac{d(x,Sy) + d(y,Ty)}{2}\}.$$

**Theorem 0.27.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b-metric space with  $b \succeq I$ 

and  $\alpha: X \times X \to \mathbb{A}'_+$  be a mapping. Let  $T, S: X \to \mathcal{CB}(X)$  be a pair of generalized rational  $\alpha_* - \psi -$  Geraphty contraction type for multivalued mappings

- (i)  $(X, \mathbb{A}, d)$  is an  $\alpha$  complete
- (ii) (T, S) is triangular  $\alpha_*$  orbital admissible.
- (iii) there exists  $x_0 \in X$  such that  $\alpha_*(x_0, Tx_0) \succeq 1$  for  $x_0 \in X$
- (iv) T and S are  $\alpha$  continuous.

Then there exists a common fixed point of T and S in X.

*Proof.* Let  $x_0 \in X$ , construct the sequence  $\{x_n\}$  such that  $x_{2n+1} \in Tx_{2n}$  and  $x_{2n+2} \in Sx_{2n+1}$ , n = 0, 1, 2, ..., with  $\alpha(x_n, x_{n+1}) \succeq I \ \forall k \in \mathbb{N} \cup \{0\}$ . By (3.8) we have

$$0 < \psi(d(x_1, Sx_1)) \leq \psi(h(Tx_0, Sx_1))$$
$$\leq \alpha(x_0, x_1)\psi(h(Tx_0, Sx_1))$$
$$\leq \phi(\psi(M(x_0, x_1))).\psi(M(x_0, x_1))$$

there exists  $x_2 \in Sx_1$  such that

$$\psi(d(x_1, x_2)) \preceq \alpha(x_0, x_1)\psi(h(Tx_0, Sx_1)) \preceq \phi(\psi(M(x_0, x_1))).\psi(M(x_0, x_1)).$$

With

$$\begin{split} M(x_0, x_1) &= max\{d(x_0, x_1), d(x_0, Tx_0), d(x_1, Sx_1), \frac{d(x_0, Sx_1) + d(x_1, Tx_0)}{2}\} \\ &= max\{d(x_0, x_1), d(x_0, x_1), d(x_1, Sx_1), \frac{d(x_0, Sx_1) + d(x_1, Tx_0)}{2}\} \\ &= max\{d(x_0, x_1), d(x_0, x_1), d(x_1, Sx_1)\} \\ &= max\{d(x_0, x_1), d(x_1, Sx_1)\}. \end{split}$$

If  $max\{d(x_0, x_1), d(x_1, Sx_1)\} = d(x_1, Sx_1)$ , we get

$$\begin{split} \psi(d(x_1, Sx_1)) &\preceq \phi(\psi(d(x_1, Sx_1))) \cdot \psi(d(x_1, Sx_1))) \\ \\ \Rightarrow \|\psi(d(x_1, Sx_1))\| &\leq \|\phi(\psi(d(x_1, Sx_1)))\| \|\psi(d(x_1, Sx_1))\| \end{split}$$

which a contradiction, hence  $max\{d(x_0, x_1), d(x_1, Sx_1)\} = d(x_0, x_1)$ , then

$$\psi(d(x_1, x_2)) \preceq \phi(\psi(d(x_0, x_1))).\psi(d(x_0, x_1))$$

In the same way, for  $x_2 \in Sx_1$  and  $x_3 \in Tx_2$ , we obtain

$$\psi(d(x_2, x_3)) \preceq \alpha(x_1, x_2)\psi(h(Sx_1, Tx_2)) \preceq \phi(\psi(M(x_1, x_2))).\psi(M(x_1, x_2))$$

where

$$M(x_1, x_2) = max\{d(x_1, x_2), d(x_1, Sx_1), d(x_2, Tx_2), \frac{d(x_1, Sx_2) + d(x_2, Tx_1)}{2}\}$$
$$= max\{d(x_1, x_2), d(x_2, Tx_2)\}.$$

If  $M(x_1, x_2) = d(x_2, Tx_2)$ , we obtain

$$\begin{split} \psi(d(x_2, x_3)) &\preceq \phi(\psi(d(x_2, Tx_2))) \cdot \psi(d(x_2, Tx_2))) \\ \\ \Rightarrow \|\psi(d(x_2, Tx_2))\| &\leq \|\phi(\psi(d(x_2, Tx_2)))\| \|\psi(d(x_2, Tx_2))\| \end{split}$$

which is a contradiction, hence

$$\label{eq:max} \begin{split} \max\{d(x_1,x_2),d(x_2,Tx_2)\} &= d(x_1,x_2) \end{split}$$
 and we have

$$\psi(d(x_2, x_3)) \preceq \phi(\psi(d(x_1, x_2))).\psi(d(x_1, x_2))$$

We define a sequence  $\{x_n\}$  by  $x_{2n+1} \in Tx_{2n}$  and  $x_{2n} \in Sx_{2n+1}$ ,  $n = 0, 1, 2, \dots$  So

$$\alpha(x_n, x_{n+1}) \succeq I , \ \forall n \in \mathbb{N} \cup \{0\},\$$

then  
(0.9)  

$$\psi(d(x_{2n+1}, Sx_{2n+1})) \preceq \psi(h(Tx_{2n}, Sx_{2n+1})) \preceq \phi(\psi(M(x_{2n}, x_{2n+1})))\psi(M(x_{2n}, x_{2n+1})),$$
and  
(0.10)

$$\psi(d(x_{2n+1}, x_{2n+2})) \preceq \psi(h(Tx_{2n}, Sx_{2n+1})) \preceq \phi(\psi(M(x_{2n}, x_{2n+1})))\psi(M(x_{2n}, x_{2n+1})).$$

Where

$$M(x_{2n}, x_{2n+1}) = max\{d(x_{2n}, x_{2n+1}), d(x_{2n}, Tx_{2n}), d(x_{2n+1}, Sx_{2n+1}), \\ \frac{d(x_{2n+1}, Tx_{2n}) + d(x_{2n}, Sx_{2n+1})}{2}\} \\ = max\{d(x_{2n+1}, x_{2n}), d(x_{2n+1}, Sx_{2n+1})\}.$$

If

$$max\{d(x_{2n+1}, x_{2n}), d(x_{2n+1}, Sx_{2n+1})\} = d(x_{2n+1}, Sx_{2n+1}),$$

then

$$\psi(d(x_{2n+1}, Sx_{2n+1})) \preceq \phi(\psi(d(x_{2n+1}, Sx_{2n+1}))) \cdot \psi(d(x_{2n+1}, Sx_{2n+1}))).$$
  
$$\Rightarrow \|\psi(d(x_{2n+1}, Sx_{2n+1}))\| \le \|\phi(\psi(d(x_{2n+1}, Sx_{2n+1})))\| \|\psi(d(x_{2n+1}, Sx_{2n+1}))\|$$

which is a contradiction, hence  $max\{d(x_{2n+1}, x_{2n}), d(x_{2n+1}, Sx_{2n+1})\} = d(x_{2n+1}, x_{2n})$ and we have

$$\psi(d(x_{2n+1}, Sx_{2n+1})) \preceq \phi(\psi(d(x_{2n+1}, x_{2n}))) \cdot \psi(d(x_{2n+1}, x_{2n}))$$

Using propreties of  $\psi$  and  $\phi$  we conclud that  $\{x_n\}$  is a Cauchy sequence. By completeness of  $(X, \mathbb{A}, d)$ , there exists  $z \in X$  such

$$\forall n \in \mathbb{N} \cup \{0\} \ lim_{n \to +\infty} d(x_n, z) = \theta$$
  
$$\Rightarrow lim_{n \to +\infty} d(x_{2n+1}, z) = lim_{n \to +\infty} d(x_{2n+2}, z) = \theta$$

Since S is  $\alpha$ - continuous,  $lim_{n\to+\infty}h(Sx_{2n+2},Sz) = \theta$ . Therefore

$$d(z, Sz) \preceq b[d(z, x_{2n+1}) + d(x_{2n+1}, Sz)] \rightarrow \theta.$$

So,  $z \in Sz$ . Similarly,  $z \in Tz$ .

Then T and S have a common fixed point in X.

Assuming the following conditions, we prove that Theorem ?? still hold for T not necessarily continuous: The following theorem is a consequence of the Theorem 0.28 in the case of the generalized rational  $\alpha_* - \psi$  – Geraghty contraction type for multivalued mappings.

**Theorem 0.28.** Let  $(X, \mathbb{A}, d)$  be a  $C^*$ -algebra-valued b-metric space with  $b \succeq I$ and  $\alpha : X \times X \to \mathbb{A}'_+$  be a mapping. Let  $T, S : X \to \mathcal{CB}(X)$  be a pair of generalized rational  $\alpha_* - \psi$ - Geraghty contraction type for multivalued mappings

- (i)  $(X, \mathbb{A}, d)$  is an  $\alpha$  complete
- (ii) (T, S) is triangular  $\alpha_*$  orbital admissible.
- (iii)  $\alpha_*(x_0, Tx_0) \succeq I \text{ for } x_0 \in X$
- (iv) if  $\{x_n\}$  is a sequence in X such that  $\alpha(x_n, x_{n+1}) \succeq I \ \forall n \in \mathbb{N} \cup \{0\}$ and  $\lim_{n \to +\infty} d(x_n, z) = \theta$ , then there exists a subsequence  $\{x_{n(k)}\}$  of  $\{x_n\}$  such that  $\alpha(x_{n(k)}, z) \succeq I$  $\forall k \in \mathbb{N} \cup \{0\}.$

Then there exists a common fixed point of T and S in X.

#### Declarations

#### Availablity of data and materials

Not applicable.

#### **Competing interest**

The authors declare that they have no competing interests.

#### Fundings

Authors declare that there is no funding available for this article.

#### Authors' contributions

The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

#### Acknowledgements

The authors are thankful to the area editor and referees for giving valuable comments and suggestions

#### References

- Ameer E, Arshad M, Shatanawi W, 2017. Common fixed point results for generalized α<sub>\*</sub> ψ-contraction multivalued mappings in b-metric spaces. J. Fixed Point Theory Appl. 19, 3069–3086. https://doi.org/10.1007/s11784-017-0477-2
- [2] Hussain N, Kutbi MA, Salimi P, 2014. Fixed Point Theory in α-Complete Metric Spaces with Applications, Abstract and Applied Analysis, vol. 2014, Article ID 280817, 11 pages. https://doi.org/10.1155/2014/280817
- [3] Kari A, Rossafi M, Massit H, 2022. On the α ψ–Contractive Mappings in C\*–Algebra Valued b–Rectangular Metric Spaces and Fixed Point Theorems, Eur. J. Math. Anal. Vol. 2, 11. DOI: https://doi.org/10.28924/ada/ma.2.11
- Ma Z, Jiang L, Sun H, 2014. C<sup>\*</sup>-algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl 2014, 206. https://doi.org/10.1186/1687-1812-2014-206
- [5] Massit H, Rossafi M, 2021. Fixed point theorems for  $\psi$ -contractive mapping in  $C^*$ -algebra valued rectangular b-metric spaces, J. Math. Comput. Sci., 11, 6507-6521
- [6] Murphy GJ, 1990.  $C^*$ -Algebra and operator theory, Academic Press, London.
- [7] Nadler SB, 1969. Jr.: Multi-valued contraction mappings. Pac. J. Math., 30: 475–488.
   10.2140/pjm.1969.30.475
- [8] Omran S, Masmali I, 2021. On the α ψ–Contractive Mappings in C\*–Algebra Valued b–Metric Spaces and Fixed Point Theorems, Journal of Mathematics, vol. 2021, Article ID 7865976, 6 pages. https://doi.org/10.1155/2021/7865976
- [9] Samet B, Vetro C, Vetro P, 2012. Fixed point theorems for α ψ-contractive type mappings, Nonlinear Analysis. Theory, Methods and Applications, vol. 75, no. 4, pp. 2154–2165.