

 Vol. 2, No.1, 17-30, Juli 2005

17

Quorum Based Conflict Resolution Algorithms

In Distributed Systems

Armin Lawi
†

Abstract
Mutual exclusion is one of the most fundamental issues in the study of distributed

systems. The problem arises when two or more processes are competing to use a mutual

exclusive resource concurrently, i.e., the resource can only be used by at most one process

at a time. Synchronizations adopting quorum systems are an important class of distributed

algorithms since they are gracefully and significantly tolerate process and communication

failures that may lead to network partitioning. Coterie based algorithm is a typical quorum

based algorithm for mutual exclusion: A process can use the resource only if it obtains

permissions from all processes in any quorum ofcoterie, and since each quorum intersects

with each other and each process only issues one permission, the mutual exclusion can be

guaranteed. Many quorum systems have been defined based on the relaxation of the

properties of coterie system. Each of them is designed to resolve its corresponding

problem, e.g., k-coterie based algorithm to resolve the k-mutual exclusion, local coterie for

the generalized mutual exclusion, (h, k)-arbiter for h-out of-k resource allocation problem,

etc. Therefore, design an algorithm for any distributed conflict resolution problem is only

meant to define a new quorum system which can be implemented to the corresponding

problem. Since most of distributed conflict resolution problems are designed based on the

relaxation of the safety property of mutual exclusion, understanding the way to relaxing

the safety property and its quorum system is important to study any kind of conflict

resolution problem in distributed systems.

Keywords:Coterie, distributed algorithm, conflictresolution, Mutual exclusion,

quorum system.

1. Introduction

Distributed systems are a computer system that consists of a collection of processes

communicated with each other by sending messages over a communication network. Such

systems are increasingly available be cause of decrease in prices of computer processors and

the high-bandwidth links to connect them. Distributed systems are used for many reasons: to

allow a large number of processes together to solve a problem (as the shared problem) to be

much faster than any single process can do alone, to allow the distribution of data in several

locations, to allow different processes to share resources such as printers, data items, disks or

files, or simply to enable users to transfer the shared data. The communication network in a

distributed system can be a local area network such as Ethernet, or a wide area network such

as the Internet, or even a small home network.

In many distributed systems, mutually exclusive access is often required for

accessing shared resource such as printers, data items, files, memory cells, network buses, etc.

When the resource can only be accessed in a mutually exclusive way, i.e., at most one process

can use the resource at a time, then it is important to synchronize the accession of processes to

the resource so their operations are consistent as a result of concurrent executions and the

resource are not failed. This can be observed by the following simple example in most of the

†
Lecturer at Mathematics Department, Faculty of Mathematics & Natural Sciences, Hasanuddin

University

18

Armin Lawi

18

distributed replicated database systems. Multiple identical copies of a data item are replicated

and stored at some distinct places to facilitate system operations so as to increase system

reliability and performance. Clearly, processes may continue to access a data item even when

some of the copies are unavailable due to failures and is more likely to find the data it needs

nearby. Assume that the initial value of a variable in a replicated data item x is 0 and that

there are two processes p0 and p1 such that each of them increments x by the following

statement in some high-level programming language:

 ;1:  xx

The programmer will naturally assume that the final value of x is 2 after both the processes

have executed. However, this may not happen if the programmer does not ensure that

1:  xx is executed atomically in the sense that the effect of the operations must appear

indivisible to the user. The execution of 0p and 1p may get interleaved as follows: At first,

process 0p reads the initial value 0 of the variable x and increments x by 1. Then, process 1p

reads the incremented value 1 of x and increments it by 1. Process 0p updates the variable

value 1: x and 2p updates it with 2, and thus they result inconsistent values of the variable

to the replicated data in the system.

To avoid this problem, the statement 1:  xx should be executed atomically. A

part of the code that need to be executed atomically is called critical section (CS). The

problem of ensuring that CS is executed atomically is called the mutual exclusion problem

(mutex).

There are many conflict resolution problems have been studied by relaxing the

safety requirements of mutex, such as k-mutex, generalized mutex, writer-readers problem, h-

out of-k resource allocation, group mutex, etc. In these problems, the distributed system is

viewed

 Process 0p Process 1p

1: read x;

 2: 1:  xx

3: read x;

 4: write x; 1:  xx

 5: write x;

 Fig. 1. An Interleaved Operations of Write and Read.

as a set of processes that shares a non-empty set of resources. In fact, if the set of shared

resources is explicitly used in specifying the safety requirements for a conflict resolution

problem, a more general problem which covers almost all previous distributed conflict

resolution problems can be defined easily [1]; i.e., to define safety properties in accessing

some distinct CSs.

Synchronizations adopting quorum systems are the well-known algorithms to any

distributed conflict resolution problem which is generalized from mutex. The class of these

solutions gives a significant interest in fault-tolerant of process and communication failures

that may lead to network partitioning. Coterie based algorithm is a typical quorum system for

mutex: A process can use the resource only if it obtains permissions from all processes in any

quorum of a coterie, and since each quorum intersects with each other and each process only

issues one permission, the mutex can be guaranteed. Several quorum systems have also been

defined based on the relaxation of the properties of coterie system. Each of them is defined to

resolve its corresponding problem, e.g., k-coterie based algorithm to resolve the k-mutex,

19

Armin Lawi

19

local coterie for the generalized mutex, bicoterie for readers/writer problem, (h; k)-arbiter

coterie for h-out of-k resource allocation problem, etc. Therefore, design an algorithm for any

distributed conflict resolution problem is only meant to define a new quorum system which

can be implemented to the corresponding systems.

This article discusses the quorum based mutex algorithm using coterie system and

presents some simple coterie constructions. The evaluation of the algorithm performance

complexities in the sense of the number of messages, availability and load for each

construction is also given. We will also show that any kind of distributed conflict resolution

problems which is defined by relaxing the safety property of mutex can be resolved using

some corresponding quorum systems which are designed by extending the properties of the

coterie.

2. Mutual Exclusion: The First Conflict Resolution Problem

2.1 Specification of the Problem

Consider a distributed system consists of a set of fixed number of processes that

shares an indivisible resource. The resource thus just consider as a CS henceforth, e.g., the

operations performed on the variable of a replicated data introduced Section 1. The mutex

algorithm is the problem to synchronize and coordinate access to the CS such that the

following three properties are satisfied at any time:

 Safety mutex
1
: At most one process has permission to executing the CS.

 Liveness: All requests for the CS will be grantedeventually.

 Fairness: The CS is granted by different requestin the order they are made.

The abstraction of this problem can be considered as follows. It is assumed that each

process is executing a sequence of instructions that alternate accessed repeatedly. The

instructions are divided into four continuous sections of code:

1. A possibly nonterminating non-critical section (NCS), i.e., the part of code which no

request to access the resource,

2. Atrying section, i.e., the protocol which is used to acquire an access right to execute

the resource,

3. A terminating CS, i.e., the part of code when the process has the access right to

executing the resource, and

4. An exit section, i.e., the protocol to return the access right back to the system.

A process starts by executing the NCS code. At some point the process might need

to execute some code in its CS. Thus, the process should firstly execute a trying protocol to

get an access right so as guaranteeing that while it is executing its CS, no other process is

allowed to execute its CS. The process can enter its CS whenever in the possession of the

access right. When the process leaves its CS, it executes exit protocol and thus returns back to

the NCS. The structure of a mutex solution may look as depicted in Figure 2. It can easily to

observe that the mutual exclusion is just the problem to design a safety synchronization in the

1
We use the term of safety mutexto distinguish the other safety properties of the generalization

problems.

20

Armin Lawi

20

form of trying and exit protocols to be executed, respectively, immediately before and after

the CS in such a way that the three properties of mutex are guaranteed.

do loop forever

 non-critical section;

 trying section;

 critical section;

 exit section;

od;

Fig. 2. An Abstraction of AMutex Solution.

2.2 Quorum-Based Mutex Algorithm

In this subsection, we recall the definition a set system of coterie as the building

block of the quorum based algorithm for distributed mutual exclusion problem. Let U be the

universe set of nodes (or processes) in the system. The term of node may refer to a computer

in a network or a copy of some data in a replicated data. Henceforth, we use the terms of node

and process interchangeably.

Definition 1.A nonempty collection of sets)2(uC  is a coterie under U iff C satisfies

1. Intersection: CQQQQ jiji  ,, .

2. Minimality: CQQQQ jiji  ,, .

3. Non-empty: UQUQandQ  ,, .

The elements Q in a coterie are calledquorums.

For example, the following quorum set  }4,3{},4,2{},3,2{1 C is a coterie under

}4,3,2,1{1 U . It should be noted that not all nodes must appear in a coterie; in particular,

node 1 does not appear in either quorum of 1C .

Work of the quorum based algorithm (using coterie) for the mutual exclusion can be

outlined as follows. A node u wishing to perform an operation (or to access the shared

resource) firstly selects a quorum CQ , and sends request to all members in Q. If u can

gather permissions (or acknowledgements) from all members of Q, then it can perform the

operation. Upon finishing the operation, it returns the permission back all members in the

selected quorum. Since each member of quorum has only one permission to issue and by the

intersection property of the coterie, safety requirement of the mutex can be guaranteed. The

Lamport's logical timestamp given in [2] is implemented to handle dead locks and live-locks

by requiring low-priority nodes to yield permissions to high-priority nodes. The smaller the

timestamp of a node's request, the higher the priority of the request. Thus, the liveness and

fairness requirements are guaranteed.

Domination of Coterie

In [3], the concept of domination of coteries has been introduced.

Definition2.Let C and D, DC  , be two coteries under a universe set of nodes U. Coterie D

dominates C iff DQ  '
such that CQQQ  ,'

.

A coterie C (under U) is dominated iff there exists another coterie over U which dominates

C. If there is no such a coterie, then C is nondominated (or, C is an ND-coterie).

21

Armin Lawi

21

For example, let    }3,2}{3,1{},2,1{}3,2{},2,1{ 32  CandC be coteries

over  3,2,12 U . The coterie 2C is dominated by 3C . The coterie 2C is alsodominated by

 }2{ . The coterie 3C is an ND-coterie since we cannot find any coterie dominated it.

Observe that if a system using a dominated coterie is operational in the occurrence

of failures then a system using an ND-coterie is also operational, but the opposite is not

always true. Hence, reliability of an ND-coterie is better then the dominated one. Another

advantage of ND-coteries is the lower cost of message complexity (since every quorums in an

ND-coterie are subset of the quorums in the dominated coterie).

Helpful theorems have been presented in [3] to check whether a coterie is dominated

or ND-coterie.

Theorem 1.Let C be a coterie. C is a dominated coterie if f there exists a set UX  satisfies

1. CQQX  , , and

2. CQQX  , .

Quorum Constructions

Perhaps the two most obvious coteries are the singleton and the set of majorities. Let

n is the size of theuniverse set of nodes.

Singleton: The set system  }{vS  for some Uv is the singleton quorum system.

Majorities: Quorums in a majority coterie M are every sets Q with the size of 






 

2

1n
.

Grid: Suppose that
2kn  for some integer k. Arrange nodes into a nn  grid, as shown

in Figure 3. A quorum in the Grid G is the union of all nodes in one full row and column.

Fig. 3: A 3 x 3 Grid

Tree: Suppose that nodes are arranged into a logical complete k-ary tree T with depth d, i.e.,


 di

ik
0

for some integer kand ...,1,0d , as depicted in Figure 4. A quorum in

the Tree T consists of the root, a majority of its children, and a majority oftheir children, and

so on.

22

Armin Lawi

22

Fig. 4: A Complete 3-ary tree T Depth 2

There have been many other algorithms using coteriehas been proposed. In [4], he proposed

an algorithmusing coterie constructed from finite projective planes.The size of quorums of the

coterie is approximately n .He showed that coterie based on finite projective planesare the

optimal coteries in the sense that each nodehas equal amount of responsibility to the mutex

control. Thus, each node requires)(nO messages permutex invocation. Kumar proposed a

hierarchical quorum consensus and coterie with multilevel hierarchieswhose quorum size is

63.0n [5]. Thus, the size of quorums of a coterie varies from log n to 






 

2

1n
. In [6],

theyinvestigated properties of coteries from the view pointof boolean functions and showed a

characterization ofND-coteries.

Measures

The communication cost associated with obtainingmutex using the quorum

approach is directly proportional to the quorum size. Other several measures ofquality have

also been identified to address the question of which quorum system works best for a given

setof nodes; among these, we elaborate on availability andload.

Availability: A probability that at least one node canbe accessed by the originator operation in

the occurrence of node failures. We evaluate the availability of quorumsystems in this article

under the assumptions that thereliability of node v, i.e., the probability of node v beingin

operation, is the same value  1,0p for all Uv .

Let   UU

c QQf 2,1,02:)( , is a characteristic function of a quorum system C

such that 1)(Qf c if there exists a quorum CQ and 0 otherwise. Theavailability of

quorum system C, A(C), can be evaluatedusing the following formula

Qn

Q

Q

c ppQfCA
U





 )1.().()(
2

Thus, we have the following results for the availability of Singleton, Majority and

Grid coteries, respectively

,)1(1)(npSA 

iQniQ

Qni

pp
iQ

n
MA




















 )1(..)(

0

    n
nn

n
n pppGA)1(1)1(1()( ,

and for the Tree T, let
2

1


k
s , hence






 











1

0

1))(1(.)(..)1()(
s

i

is

d

is

d TATA
is

k
ppTA ,

pTA 
0

)(

Load: The load of a quorum system is introduced forevaluating load sharing ability. A

strategy is a list ofprobability that represents the frequencies of quorumsbeing selected.

23

Armin Lawi

23

Definition 3.  mQQCLet ...,,1 be a quorum system over U. If  mp 1,0 is a probability

distributionover the quorums  


m

i iii peiCQ
1

1.,., , then p is a strategy for C.

The load on a node u is a strategy pof picking quorums induces the frequency of accessing

node u, Uu .The system load on a quorum system C, L(C), is theload on the busiest node

induced by the best possiblestrategy.

Definition 4.Let p be a strategy for a quorum system C over the universe set of nodes U. The

load induced by p on node u is    Uupul jQup j
,)(. The load induced by a p on a

quorum system C is

)()(max ulCL p

Uu

p



 .

The system load on a quorum system C is

  )()(min CLCL p
p

 ,

where the minimum is taken over all strategies p.

Naor and Wool [7] gives an helpful results to achieved he optimal load for a q-uniform

quorum system.

Theorem 2.Let C be a q-uniform quorum system. Let p be a strategy and 0M . Then, the

optimal systemload over quorum system C is nqMCL /)( .

By Theorem 2, we have the following results for system load on the quorum systems of

Singleton, Majority,Grid and Tree, respectively.

1)(SL ,
2

1
)(ML ,

n

n
DL

12
)(


 and

1

)1)(1(

2

1
)(

1 




dk

kd
TL .

3. Conflict Resolution Problems and Their Quorum Systems

In this section, we discuss some conflict resolution problems in the distributed

systems. We will show that the problems can easily be defined based on the relaxation of the

safety property of mutex and their quorum systems can also be designed by extending the

properties of coterie.

3.1.k-Mutex and k-Coteries

A natural generalization of mutex problem is the k-mutex. The problem is defined by

relaxing the safetyproperty of mutex (without any change to the otherproperties) as follows.

Safety k-mutex: At most k nodes has permission to executing the CS simultaneously at a time.

In a distributed environment, the k-mutex problemarises in several interesting applications.

For example,it could be used to monitor the number of nodes in adistributed system that are

allowed to perform a certain action, such as issuing broadcast messages. In such a case, the

system may restrict the number of broadcasting nodes so as to control level of congestion.

24

Armin Lawi

24

Another application in the context of replicated databasesis the bounded ignorance problem

given in [8], i.e., whentransactions may specify that they do not need to beaware of the k most

recent updates to the database.Here also, instead of the traditional database systemthat uses

distributed mutex to ensure one update tothe replicated data at any time, several updates may

bepermitted simultaneously.

In k-mutex, up to k nodes are allowed to access theresource simultaneously. Thus, if

we consider k + 1quorums that grant permission to execute the CS, thenthere must exist at

least two among these k+1 quorumswith a nonempty intersection. We therefore need to

extend the intersection property of the coterie. Note thatquorums constructed to ensure the

mutex requirementsalso ensure this property. Hence, inorder to eliminatetrivial solution to the

k-mutex problem, we add an additional restriction of non-intersection property [9, 10].

Definition 5. (k-coteries) A nonempty set
UC 2 isa k-coterieunder Piff C satisfies

1. Intersection:For any (k + 1)-set   CQQK k  11 ,...., , there exists a pair

   KQQK j  ,1 such that 11,1  kjiQQK j  .

2. Non-intersection: For any h-set

  khCjiQQCQQH jih  ,,,...,1  , thereexists CQ such that

HQQQ ii  , .

3. Minimality: jiCQQQQ jiji  ,,, .

The second property above is desirable for all values of k. When k = 1, i.e., in the case of

mutex,it is satisfied vacuously. Note that a 1-coterie is justcalled a coterie. As an example, the

quorum system  }4,3{},4,2{},3,2{},4,1{},3,1{},2,1{C is a 2-coterie under

 4,3,2,1U .

The dominance of k-coteries can also be defined similarly as in the Definition 2. Let

C and D be two k-coteries, and DC  .

Definition 6. C dominates D iff for all DQ '
thereexists

'.. QQtsCQ  . A k-coterie C

is a non-dominatedk-coterieiffthere is no k-coterie whichdominates C.

An helpful theorem can also be defined by extendingthe conditions stated in the Theorem 1 as

follows.

Theorem 3. Let C be a k-coterie. C is a dominatedk-coterie if, and only if, there exists a set

UX  suchthat the following three conditions are satisfied.

1. CQallforQX  , .

2. For any k-set   CQQK k  ,...1 , there exists KQ  such that  XQ .

3. Thereexistsh-set   ,,,...1 CjijQiQChQQH   ..,1 tskh 

., HiQiQX  

3.2.Bicoteries and wr-Coteries

The example of conflict resolution problem in thereplicated database systems (which

have been introduced in the Section 1) was actually one of the generalization problems of

mutex. The execution to the CS,i.e., the operations performed on the same variable ofa same

replicated data, consists of two operations with different conditions. Henceforth, this problem

25

Armin Lawi

25

is calledwriter/readers problem or wr-problem in shortly. Theproblem might be considered

into two safety propertiesas follows.

Safety write: At most one node has permission to executing its write operation into the CS.

Safety read: If some nodes are trying to execute theirread operations while no node is

executing thewrite operation to the same CS, then they are allowed to executing the CS

simultaneously.

Quorum based algorithm for mutual exclusion can beused for managing wr-problem

by having read and writeoperations share the same set of quorums in a coterie.Each copy of a

data item is labeled with a version number which is initially set to zero and is incremented

foreach write operation that has access to it. A read/writeoperation can be proceed only if it

obtains permissionsfrom all copies of any quorum. A read operation returnsthe largest version

number in the quorum, and a writeoperation updates all of the copies in the quorum.

Theintersection property guarantees that at most one operation can be proceed at any time,

and at least one copyof a data item has a largest version number in any quorum. However, this

mechanism would cause excessiveoperation cost when read operations dominate, which

iscommon in many database applications. Thus we needanother type of quorum systems with

a more flexibilitycontrolling both operations.

Definition 7. An ordered pair RWB , , where W and R are sets of subsets of U, is a

bicoterie under U if the following two properties hold:

1. wr-intersect: RRWWRW  ,, .

2. Minimality: WWWWW  2121 ,, and RRRRR  2121 ,, .

If W is a coterie in a bicoterie RWB , underU (or, bicoterieB with an additional ww-

intersectionproperty), then B is called a writer-readers coterie (orwr-coterie) under U. The

set of subsets W (resp. R)of B is defined for write (resp. read) operations in thewr-

problem.The dominance of bicoteries or wr-coteries can be define as follows.

Definition 8. Let 111 , BWB  and 222 , BWB  be bicoteries over U. Then, 1B is

dominated by 2B iff

1. 2211 ,, RWRW  .

2. QSWSWQ  ,, 21 .

3. QSRSRQ  ,, 21 .

A bicoterie (wr-coterie) B is said to be non-dominated iff no bicoterie (wr-coterie) dominates

B. For example, the following RWB , , where  },4,2,1{},3,2,1{W }4,3,2{},4,3,1{

and  }4,3{},4,2{},3,2{},4,1{},3,1{},2,1{R is a wr- coterie under the set of nodes

 4,3,2,1U .

3.3.Group Mutex andGroupk- Mutex

The group mutex problem posed in [11] generalizes the classical mutex and wr-

problems. In this problemn nodes repeatedly access mdifferent resources. Nodesthat have

requested to execute the same resource maydo it concurrently. However, nodes that have

requested to attend different resources may not execute their resources at the same time. Thus,

the group mutex mayalso be defined into two safety properties as follows.

26

Armin Lawi

26

Safety group-mutex: At most one resource is allowed to being access by some nodes

simultaneously.

Safety concurrent-entering: If some nodes are trying to execute the same resource while no

node isexecuting a different resource, then they are allowed to executing their CS

concurrently.

In the group mutex, [11] have proposed an m-groupquorum system for quorum

based group mutex algorithm. However, construction such a good quorum system (i.e., an ND

m-group quorum system) arises amore difficult problem. Moreover, since the problemonly

relaxing the safety property of mutex as in thewr-problem, the coterie based algorithm for

mutex candirectly be adopting to resolving this problem; i.e., theconflicting nodes simply use

a coterie to manage theirmutual exclusive accessions to the requested resources.

Definition 9. An m-group quorum system),....,(1 mCCG  over a set of nodes U consists of

m sets,where each
U

iC 2 is a set of subsets U satisfying thefollowing two conditions:

1. For all ii CQ  and for all  jijj QQthenjimjiCQ ,,,1, .

2. For all 21221 ,,1,, QQthenQQandmiCQQ ii  .

An example of m-group quorum system is given in[11] using the sacrificial quorum system,

i.e., a mappingof nodes from the surface of cubic space. However, theresults of this method

always give dominated m-groupquorum system. As an example, the following

 4321 ,,, CCCCG  is a 4-quorum system under the set  9...,,2,1U , where

 }9,8,7{},6,5,4{},3,2,1{1 C ,

 }7,5,3{},9,4,2{},8,6,1{2 C ,

 }8,4,3{},7,6,2{},9,5,1{3 C , and

 }9,6,3{},8,5,2{},7,4,1{4 C .

The group k-mutex, i.e., a combined problem of k-mutex and group mutex is considered in

[12, 13] for aparallel shared-memory environment. The problem just relaxing the safety

group-mutex property to allow forat most k resources might be accessed by some

nodessimultaneously.

Safety group k-mutex: At most k resources are allowed to being accessed by some nodes

simultaneously.

The k-coterie based algorithm for k-mutex is directlyadopted to resolve this problem. The

only different isthat when a node u wish to use the resource vr , then uchooses a quorum in the

coterie vC , and the rest worksthe same as for k-coterie. The quorum based algorithmfor m

resources can be presented as in Figure 5.

3.4.The (m, h, k)-Resource Allocation Problem

Recently, Lawi et al. [1, 14, 15] and Joung [16] independently introduced and

defined (m, h, k)-resource allocation as a general conflict resolution problem which relaxes

the safety requirement of the k-mutex and GME problems. The problem models and designs a

conflict resolution in a distributed system consisting of n nodes which share m resources. The

system is said to be (m, h, k)-resource allocated if the following safety properties are hold.

Group h-mutex: At most h (out of m) resources can be used by some nodes simultaneously at

a time.

27

Armin Lawi

27

k-concurrent entering: At most k (out of n) concurrent nodes can use the same resource at a

time.

This problem can cover all the conflict resolution problems mentioned before. If the

system only consisting of a single shared resource (m = 1), the problem corresponds to the

mutex when k = 1, and it corresponds to the k-mutex when k is constantly determined. If m >

1, the problem corresponds to the GME when h = 1 and k is undetermined, it corresponds to

the generalized mutex given in [17], when k = 1 and h is undetermined, and it corresponds to

the group k-exclusion [12, 18], when h = 1 and k is constantly determined. The problem also

covers some generalized problems that have not yet been studied such as when 1k and h is

constantly determined, and when k is constantly determined and h is undetermined (and

conversely). Moreover, the problem also corresponds to some new generalizations of the wr-

problem [19, 20], when its requirements are applied after relaxing or leaving strained.

A simple approach to (m, h, k)-resource allocation can use an l-coterie based mutex

algorithm. The two requirements of the group h-exclusion and the k-concurrent entering are

independently solved using the h- and k-mutex algorithms respectively, and a node can use a

critical resource only if it gets the access right from both of the h- and k-coterie based

algorithms. This algorithm is a natural one, however, the number of messages required per

entry to the resource will be doubled to the original algorithm. Therefore, it is inefficient in

terms of the message complexity. Intuitively, the number of messages can be reduced if we

can find a new quorum system which combines the h- and k-coteries into a single quorum

system.

28

Armin Lawi

28

Fig. 5. The (m, h, k)-coterie Based Algorithm.

Let C and
"C be two k-coteries under U and

'P , respectively. We say that they are

disjoint if
''' ,, CQCQQQ   . Clearly they are disjoint if U and

'P are

disjoint.

The new quorum system, (m,h, k)-coterie, is defined as follows.

29

Armin Lawi

29

Definition 10.((m, h, k)-coteries) A collection ofsets  mCCB ,....,1 , where iC is a k-

coterie underU, BCi  is an(m, h, k)-coterieunder U iff thefollowing conditions hold:

1. Disjoint: For any)(kl  mutually disjoint elements BCC l ...,,1 , there is another

elements BC  such that C and
'

iC are disjoint for all li 1 .

2. Bicoteries: For any (h+1)-set  BCC hi 

'

1

' ,..., , there exists a pair  '' , ji CC form

bicoteries, 11  hji .

For example, the quorum system  43211 ,,, CCCCB  is a (4,2,2)-coterie on a set

 16....,,2,1U where

 }8,6,4,3{},7,5,2,1{1 C ,

 }12,10,8,7{},11,9,6,5{2 C ,

 }16,14,12,11{},15,13,10,9{3 C , and

 }16,15,4,2{},14,13,3,1{2 C .

4. Conclusions

In this article, we have discussed some quorum based distributed conflict resolution

algorithms in distributedsystems. We discuss the coterie based mutex algorithmfirstly and

present some simple constructions of coteriesystem. The evaluation of the algorithm

performancecomplexities in the sense of the number of messages,availability and load for

each construction have alsobeen given to measure which quorum system works bestfor a

given set on nodes.

We have also showed the relaxation of the safety property of mutex in defining other

conflict resolution problems in distributed systems, and some of their corresponding quorum

systems which are designed by extending the properties of the coterie have also

beenpresented. We may conclude that almost all distributedconflict resolution problem can be

defined based on therelaxation of the safety mutex property with an additional concurrent

entering property. Some interesting future works for the generalization problems areto

explore the performance measurements of the extended quorum systems and to investigate

their properties which may differ from their superior coterie system.

References
[1] Lawi, A., Yamashita, M., 2003, “A quorum based m-group (h,k)-exclusion algorithm”,

Proc. International Symposium on Information Science andElectrical Engineering

(ISEE2003), pp : 405-408.

[2] Lamport, L., 1978, “Time, clocks and the ordering ofevents in a distributed system”,

Communicationsof The ACM 21, pp : 558-565.

[3] Garcia, H., Barbara, D., 1985, “How to assignvotes in a distributed system”, Journal of

The ACM32, pp : 841-860.

[4] Maekawa, M., 1985, “A Nalgorithm for mutual exclusion in decentralized systems”,

ACM Transactionon Computer Systems 3, pp : 145-159.

[5] Kumar, A., 1991, “Hierarchical quorum consensus: anew algorithm for managing

replicated data”, IEEETransactions on Computers 4, pp : 996-1004.

30

Armin Lawi

30

[6] Ibaraki, T., Kameda, T., 1993, “A theory of coteries:Mutual exclusion in distributed

systems”, IEEETransaction on Parallel and Distributed Computing 4, pp : 779-794.

[7] Naor, M., Wieder, U., 2003, “Scalable and dynamic quorum systems”, Proc. Principles

of DistributedComputing (PODC), pp : 114-122.

[8] Khrisnakumar, N., Bernstein, A., 1991, “Bounded ignorance in replicated systems”,

Proc. 10th ACMSymp. Principles of Database Systems, pp : 63-74.

[9] Fujita, S., Yamashita, M., Ae, T., 1991, “Distributedk-mutual exclusion problem and k-

coteries”, Proc. 2nd International Symposium on Algorithms(LNCS 557), pp:22-31.

[10] Huang, S., Jiang, J., Kuo, Y., 1993, “k-coteries for fault-tolerant k entries to a critical

section”, Proc.13th International Conf.Dist. ComputingSystems (DISC), pp:74-81.

[11] Joung, Y.J., 2003, “Quorum-based algorithms for groupmutual exclusion”, IEEE

Transaction on Paralleland Distributed Systems 14, pp : 463-476.

[12] Vidyasankar, V., 2003, “A simple group mutual-exclusion algorithm”, Information

Processing Letters 85, pp : 79-85.

[13] Takamura, M., Altman, T., Igarashi, Y., 2004, “Speedupof vidyasankar's algorithm for

the group k-exclusion problem”, Information Processing Letters91, pp : 85-91.

[14] Lawi, A., Oda, K., Yoshida, T., 2006, “A quorum based(m,h,k)-resource allocation

algorithm”, Proc.International Conference on Parallel and Distributed Application and

Techniques (PDPTA), pp : 399-405.

[15] Lawi, A., Oda, K., Yoshida, T., 2006, “Quorumbased distributed conflict resolution

algorithm forbounded capacity resources”, Parallel & Distributed Processing&

Applications (ISPA-06):Lecture Notes in Comp. Science (LNCS) 4331,pp : 135-144.

[16] Joung, Y.J, 2004, “On quorum systems for group resources with bounded capacity”,

Proc.18th International Conf. on Distributed Computing(LNCS 3274), pp : 86-101.

[17] Kakugawa, H., Yamashita, M., 1996, “Local coteries anda distributed resource

allocation algorithm”,Trans. Information Processing Society Japan37, pp:1487-1498.

[18] Lawi, A., Oda, K., Yoshida, T., 2005, “A quorum basedgroup k-mutual exclusion

algorithm for open distributed environments”, Parallel and DistributedProcessing and

Applications: Lecture Notes inComputer Science (LNCS) 3758, pp : 119-125.

[19] Manabe, Y., Tajima, N., 2004, “ (h,k)-arbiters for h-out-of-k-mutual exclusion

problem”, Theoretical Computer Science 310, pp : 379-392.

[20] Datta, A.K., Hadid, R., Villain, V., 2003, “A new self-stabilizing k-out-of-exclusion

algorithm on rings”, Self-Stabilizing Systems (LNCS 2704), pp : 113-128.

[21] Agrawal, D., Abbadi, A.E., 1991, “An efficient and fault tolerant algorithm for

distributed mutual exclusion”, ACM Trans. Computer Systems 9, pp : 1-20.

[22] Bernstein, P., Goodman, N., 1983, “The failure and recovery problem for replicated

databases”, Proc.Principles of Distributed Computing (PODC), pp : 114-122.

[23] Carvalho, O., Roucairol, G., 1983, “On mutual exclusion in computer networks”,

Communication of TheACM 26, pp : 146-147.

[24] Dijkstra, E., 1965, “Solution of a problem in concurrent programming control”,

Communications of TheACM 8, pp : 569.

