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Abstract

In this paper, a modified Leslie-Gower two preys one predator model and Holling type 1l
functional response with harvesting and time-delay were discussed. Model analysis is carried
out by determining fixed points, then analyzing the stability of the fixed points and discussing
the existence of the Hopf bifurcation. In some conditions that occur in nature indicate the
occurrence of hunting of prey and predator species by humans. Therefore, this model is modified
by adding the assumption that prey and predators are being harvested. Another modification
given to the model is the use of time delays.The delay time term is for taking into account the
case that the members of the predator species need time from birth to predation for being active
predators. The first case is a model without time delay, it is obtained that 3 fixed points are
unstable and 7 fixed points are stable. One of them is the interior fixed point tested with the
Routh-Hurwitz criteria. The second case is a model with a delay time, the critical delay value is
obained. Hopf bifurcation occurs when the delay time value is equal to the critical delay value
and also fulfills the transversality condition. Observations on the model simulation are carried
out by varying the value of the delay time. When the Hopf bifurcation occurs, the graph on the
solution plane shows a constant oscillatory movement. If the value of the delay time given is
less than the critical value of the delay, the controlled system solution goes to a balanced state.
Then when the delay time value is greater than the critical delay value, the system solution
continues to fluctuate causing an unstable system condition.

Keywords: Hopf bifurcation; Leslie-Gower; two preys; Holling type Il; harvesting;
time delay.

1. INTRODUCTION AND PRELIMINARIES

@08

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License



http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:gesti.gew@bsi.ac.id
mailto:chalimatusadiah.cld@bsi.ac.id2

521
JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI
Gesti Essa Waldhani, Chalimatusadiah

One example of system which is the approach to the physical phenomenon is the predator-prey
system [1]. The research of the interaction of predator-prey will be done by analyzing the
mathematical model of predator-prey system.

The predator-prey model were first introduced in 1925 by Lotka and Volterra in 1926 [2,3], so
this model is also called the Lotka-Volterra model [4]. This simple model has been modified in
many ways since its original formulation in the 1920s. In particular, Leslie and Gower [5, 6]
improved the realism of the Lotka-Volterra model by introducing the predator-prey model where
environmental carrying capacity for the predator population is proportional to the number of prey
population. Then in 1950 Holling introduced the functional response. The functional response in
ecology i.e. the amount of food is eaten by the predator population as the function of the density of
food [7]. In this case the functional response is divided into three kinds i.e. type | functional
response, type Il functional response and type Il functional response. Then to build the model
which is more realistic, Ali, et al [8] consider time delay. Delay effect here is to realize the situation
that the predator population needs time from birth to predation. This means that a newborn predator
species need time to grow old enough to predate alone and to be represented in the predation
function mathematically.

The Leslie Gower predator-prey model and Holling type 2 functional response with time delay
were introduced by Nindjin et al [9] after that Ma [10] added a time delay to the previous model
with the assumption that the growth of the prey population depended on the previous population
size. Aziz and Daher [11] studied global stability of the coexisting interior equilibrium in modified
Leslie-Gower Predator-prey and Holling Type Il Functional Response. Pan-Ping & Yong [12]
analyzed spatiotemporal dynamics of a predator—prey model obtain rich patterns, including spotted,
black-eye, and labyrinthine patterns with choosing appropriate parameter values. Tapan &
Charugopala [13] proposed a delayed Holling—Tanner predator—prey model with ratio-dependent
functional response. The local stability, Hopf-bifurcation, qualitative behaviour of the singularity
with blow up transformation and global stability are discussed. Zhiging and Hongwei [14]
investigated the global stability of equilibrium of Holling—Tanner model with ratio-dependence by
constructing Lyapunov function and discuss the existence limit cycle of model linear. Malay and
Santo [15] considered a modified spatiotemporal ecological system originating from the temporal
Holling—Tanner model with diffusion. The original ODE system is studied for the stability of
coexisting homogeneous steady-states. The modified PDE system is investigated in detail with both
numerical and analytical approaches. Turing and non-Turing patterns of fixed values and Hopf
bifurcation are discussed. Zizhen Zhang [16] analyzed Hopf bifurcation analysis for a two prey one
predator system with time delay and show the hybrid controller is efficient in controlling Hopf
bifurcation. Xinzhi, et al [17] studied the existence of invasion waves of a diffusive predator—prey
model with two preys and one predator. The existence of traveling semi-fronts connecting invasion-
free equilibrium is obtained by Schauder’s fixed-point theorem The existence of traveling front is
got by rescaling method and limit arguments. Gakkhar, S and Kamel Naji, R [18] investigated the
dynamical behavior and chaos of a realistic three species food chain model considering predator to
prey ratio-dependence for the interaction together with type Il functional response. The bifurcation
diagrams, Lyapunov exponents and dimensions are discussed. Xiaoliang and Wen [19] concerned
a three-species Lotka-Volterra food chain system with multiple delays. The direction and the
stability of bifurcating periodic solutions are determined by the normal form theory and the center
manifold theorem. Nilesh, et al [20] discussed modeling the plankton—fish. Interaction between the
prey and an intermediate predator follows the Monod—Haldane functional response, while that
between the top predator and its prey depends on Beddington—DeAngelis-type functional response.
we study the Hopf and transcritical bifurcations scenarios with respect to inhibitory effect of
phytoplankton against zooplankton and death rate of fish population for the non-delayed system.
Jia-Fang [21] studied the direction of Hopf bifurcation and explicit algorithm is given by applying


https://link.springer.com/article/10.1007/s11071-011-0246-5#auth-Pan_Ping-Liu
https://ieeexplore.ieee.org/author/37085432251
https://www.sciencedirect.com/topics/physics-and-astronomy/lyapunov-exponent
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the normal form theory and the center manifold reduction. Zhiqi and Xia [22] discussed a predator—
prey model with modified Holling—Tanner functional response and time delay. The local stability
and global stability with Lyapunov theorem is investigated.

The model discussed in this study is a modification of the model formulated by Ali, et al [8]
with the assumption that in some conditions that occur in nature indicate the occurrence of hunting
by humans. To control the level of predation so as not to cause extinction of the prey and predator
species, a constant harvesting treatment is given to the prey and predator populations on a regular
basis. In general, harvesting activities are carried out on individuals who have reached a certain age
which are considered mature or ripe for harvesting. According to Idels and Wong [23] constant
harvesting does not increase or decrease every year. In this research, it is assumed that harvesting
can produce results that do not cause the species to become extinct. Based on the author's literature
review, this modified model has never been studied before. Model analysis is carried out by
determining the fixed point, then a stability analysis is performed from the fixed point without time
delay including interior points tested with Routh Hurwitz criteria and time delay interior fixed
points by applying Hopf bifurcation theory which is continued with model simulations carried out
by varying the value of delay time.

2. METHOD

The stages of the research carried out are as follows.

1. Journal Review
In general, the content of the article is about the analysis of the stability of the Leslie Gower
equation and the Holling type Il response function with harvesting and delay time.

2. Model Building
The modified Leslie Gower model and the Holling type Il response function which will be
studied in this study were obtained from the development of previous research models.

3. Fixed Point determination stage
The fixed point is obtained by making the rate of change of predator and prey with respect
to time equal to zero.

4. Fixed Point Stability Analysis Stage
Fixed point stability without time delay is obtained by a linear approach. The interior points
are substituted into the Jacobi matrix so that the eigenvalues can be analyzed with Routh
Hurwitz to determine stability. A fixed point with a time delay requires an approach in
complex space to analyze the Hopf bifurcation.

5.  Stage of Determination of Transverse Conditions
The transverse condition is determined to prove that a Hopf bifurcation occurs at the inner
equilibrium point.

6. Interior Point Stability Simulation Stage
Simulations are carried out for each parameter according to the conditions. The simulation
results were analyzed, in order to obtain an overview of the influence of harvesting and
delay time on predators and prey.

3. MATHEMATICAL MODEL

A modified Leslie-Gower two preys one predator model and Holling type Il functional
response and harvesting consists of two different prey density at time t (x1 (t) dan x, (t)) and the
predator population at time ¢ (x5 (t)).
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The prey population density depends on several factors, including the growth rate of each prey
and predator population, carrying capacity for the prey population, the maximum consumption rate
of the predator population and the saturation rate of the predation.

The predator population density depends on several factors, including the growth rate of the
predator population, the maximum consumption rate of the predator population and the saturation
rate of the predation.

In the formation of this model, there are several assumptions. The assumptions is used in the
modified Leslie-Gower two preys one predator model and Holling type Il functional response and
harvesting are (1) The predator can eat both preys, meantime there is no interaction between x;
and x, (2) The growth rate of the prey population has a logistic growth pattern. (3) In the interaction
between prey and predator, the prey responds the presence of the predator, such that the predator
takes time to catch the prey (predator following the Holling type Il functional response). (4) There
is the harvesting in the prey and predator population after the prey and predator population density
reaches a threshold harvesting. A modified Leslie-Gower two preys one predator model and
Holling type Il functional response and harvesting can be expressed as.

(1) ﬂ=7”1x1 (1_ﬁ)_%_7‘1}?xl,

dt Ky nq+xq
dx x arX2X
2) —2=r1x (1——2)—&—7” Fx
( ) dt 272 Kz n2+x2 2 2
dx x x
(3) = = 51X3 (1 - 4 3) + 52x3 (1 - M) - SlFx3 - SzFx3. (1)
dt K, K,

with x,(0) > 0,x,(0) > 0 and x;(0) > 0.

X1 = le,xZ = sz,a1X3 = Klz (=4 X3 = %,azx:g = KzZ =4 X3 = %,Tlt =Tot=
1 2

T T 1 _ Q2

1 q1 nq n,
—nt=Teot=— a,=—,a, =— == == m=—n=mK,m==
7’1' 2 7 1 Tl’ 2 7 ﬁl al"BZ a, 1 Ky 1 1581, 2 K,

ny = myKy, pg = i—i & S, = pi1y, Py = j—z & s, =p,r,. In the equation system (1), the

parameter x = % and y = % describes that the prey population density with the influence of the
1 2

surroundings, the parameter z = == = =2= shows that the predator population density with the
1 2

influence of the surroundings which is interacting with the prey population, T = ryt = r,t shows
the time t, a; = ri and a, = ri describes that the decrease number of the prey population that
1 2

caused the interaction of the prey and predator population, 8; = %, By = % shows that the decrease
1 2

number of the predator population that caused the interaction between one predator and the other
predator population, m; = % m, = % describes that the saturation rate of the predation with the
1 2

influence of the surroundings and p; = i—l Py = i—z describes that the growth rate of the predator
1 2
population. So, system (1) is equivalent with the following system.

(@8] %=x(1—x— e —F),

@) %=y(1—y—nffy—F),
(3) == 2z(p1(1 = B12) + po (1 — B,2) — F)
@)

with x(0) > 0,y(0) > 0 and z(0) > 0.
Then by giving the discrete time-delay in the growth rate of the predator population, the equation

models become

@) 2D _ x(1) (1-xm - _azlD) F)

dar mq+x(T—-1)
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@ %P =y (1-y(0) ~ 2~ F)

my+y(T—1)
3) 2D = 2(T)(pr (1~ Br2(T — ) + ps (1~ Bo2(T — 1)) — F)
(©)

with x(0) > 0,y(0) > 0 and z(0) > 0.

4. MAIN RESULTS
4.1 EQUILIBRIA

System (3) realizes the equilibrium point when Z—; =0, % =0 and Z—; = 0, such that system
(3) can be written as.

ax _ VRS L ) g
(8 T=x(1-x - F)=0,

dy arz _
b) Z=y(1-y-2=—-F) =0,

my+y
(©) == 2z(p1(1 — B12) + po(1 = Bo2) = F) = 0 (4)

From the equation ¢ in system (4) we obtain z = 0 or z = 22227 with p, + p, > F.
P1P1+p2B2

For the case z = 0, substituting z = 0 into the equation (a) and (b) in system (4), such that we
get y=0vy=1 andx=0vx=1. Hence, we obtain the equilibrium point

_ p1tp2—F P — p1t+p2—F
E(0,0,0),E,(0,1,0),E,(1,0,1), E5(1,1,0). For the case z = PTRTNX substituting z DBt

into the equation (a) and (b) in system (4), then we obtainx =0V x = — % (F-1+m; £ A)and

(F—(m1+1))2(P1B1+P232)—4“1(P1+02—F)

and B =
P1B1+p2B2

y=OVy=—%(F—1+m1iB) with A=\]

where F—1+m;+A<0and F—1+m; £ B <0.So

(F—(mz+1))2(P1B1+P252)—40‘2(P1+P2—F)
p1B1t+p2B2

we  have the  equilibrium  point  E, (O,O,M),E5 (—%(F —14+m +

- L - P1B1+1P2,32 .
A) 0 LatP"F ) B “lr-1 p) PitPeF N\ p ( 1p_ 4 A -1 —
)' 0, P1B1+Pzﬂ2) '6 (0, 2 ( tmy )’9131"'102,32) 7 ( 2 ( tmy )' 2 (
_Patpa—F _Yp_ _ _P1tpaF _Yr_ _
1+m, + B),p1ﬁ1+pzﬁz),E8 ( ~(F = 1+my — A),0, p1B1+szz)'E9 (0, S(F—1+m
gy PutPeF N p (_1ep_ 4 —A-YF-1 _ B) PatpP2=F )
), P1ﬁ1+P252) » 10 ( 2 ( my ), 2 ( +my ), P1B1+P252)
4.2 STABILITY OF E WITHOUT TIME DELAY
The general Jacobian matrix of Egs. (4) is given by
1=2x- ‘rr?fjx + (ﬁfﬁ)z -F 0 7:1(:-1::
/= ( 0 1-2y = i F e )
0 0 p1(1 = B12) = p12B1 + pp(1 — Bo2) — pp2f, — F
1-F 0 0
At E,, the Jacobian matrix is /(0,0,0) = ( 0 1-F 0 > Wegetd; , =1—
0 0 p1t+tp—F

FV A3 =p;+p, —F.Because 1 > F and p; + p, > F, Eg is an unstable saddle point.
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1—-F 0 0
. . az
At E;, the Jacobian matrix is /(0,1,0) = 0  —1=F === | Wegeta,, =
0 0 p1+p2—

1—-FVA; =p;+p, — F.Hence, E; is an unstable saddle point.
At E,, the Jacobian matrix is J(1,0,1) =

/ (my+1)?(F+1)+a;m, a, \
— O —
(mq,+1)2 my+1
| 0 _ my(F-1)+ay 0 |. We get 1, =
\ 3
0 0 p1+p2 —F = 2(p1 1 + p252)
2 —
(m1+1()m(F:11))2+a1m1 VA, M VA3 = p1+pz — F = 2(p1f1 + p22). E; stable if
1
my(F—1)+a; >0and p; +p,; — F < 2(p1B1 + p2P2).
-1-F 0 o
my+1
At E5, the Jacobian matrix is /(1,1,0) = 0 —1—F % .Wegetd,, =
my+1
0 0 prt+p2—F
1—-FVA; =p; + p, — F. Hence, E; is an unstable saddle point.
At E,, the Jacobian matrix is j(1,1,0) =
(_ p1B1M1(=14F)+py Bomy (=1+F)+ay(p1+p2—F) 0 0 w
(p1B1+p2B2)my
0 _ P1Bima(=14F)+pafomy (—1+F)+az(p1+p2—F) 0 .We get
(P1B1+p2P2)m,
0 0 —p1—p2+F

1 = _ p1Bima(=14F)+py fomy (-1+F)+ay(p1+p2—F) VA =

L B . (P1(ﬁ1+Pz)ﬁz)"E1 ) 2

P1B1Ma(=14F)+pafoma(—1+F)+az(p1+pr—F :
- VA3 = —p — F.Hence, E leif

(p1B1+p2B2)m, )l3 Pr=p2t ence, La stable

p1Bimy (=14 F) + pfomi(=1+ F) + ay(py + p, — F) > 0and p1 fimy (=1 + F) +
p2B2mz(—=1+ F) + az(py + p2 —F) > 0.

_Yr_ _P1tp2=F \ _
At Es, the Jacobian matrix |s]( (F—1+m; +A4),0, p1!31+pzl?z)

/(A+a1)( My +F=1+4)2(p1 B1+paBz) +4a1my (=p1—pz+F) 0 _al(F—1+m1+A)\
(p1B1+p2B2)(—my+F—~1+4)2 —-mi+F—1+A4
0 _ az2(p1+p2—F)+ma(F-1)(p181+p2P2) 0
(p1B1+p2B2)m,
0 0 —p1—p2+F

(A+ay)(=m +F—1+4)%(p1B1+p2B2) +4aym, (—p1—pz+F)
We get 4, = (P2Br+p2Bo)(—m +F—1+A)? V42

_ az(p1+p2—F)+my(F-1)(p1B1+p2B2) _ :
(p1B1+p2/32)m2 VA3 = —p; — p, + F. Hence, E5 stable if (4 +

a))(—=my + F =1+ A)?(p1By + p2B2) + 4aymy(—p; — po, + F) < 0dan a,(p; + p, — F) +

my(F — 1)(p1f1 + p2B2) > 0.
At Eg, the Jacobian matrix isj (0 ——(F —1+m, +B), 2P )

P1B1+p2B2
/_ a1(p1+p=F)+my(F=1)(p11+p2B2) 0 0
(p1B1+p2B2)my
| 0 (B+my)(=2m,+F=1+my+B)?(p1 f1+P2B2) +4amy(F—pa—p1) @ (F=1+m,+B) | We
\ (p1B1+p2B2)(=2my+F~1+m +B)? —2m,+F—1+m,+B
0 0 —p1—p2+F
_a +p,—F)+m{(F-1 +
get/'l — 1(p1+p2—F) 1( )(p1B1t+p2PB2) Vl
(p1B1+p2B2)my
B+m 2my+F-1+m,+B + +4a,m,(F— a(F—-1+mq.+B
( 1)(=2m, 1+B)*(p1B1+p2B2) 2Mz(F—pa—p1) VI, =— 2( 1+B) . Hence, E6

(p1B1+p2B2)(—2my+F—1+m, +B)? 3 —2my+F-1+my+B
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stable if &, (p; + p, — F) + my(F — 1)(p1B1 + p252) > 0and (B + my)(—2m, + F — 1+

my + B)2(p1 By + p2B2) + 4aymy(F — p, — py) < 0.
At Eg, the Jacobian matrix is (——(F —1+m, — A),0,LLtres ) =

" p1B1+p2B2
(_ (A-my)(my—F+1+4)%(p1 B1+P2B2)—4a1my (—p1—p2+F) 0 _011(F+1m1+A)\
(p1B1+p2B2) (M1 ~F+1+A4)? my—F+1+A
0 _ =ma(p1B1+p2Ba)+az(p1+pa—F)+Fmy(p1B1+p22) 0 . We get
(p1B1+p2B2)m,
\ 0 0 —p1—p2+F
1 = (A—my)(my—F+1+4)%(p1B1+p2B2)—4a1my (= p1—p2+F) _
1 — = V /12 =

(p1B1+p2B2) (M —F+1+A)?

_ ~Ma(p1B1+p2B2)+a2(p1+p2—F)+Fmy(p11+p2B2) _ :
(p1ﬂ1+p2ﬁ2)m2 V A3 = —p; — p, + F. Hence, Eg stable if

(A—my)(my — F + 1+ A)*(p1B1 + p2B2) > 4aymy(—p; — p, + F) and a(py + p, — F) +
Fmy(p1f1 + p2B2) > ma(p1B1 + p22)-
At Eq the Jacobian matrix is j (0,—2(F — 1+ m, — B), 22222 ) =

P1B1+p2B2

(_ (B—m1)(p1B1+p2B2)(2Ma—F+1-my+B)? —4aymy(—p1—p2+F) 0 _ az(—F+1—m1+B)\|
(p1B1+p2B2)(2my—F+1-my+B)? 2my—my—F+1+B
0 _ —my(p1f1+p2B2)+a1(p1+p2—F)+Fmy(p1f1+p2B2) 0 . We get
(p1B1+p2B2)my
\ 0 0 —p1—p2+F

1 = (B=my)(p1B1+p2B2) 2my—F+1-m;+B)?—4am,(=p1—p2 +F)
1= 2
(p1B1+p2B2)(2my—F+1-m+B)

_ ~my(p1B1+p2B2)+ a1 (p1+p2—F)+Fmq(p1f1+p2B2) _ ;
Bt pafms V A3 = —p; — p, + F. Hence, Eq stable if

(B —my)(p1f1 + p22)(2my; —F +1—my + 3)2 > 4amy(—p; —p, + F) and

ay(py + p2 — F) + Fmy(p1 By + p22) > my(p1B1 + p252)-
At Ey the Jacobian matrix is j (=2 (F — 1+m, - 4),—2(F = 1 +m, — B), 2220 ) =

Vﬂ.zz

P1B1+p2B2
_ (A-m1)(p1B1+p2B2)(my— —F+1+4)%~4a;mq(=p;—pa+F) 0 _ ai(=F+1-m;+4)
(p1B1+p2B2) (M1 —F+1+A4)? my—F+1+A
0 _ (B=m1)(p1B1+p2B2)(2ma~F+1-m1+B)*~4aymy(=p1-po+F) _ az(-F+1-mi+B) |[. We
(p1B1+p2B82)(2my—F+1-mq+B)? 2my—F+1-m;+B
0 0 —p1—p2+F

get A, = _ (A-my)(p1B1+p2B2) (M1 — —F+1+A)?—4aymq(—p1—pz+F) v
1 (p1B1+p2B2)(My—F+1+A)2

(B—m1)(p1B1+p2B82)(2my—F+1—m+B)?—4a,m,(—p1—p,+F) _
_ Bt oaB ) @ F 1T 1B V A3 = —py — p, + F. Hence, E;, stable

if (A—my)(p1B1 + p2B2)(my —F + 14+ A)* > 4aym,y(—p; — p2 + F) and (B —my) (p1 1 +
p2B2)(2my —F +1 —my + B)? > 4azmy(—py — pp + F).
At E the Jacobian matrix is j(z,9,2) =

DY .t ks .y
1-2% mi+2 | (my+£)? 0 mi+d
0 1—29— Wz | @myZ .y
my+y  (my+9)? my+y

0 0 p1(L = B12) = p12P; + pp (1 — B22) — pp 2, — F

Then find all eigenvalues of a matrix using the characteristic equation as follows.
AB—yYr2—61-n=0

Y =24 py 4y = 3F = 20106 — = 2p2f, o s
- e iR A
A R A
zczf# +29p1 + 29p; +4p12f;1 + 41022.[’)2 - (rfllfj)z - (,fzzf;)z (mlii?z;zzjry)z
a,%2%a;, 20,2%a, _ 20,822 0,9 20129 | 2,829 | a 2p, aizpy

(M +2)2(Mmy+9)  (my+2)(my+9) (M +2)2(my+9)2  my+& + (my+£)2 + I +2y+ my+x
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20292%p, B,
(my+9)?

2022°p1B1  2a22%paB2
my+y my+y
a,zA

2Xa,z  2Fa,Z a,y2p1
my+y (my+9)?

A2 A
+4F — 4% - 2L 4 o), 4 25p, + 2202 4
1

my+J

a292p;
(m,+9)?

— 4Yp12P1 — 4Yp2B; +

20,92%p1B1
(my+9)?

Az2pq

my+y

+ 2% —

my+y

mq+x
2Fpi + 2Fp,
—_ 2 5 S D _ 2 5 _ A _ A _ a122a237/’2 _
N = —2F°p12f1 + 4Xp12Py — 2F° Pz, — 2pa2f, — 2p12p4 (it D) (my19)2
ax2%a,F

(m+2)2(my+y) (M +2)2(my+9)
a1 XZF . Fa,y2

TP~ G T G
28a,92p; | 4R%ap92%p1 By _
(my+9)? (my+9)?

ayx2%azpy 2,823,014 a,R2%azp, 21223 0,08,
(m+2)2(mz+9) = (My+2)2(ma+9)  (my+2)2(mz+9)
2a,2°Fpify | a12Fp; _m1Zpy  aiZpy 2Fa,92% 0282

my+% my+X mq+x (my+9)2
~ A 2a,22p, B, ~ A A A
49p22p, + + —4FypzPy — 4FJprzf; —

my+y
2%a,92p;

a1Z2Fpq

mq+%

mq+X
52
2a32°p1B1
my+y

—29py — 2F?% — 2%py — 29p, +

20,92%p; B,
(m,+9)2

8%Yp,2B, — 2F?9 + F?py +

2a4ZyF

52
A127a202

2

4%, 92%p, By | 2R, PEF F?a2  2a.%29py | 4 X2%yp f1 204%2Pp, | 2Ray2p,
(my+9)? (my+9)? (ma+9)2 my+y (my+£)? (mq+%)2 (mq+%)? my+3
4Ra,2%p B | 2Rax2p,  4Ray2%pyf,  2Ra2F  aq ZF? a1 X2%a,9p, a1 X2%a,9p,
my+9y my+y my+Y my+Y my+x - (m+2)2(my+9)?2 - (m+£)2(m,+9)?
A a XZpy 20182%p1B1 | 204X29F | 2012°p1B1 | 2a12%pyP 20,123,901 81
4Fp.Z2f, + —— — = = = > = =
(my+%)? (my+%)2 (my+%)2 mq+% mq+% (mq+2)(Mmy+9)?
20,230,902, a 22, 9F 4a,82%9p,By | 201R2%FpyBy  2Fap2%piBi  2Fa32%pyPs
(m+2)(my+9)2 ~ (my+2)(My+9)? (mq+%)? (my+%)2 my+y my+y
Fa,92p, Fay92p, a X2Fp, 20,2%Fp,pB, a X2F? | Fay2p,
(ma+9)2 (Mma+9)2  (my+%)? my+% (mq+%)? my+y
PSRN PPN 2, 20129p1 | 2Fay92°pi By | aq2F 3, Fazip, az92p,
4FXp,2P1 — 4FXpy20, + 4F~ + —— + m19)? + . F° + —— + i 9)?
A a 2% a,p4 2a,23a,p1B4 Q2p;  aZpy on A
H A2 D) Gyt mats  mery | O9P12h1
Fayz F2a,9% _ 4a,2%9p1B1 | 20:129p, _ 4a,2%9p, B, _
my+y (my+3)? mq+% mq+% mq+%
_ 2a123a,0,B; a1X2p; 2a,%2%p, B2 _ 20,223 a,9p1 81 _
my+x - (Mmy+R)(Mmz+) (my+2)(me+d)  (my+2)? (my+2)? (my+2)2
201223 a,9 282 a1 R2°a,JF a1 R2Fpy 20, %2%Fp, By AYZP1 2a,y2%p1 By + 4%p,5B, +
(M +22(ma+9)? (M +D)2(mp+9)?  (my+£)? ~ (ma+2)?  (ma4y)?  (my+y)? PaZP2
4%9p, + 2FRp, + 2F9p, + 2FPp, + 4xPp, — 4X9F + 2FXp, — 2%p, + F?p, — 2Fp, +
2Fy — 2Fp; + 2FX

Table 1. Eigenvalues for E

mq &mz
0,1 0,2 0,5 0,9 1
0,0646616542- | 0,0724812029-
1 | 0,5976668561i | 0,363397974i -0,3628643275 | -0,5634626514 | -0,5910937402
0,113875598- | 0,1915789474- | 0,1559808612-
1,050846561i 0,854796832i 0,2390118059i | -0,33276845 | -0,3869435658
-1,9 -1,9 -1,9 -1,9 -1,9
0,0638655463- | 0,0705546218-
P1 0,9 | 0,5916916521i | 0,3565943472i | -0,3670878594 | -0,5656379023 | -0,593058764
0,1133689839- | 0,1903529412- | 0,1510160427-
1,044856583i 0,848394035i 0,2323946064i | -0,3368299492 | -0,3904539415
17 1,7 1,7 1,7 1,7
0,0571428572- | 0,0542857143-
0,5 | 0,5421047417i | 0,2988959276i | -0,3999999996 | -0,5829304048 | -0,6086739293
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0,1090909091- 0,18- 0,1090909092-
0,9958591955i | 0,7959899497i | 0,1781447085i | -0,3688199736 | -0,4182296668
-0,9 -0,9 -0,9 -0,9 -0,9
0,0285714286-
0,2 | 0,3382628692i | 0,1148009109 | -0,5018614767 | -0,6399359837 | -0,6603940841
0,0909090909- 0,136-
0,8132850097i | 0,6000311101i | 0,01503152562 | -0,4710825966 | -0,5083258279
-0,3 -0,3 -0,3 -0,3 -0,3
0,1 | 0,2930433584 | 0,06322933096 | -0,6501596573 | -0,7308147263 | -0,745079763
0,0363636363- | 0,0040000001-
0,3942655992i | 0,0707546622i | -0,4786996487 | -0,6265446806 | -0,6482135018
-0,1 -0,1 -0,1 -0,1 -0,1

The results of analysis show that the equilibrium pointE is stable. Giving a delay T > 0 will
cause a change in the stability of equilibrium pointE.

3.2 STABILITY OF E WITH TIME DELAY

In analyzing the stability of £ with time delay. It is necessary to linearize equation (3) around
the equilibrium point £, then obtained a linearization model

dx(T)
dT

7)

(@)

dy(T)
dr

(b)

dz(T)
dT
®)

where

(©)

b1=1_2x_

= blx(T) + sz(T -

= b3y(T) + byz(T — 1)

= bsz(T — 1)

aiz

mq+x

a,xz
(mq+x)?

—F,b, =

alx

b3_1_2y

—22 po = p, (1= B12) — p12PB; + p2 (1 — ﬂzZ) p2zf; — F

my+y

Suppose the solution of the system (5) is

x(T) = 1e?*,y(T) = me??, z(T) = ne’*
Substitute equation (6) to equation (5) then divided by et to obtain

IA = byl + byne™*

mA = bzm + byne
nA = bgne

-At
-t

The system (5) can be written in the following form.

0 bye
] ObB

b,e
0 bse

-t 1
—AT [m]
-At|ln

So that we obtain the followmg equatlon characteristic.

2Z a,yz
my+y  (mp+y)?

_F,b4=

(6)

(7

(8)
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by—A 0 bye™**
0 b3—A b |=0
0 0 be -2
& 23 + (—=by — by — bse™*)A% + (bybs + bybse ™" + b3bse 7)1 — by bsbse " = 0
& A3 + (=by — b3)A% + bybgA — bse A A% + (b1 bs + b3bs)e 2 A — byb3bge ™ = 9)

The eigenvalues of equation (9) are real negative and complex number with negative real parts.
So with time delay, E stable if only if —b; — b3 — bs > 0, b; b3 + b1 bs + b3bs > 0 dan
—b,b3bs > 0. So that the eigenvalues of the Jacobian matrix (9) assumed by 4 = u + iw with
u=0and w > 0(1 = +iw). To see the stability changes in the equation model with the time
delay, the eigenvalue substituted into equation (9) so that the roots of the characteristic equation
obtained.

A3 + (=by — b3)A? + byb3A — bge ™A% + (b, bs + b3bs)e **A — bybzbse™** = 0

& (iw)® + (=b; — b3)(iw)? + by b3(iw) — bs(coswt — isinwt) (iw)? + (bybs +
bsbs)(coswt — isinwt) (iw) — b;b3bs(coswt — isinwt) = 0

& (byb3bscoswt — bybswsinwt + byw3b3bssinwt — byw? — w?bscoswt + w3) +

i(=byb3bssinwt — bybsw — bybswcoswt + by w3b3bscoswt + w?bgsinwt) = 0 (10)
Equation (10) is zero if imaginary and real part are equal to zero so that it obtained

(byb3bs — w?bs)coswt + (b;w3b3bs — bybsw)sinwt = byw? — w3 (11)
and (w?bs — byb3bg)sinwt + (byw3b3bs — bybsw)coswt = bybsw

(12)

Then eliminating the equations (11) and (12) against 7 by squaring each segment of the equation,
then obtained

by2b3?bs?cos?wt — 2byb3bsw?cos?wt + 2by2b3*bs* w3 coswTsinwt —

2b,%b3bs? coswtsinwt + w*bs? cos?wt — 2bs* by byw® coswTsinwt +

2w3bs%by coswTSINWT + by 2w8b3bs?sin?wt — 2b;*w*bsbs*sin?wt + by *bs* w?sinwt =

bs*w* — 2bsw® + w® (13)

sin?w*bs® — 2s5in®w?bs*by by + 2c0sw®bs* by bysinwt — 2w3bs?b, coswTsinwt +
1"b3"bs"sin“wt — 2w>b,"b3"bs“ coswtsinwt + 2wb, " b3bs” sinwtcoswt +

b,%b3*bs”sin? 2w3b;%b3°bs” j 2wb,*bsbs”si

by%b3*bs*wbcos?wt — 2by*bsbs*w*cos?wt + by *bs*w?cos?wt = by 2hs w? (14)

e equations an summed and grouped according to rank, then obtained polynomia

Th ions (13) and (14) d and d di k, then obtained pol ial

with the degree of six as follow.

(1= by°b3*bs?)w® — 2b3w® + (bs” + 2b,°b3bs® — bs*)w* + (2byb3bs® — by *bs” +

b,’bs*)w? — by *b3*bs® = 0 (15)

Furthermore, the value of critical delay time (z;) with the following stages.

The first step substitutes wy into equations (11) and (12) then eliminates the cosine function of

equations (11) and (12)

(wg®by?b3*bs® — 2by*bsbs” wi* + by °bs* wi? — 2wy 2bs*bybs + wi*bs® +

by*b3%bs?)sinwgt = by’ wi by bg — bywg>bsbs — w®bybsbs + wi*bybs — by*bs” wichs +

by wi3bsbs (16)

Next eliminating the sine function of equations (11) dan (12)

(2w ?bybsbs® — by*b3bs” — bs*wi* — by °bs*bs* wy® + 2wy *by *bsbs® —

b,*bs* wi?)coswyt = bzwy*bs — b3’ wk by bs — W bs + w3bibsbs — by *b3wi *bs +

b12b30)K2b5 (7)

From (15) and (16) obtained
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7 = itan‘l (_ b32wK5b1b5—ble3b3b5—a)K6b1b3b5+a)K4b1b5—b12b32wa5+b1wK3b3b5) (18)
k™= ok _ _ _b3wK4b5—_b32wKZblbs_—wK5b5+wK3b1b3_bs—b12b32w,(4b5+b12b3w,<2b5 )
Further differentiating equation (9) against z, then obtained

23422 + KA+ Le™ 2% + Me™ 1 + Ne ™ = 0 (19)
Wlth] = _b1 - b3,K = b1b3,L = _bs,M = b1b5 + b3b5,N = _b1b3b5

3 2 -t _ 2
0L O o Y1 SPRRTCHSE ) A CaFS

dA dt dA dt dAdt d(—-At) dAdt dA dt dA drt

dle™) (_jdrdd dDdA)] | -7 dAd d(e™) (_,drda
+M{A[d(—/1‘r)( Adldr-l_T daa dr)]+e dAdrt +N d(—/h’)( Ad)td‘r-l_

TMd_l)] “o

dA dt
& (322 + 2JA + K — (LA% + MA + N)te ™ + (2LA + M)e ™) Z—j = (LA% + MA + N)Je~*
diA _ (LA +MA+N)Ae™®
dr ~ 3A242JA+K—(LA2+MA+N)te~AT+(2LA+M)e—AT"
From equation (19), we have e =47 = X JXKL Then we get
’ LAZ+MA+N *
i _ —A3—JA2—KA
dr ~ 3A242JA+K—(LA2+MA+N)te~AT+(2LA+M)e—AT"

Re(2)
dt =T}
A(-A3-J2%-K2)

3A242JA+K—1(—A3—JA2—KA)+(2LA+M)e~2T
iwb(—(iwb)3—](iwb)Z—Kiwb)
3(iwp)2+2Jiwp+K—Tp(—(iwp)3—J(iwp)2—Kiwp)+(Liwp+M)(cos wpTp—i Sin wpTp)
—a)b4+iAwb3+Bwb2
—3wp2+2Jiwp+K—Tpiwp3—TpJwp2+TpKiwp+2Liwy c0S wpTp+2Lwp Sin wpTp+M cos wpTp—Mi sin wpTy

_ —wb4+wa2+]wb3i _ ,

= P24Q,2 .(Py— QD)

with

P, = =3wp? + K — 1] wp? + 2Lwy, sin wyTp + M cos wp,Ty,

Q1 = 2Jwy — Tpwp> + T Kwp, + 2Lwy, cos wpT, — M sin w, Ty,

_ 3wp—4Kwp*+2]%wp* +K2 wp?

N P12+Q,?

_ wp?(Bwp*+K*+(—4K+2]*)wp?)

N P12+Q;”

If w,, is the smallest positive root of (15) (except if it is a twin root then choose the next smallest
root), then

da _ wp?(3wp*+(-4K+2]?)wp?)
dtlog, P 24+Q,”

which shown that the transverse condition is satisfied, so Hopf bifurcation occur at T = t,.

>0

4.3 SIMULATION WITHOUT TIME DELAY

In this section, we give the model simulations at Ey, E;, E,, E3, E4, Es, Eg, E, Eg, Eqg dan Eq. TO
find the solution, we select the parameter values which are given as follows
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Figure 1. Solution fields and phase portrait

4.4 SIMULATION AT E WITH TIME DELAY

The numerical simulations of the predator-prey model with time-delay is done to show the
effect of time-delay on the stability of £ .

Table 2. Parameter values at £ with time delay

Parameter Value

aq 0,7
a; 1,1
my 1,5
m, 0,9
P1 1,9
P2 0,5
B 18
B, 18
F 0,1

From Table 2 obtained

(F_(m1+1))2(P1B1+PZB2)—4“1(P1+PZ—F) = 0,9941098824
(p1B1+p2B2)?

(p1B1tp22)?
—~(F —1+m; — A) = 0,7331092947.
y=y=—3(F—1+my —B) = 04736579482.
z =247 _ 5324074074

P1B1tpzﬂ2
So we get £(0,7331092947;0,4736579482;0,5324074074).

Then from the parameter values presented in Table 2, it is obtained

. ]
B = \/(F-(mz“'l))z(P1B1+P252)—4a2(P1+P2-F) — 0,4557775732
X =

by=1-2x——22 4 22X _F—_0,6783206068
mi+x  (mq+x)?
b, = —2% = —0,2298035781
mq+x
by=1-—2y——22 4 22 _p_—_03266487880

my+y  (my+y)?

b, = —2% = —0,3792965663

myty
bs = p1(1 — B12) — p1z2P1 + p,(1 — B22) — pozPf, —F = —2,3
(1= by*b5*bs?)w® — 2bsw® + (bs” + 2b,°b3bs® — bs*)w* + (2byb3bs® — by *bs” +
b,°bs*)w? — by *b3*bs® = 0
& 0,7402905241w° + 0,653297576w> — 6,773445615w* — 0,040696122w? —
0,2597094759 = 0. (30)
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Because w > 0, then chosenw; = 2,618150518. Then we can find the value of 7, by substituting
the values of by, by, b3, b, bs and wy, in the following equation.

b3%wg b bs—b; wk3b3bs—wk®hyb3bs+wk*bybs—b; 2 b3? wibs+by w3 bsbs
" bywi*bs—bs2wg2bybs—wk S bs+wi3bybsbs—by *bs2witbs+by 2bswZbs )

1 _
S 1, =—tan™?! (
Wi
_1( 2582193419
= Tk = -

2,618150518 315,6334948

< 1, = 0,9380335222.
In table 3 it can be seen that the delay timeout value at a distance of k = 0,1, 2, 3, ..., n.

Table 3. Time Delayatk = 0,1,2,3,...,n

k T

0 —0,2618946836
1 0,9380335222
2 2,137961728

n Ty

In this article, we only discuss the value of the delay time at, before and after the delay time at k =
1. In this simulation, three cases will be provided to show the existence of the Hopf bifurcation.

7T=075<
Tk |:|.'{,.-"'r

L

FREYZi |
o.Eat
L

QR{f} PREYZ{f} PREY 1{f}
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s
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Figure 2. Solution fields and phase portrait at £

5. CONCLUSION

From the above discussion, can be concluded that be based on the non-dimensional model, we
obtain the following mathematical model in a modified Leslie-Gower system with Holling type 1l
functional response with harvesting and time delay.

From that model, eleven equilibrium points are obtained, i.e. Ey, E;, E,, E3, E4, Es, Eg, E, Eg, Eg
and E;, with the assumptions there are the equilibrium points Ey, Es, Eg, E, Eg, Eq and E;q if p; +
p, >F,F—1+m;+A<0andF—1+4+m; +B <O0.

From the stability analysis, we obtain eight equilibrium points which can be stable in the certain
condition, i.e. the equilibrium points E,, Es, Eg, E stable if(A + a;)(—=m; + F — 1 + A)?(p. 1 +
p2B2) +4army(—p1 — p2 + F) < 0,a3(p1 + p2 = F) + ma(F — 1)(p1B1 + p22) >
0,a1(py +p2 — F) + my(F — 1)(p1B1 + p2B2) >0 and(B + my)(—2m; + F —1+my +
B)?(p1B1 + p2f82) + 4aymy(F — p, — py) < 0. Eg,Eq and E;q stable if (4 —my)(pif; +
p2B2)(my — F + 1+ A)? > daymy(—py — pp + F), (B —my)(p1 1 + p2B2) 2my — F + 1 —
my + B)? > daymy(—py — po + F),a1(py + pp — F) + Fmy(p1 By + paf82) > my(p1fy +
p2B2) anda; (py + p; — F) + Fmy(p1fy + p2f2) > my(p1By + p2B2)-
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Models with harvest often link population with economic problems. The effect of harvest level
on the results shows that catch quotas can cause oscillations, chaos and increase the risk of
exploitation.

In analyzing the existence of Hopf bifurcation, this model is divided into three cases where each
case experiences an increase in the value of time delay parameter in predator population (7). In the
case of T = 1, there is a change in the stability of interior point from a stable spiral to an unstable
spiral and a Limit Cycle appears. This phenomenon is a property of the Hopf bifurcation. By
selecting the appropriate bifurcation parameters, we investigated the local stability and the Hopf
bifurcation. Observations on the model simulation are carried out by varying the value of delay
time. When the Hopf bifurcation occurs, the graph on the solution plane shows a constant
oscillatory movement. If T < 1, the controlled system solution is in a state of balance. Then when
T > Ty, the system solution continues to fluctuate causing an unstable system condition.
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