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Abstract 
In this paper we develop the logistic population model by considering a time delay and 
constant effort of harvesting. The time delay makes the model more accurate and 
harvesting is incorporated since the population is beneficial or the population is under 
control. We study the sufficient conditions to assure the existence of the population. 
Perturbation method is used to linearize the model and the stability of the equilibrium 
point is determined by inspection of the eigenvalues. The results show that there exists a 
globally asymptotically stable equilibrium point for the model with and without time 
delay and harvesting. The time delay can induce instability and a Hopf bifurcation can 
occur. The stable equilibrium point for the model with harvesting is then related to profit 
function problem. We found that there exists a critical value of the effort that maximizes 
the profit and the equilibrium point also remains stable. This means that the population 
can exist and give maximum profit although it is harvested with constant effort of 
harvesting. 
 
Keywords: Effort of Harvesting, Eigenvalues, Logistic Model, Profit , Switch Stability,  

Time Delay. 
 

 

1. Introduction 

The logistic model can be used to model the growth rate of the population, such 
as human population, animal, fish in the lake, and trees in the forest. The logistic model 
was used by Schaefer in Agnew (1979) for analysis of Pacific halibut and yellow fin tuna 
fisheries. He also said that the parameters of the logistic model may be estimated from the 
known catch versus catch per unit effort data. Haberman (1998) said that in laboratory 
experiments, for examples, on the growth of yeast in a culture and on the growth of 
paramecium, indicated good quantitative agreement to logistic curve. Golec and 
Sathananthan (2003) have analyzed a stochastic logistic population model for a single 
species and the result showed that the equilibrium point of the model is asymptotically 
stable.  

Fan and Wang (1998) have examined the exploitation of single population 
modeled by time dependent logistic equation with periodic coefficient. They showed that 
the time dependent periodic logistic equation has a unique positive periodic solution, 
which is globally asymptotically stable. They choose the maximum annual sustainable 
yield as the management objective and investigate the optimal harvesting policies for 
constant harvesting and periodic harvesting.  
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Time delay or time lag is important to the real world modeling because decision 
is often made based on historical information. It is important to consider in population 
model since the growth rate of population do not only depend on the population size at 
time t but also depends on the population size in the past )( τ−t , where  is a time delay, 
Haberman (1998). For example, the current rate of change of human population depends 
upon the population size at 

τ

9=τ  months ago. A certain number of eggs of a fish need a 
certain time (time delay) to hatch and grow to become adult fish. 

The logistic model with and without time delay has been studied by many 
authors. Nicholson in Barnes and Fulford (2002) has conducted single species experiments 
on the Australian sheep-blowfly population and the results were well approximated by 
logistic model with time delay. The logistic delay model with a linear delay harvesting 
term has also been studied by Berezansky et al., (2004). The existence of the positive 
solution is considered and sufficient conditions for the existence of the solution are 
presented. In Rasmussen et al., (2003), the generalized logistic equations where the 
carrying capacity effect is modeled by a distributed delay effect. If the distributed delay is 
sufficiently large, oscillations can be introduced as long-term attractors in deference to 
steady states. 

In this paper we develop the logistic population model by considering a time 
delay, constant effort of harvesting, and a time delay in harvesting term. The time delay is 
considered in the model under assumption that the growth rate of the population does not 
depend on the current size of population but also on the past size. Harvesting is involved 
under consideration that the population is valuable and profitable stock. We will analyze 
the possible influence of time delay on the stability of the equilibrium point of the model 
and determine the critical value of the effort that maximizes the profit function. 

 

2. Logistic Model  

    The logistic model, sometimes called the Verhulst model or logistic growth curve, 
is a model of population growth. The model is continuous in time which is described by 
the differential equation 

⎟
⎠
⎞

⎜
⎝
⎛ −=

K

x
rx

dt

dx
1 . 

The constant r, assumed positive, is called the intrinsic growth rate, since the proportional 
growth rate for small x approximately equals r. The positive constant K is usually referred 
to as the environmental carrying capacity, i.e., the maximum sustainable population. The 
population level K is also sometimes called the saturation level, since for large populations 
there are more deaths than births. The solution of the logistic model together with initial 
condition  is  ( ) 00 0 >= xx

                              ( ) ( ) rtexKx

Kx
tx −−+
=

00

0 .  

The logistic model has two equilibrium points, i.e., 0=x  and Kx = . The first equilibrium 
point is not stable while the second equilibrium point is globally asymptotically stable. 
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3. Delay Logistic Model with Constant Effort of Harvesting 

 The single delay logistic model is 

( Ktxtxr
dt

tdx
/)(1)(

)(
τ−−= ) ,                                                                            (1) 

where  is a time delay and assume to be positive. A positive equilibrium point of the 
model is K. It has been suggested by Hutchinson in Gopalsamy (1992) that model (1) can 
be used to model the dynamic of single species population growing towards a saturation 
level K with a constant intrinsic growth rate r. The term 

τ

( )Ktx /)(1 τ−−  denotes a density 
dependent feedback mechanism which takes τ  units of time to respond to changes in the 
population density represented in model (1) by x. The delay logistic model (1) is well 
known as delay Verhulst equation or Hutchinson equation. The Hutchinson equation was 
studied in many papers and text-books, see Hale (1977) and Kuang (1993). 
 The single delayed logistic model with constant effort of harvesting is 

( ) )(/)(1)(
)(

txEKtxtxr
dt

tdx
−τ−−= ,                                                                  

(2) 
where E is an effort of harvesting which is assumed to be a positive constant. In this model 
the rate of harvesting is proportional to the size of population at an instant time t. The 
equilibrium point for this model is ( ) ∗=−= KrErKtx /)( . In order to get a nonnegative 
equilibrium point, we assume that Er > . 
 For analyzing the stability of the equilibrium point, we linearize the model around 
the equilibrium point. Let ∗−= Ktxtu )()(  and substitute it into the model (2) to get 

( ) ( ) ( ∗∗∗ +τ−+−+−= KtuKtu
K

r
KtuEr

dt

tdu
)()()()(

)( ) . 

Hence we have  

)()(
)(

τ−−−= tuEr
dt

tdu .                                                                                   

(3) 
The characteristic equation of model (3) is  

( ) 0=−+λ λτ−eEr .                                                                                          (4) 
 
Lemma 1:  

Let and . The roots of the characteristic equation (4) are negative if 
. 

0>> Er 0>τ
{ } rEer <<τ− −1)(,0max

Proof: 
 Let . We note from (4) that λτ−−+λ=λ eErF )()( λ  cannot be real nonnegative. We 
shall show that the roots of )(λF  are not complex numbers. We have 

 and λτ−τ−τ−=λ eErF )(1)(' )ln(
1

τ−τ
τ

=λ∗ Er  is a critical point for . Further, we 

have  which is positive. This means that the value of the critical 

point gives minimum value for 

)(λF

λτ−τ−=λ eErF 2'' )()(

)(λF . Now, we have ( )1)ln(
1

)( +τ−τ
τ

=λ∗ ErF  which is 

less than zero if  or  and then . Further we 

have 

1)( −<τ−τ eEr 1)( −τ<− eEr 1)(0 −τ<−< eEr

rE <  and . Hence we have 1)( −τ−> erE { } rEer <<τ− −1)(,0max .  
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If , i.e., , this follows that there is no real root for the 
characteristic equation (4). In this condition the characteristic equation has a complex 
conjugate root. If we let 

0)( >λ∗F 1)( −>τ−τ eEr

ω+ρ=λ i , R∈ρ , [ )∞∈ω ,0 , as a root for (4), we have 

  ( ) ( ))sin()cos( ωτ−ωτ−=−=ω+ρ ρτ−τω+ρ− irerei i , 
then we get the two equations for the real and imaginary parts 

)cos()( ωτ−−=ρ ρτ−eEr ,                                                                               (5.a) 

)sin()( ωτ−=ω ρτ−eEr .                                                                                 (5.b) 
 
Lemma 2. 

 Let  and . The roots of the characteristic equation (4) are complex 
conjugate with negative real parts if 

0>> Er 0>τ
{ } 11 )()2(,0max −− τ−<<τπ− erEr . 

 
Proof: 

 Let . We note from (4) that λτ−−+λ=λ eErF )()( λ  cannot be real nonnegative. We 

have  and λτ−τ−τ−=λ eErF )(1)(' )ln(
1

τ−τ
τ

=λ∗ Er  is a critical point for . Further, we 

have  which is positive. This means that the value of the critical 
point gives minimum value for 

)(λF

λτ−τ−=λ eErF 2'' )()(

)(λF . The function )(λF  has no real roots when 

( ) 0/1)ln()( >τ+τ−τ=λ∗ ErF  and this occurs when  or . Now, we 
shall show that the root of 

1)( −>τ− Eτ er 1)( −τ−< erE

)(λF  is a complex number with negative real part. Suppose 
that (4) has a root ω+ρ=λ i  with 0≥ρ . Since 0=λ  is not a root of characteristic 
equation (4) we can assume that 0>ω . Since 2/)( π<τ− Er , then  from (5.b) we have 

 showing that the left side of equation (5.a), i.e., 

 is nonnegative, while the right side is negative. This contradiction 
proves that 

2/sin)(0 π<ωττ−τ=ωτ< ρτ−eEr

ωτ−−=ρ ρτ− cos)( eEr

0<ρ . Note that the conjugate of λ  also satisfies the characteristic equation 

(4).  
 

When the equilibrium point for the model without harvesting is not 
asymptotically stable and if the population is harvested with constant effort of harvesting 
and the effort is in the range of { } 11 )()2(,0max −− τ−<<τπ− erEr , the equilibrium point for 
the model with harvesting becomes asymptotically stable. In other words, when the 
equilibrium point for the model without harvesting is not stable, but the population is 
harvested with constant effort, the population is possibly stable. 
 
Example 1.   

Consider model (2) with parameters 2=r , 1=τ , and  Take the level of 
effort of harvesting E as 0 (no harvesting), 0.8, and 0.2. The roots for the related 
characteristic equation for the various time delays are , 

, and 

.100=K

i.. 67368611728160 ±

i..- 43922311904620 ± i.. 63035310972140 ±  respectively. The trajectories with initial 
population  for the non linear model are given in figure 1. When the 
population is not harvested, the population is not stable, but the population becomes 
possibly stable whenever the population is harvested with constant effort harvesting. 

80)0( =x

We know that for 0=τ , ( ) 0)0( <−−=λ Er ; i.e., the zero equilibrium point is 
asymptotically stable when there is no time delay. Since Er −=ω , then we have 
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2/π=ωτ . We denote ( )Er −
π

=
ω
π

=τ
220 . Then the preceding arguments together with the 

proof of Theorem in Kuang (1993, pp 66) show that when , the zero 
equilibrium point is asymptotically stable; and when 

00 τ<τ≤

0τ>τ , it is unstable. There is a 
switch stability and Hopf bifurcation occurs at 0τ  and the zero equilibrium point loses 
stability at this point.  

 
 

Figure 1: Some trajectories of delay logistic model with several value of E. 
 

We now consider condition rE <  for model (2) in which the equilibrium point 
 is locally asymptotically stable for ( ) rErKx /−= 00 τ<τ≤ . We would like to relate this 

equilibrium point to the maximum profit or maximum economic rent problem. We 
assume that the total cost is proportional to the effort of harvesting. Then the cost 
function is . The revenue of exploitation, written as total revenue, 

. The profit function is  
EccTC 21 +=

xEpTR =

  ( ) 12
2

21 cEcpKE
r

pK
Ecc

r

Er
pEKTCTR −−+−=−−⎟

⎠
⎞

⎜
⎝
⎛ −

=−=π . 

From the profit function we have 2

2
cpK

r

pKE

dE

d
−+−=

π  and the critical point is 

( )
pK

rcpK
Ec 2

2−
= . In order to get a positive critical point we assume . This 

assumption has been considered by Clark (1990). The profit maximum occurs at 

2cpK >

cEE =  

since 0
2

2

2

<−=
π

r

pK

dE

d . Consequently, if we choose the effort of harvesting at 

( )
pK

rcpK
EE c 2

2−
==  and the time delay satisfies 00 τ<τ≤ , then the equilibrium point is 

stable and also maximizes the profit function. 
 
Example 2.  

Consider model (2) with parameters 2=r  and .100=K  The equilibrium point for 
the model is . Take Ex 50100 −= 11 =c , 5.02 =c , and 1=p . Then the profit function 

becomes . Further, we obtain the critical point . It is 
easy to see that the profit function is concave down ward. Hence, the critical point 

 gives profit maximum, i.e., 

150.9950 2 −+−=π EE 9950.0== cEE

9950.0=cE 50125.48max =π , and the equilibrium point 
25.5050100 =−= cEx  is also asymptotically stable. The delay margin for stability of the 

equilibrium point is . 56298.10 =τ
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4. Logistic Model with Time Delay in Harvesting Term  

We now consider the logistic model with constant effort of harvesting where time 
delay is in the harvesting term. The model is 

( ) )(/)(1)(
)(

τ−−−= txEKtxtxr
dt

tdx ,                                                                 

(6) 
where E is an effort of harvesting which is assumed to be a positive constant. In this model 
the rate of harvesting is proportional to the size of population at time . Kar (2003) has 
introduced a time delay in the harvesting term in population dynamics. The equilibrium 
point for this model is 

τ−t

( ) ∗=−= KrErKtx /)( . In order to get a nonnegative equilibrium 
point, we assume that Er > . 

For analyzing the stability of the equilibrium point, we linearize the model 
around the equilibrium point. Let ∗−= Ktxtu )()(  and substitute it into the model (6) to get 

( ) ( ) ( ∗∗∗ +τ−−+−+= KtuEKtu )
K

r
Ktur

dt

tdu
)()()(

)( 2 , 

∗∗∗∗ −τ−−−−−+= EKtEuK
K

r
tuK

K

r
tu

K

r
rKtru

dt

tdu
)()(

2
)()(

)( 22 . 

After neglecting the product terms and simplifying, we obtain 

)()()2(
)(

τ−−−= tuEturE
dt

tdu .                                                                        (7) 

The characteristic equation for linear model (7) is  
0)2( =+−−λ λτ−EerE .                                                                                   (8) 

Since Er > , then  is not a root of the characteristic equation (8). 0=λ
 
Theorem 3:   

Let Er > . The zero equilibrium point of model (7) is asymptotically stable if the 
following conditions are satisfied; 
(i).                    and                (ii). 1−<τ E ( ) 012)ln( ≤+τ−−τ rEE  . 

 
Proof:   

Let , then we have  and ( ) λτ−+−−λ=λ EerEF 2)( λτ−τ−=λ′ eEF 1)( ττ=λ∗ /)ln(E  is the 

critical point for . Since  for any )(λF 0)( 2 >τ=λ′′ λτ−eEF λ , then  is concave upward 

and 

)(λF

τ
+τ−−τ

=λ∗
1)2()ln(

)(
rEE

F  is minimum. From (i), we have 0/)ln( <ττ=λ∗ E  and 

from (ii) we obtain 0
1)2()ln(

)( ≤
τ

+τ−−τ
=λ∗

rEE
F .  

Note that  and then 0)()0( >−−= rEF )(λF  is also positive for some , (λ 0<λ ). 
Therefore for ( ) 012)ln( <+τ−−τ rEE , we have 2λ  and 1λ  with property 012 <λ<λ<λ ∗  
satisfying 0)()( 12 =λ=λ FF . In the case of ( ) 012)ln( =+τ−−τ rEE , we have only one 

negative real root, i.e., 
τ
τ

=λ∗
)ln(E . This means that the zero equilibrium point of model 

(7) is asymptotically stable. We also conclude that the equilibrium point ( ) rErKx /−=  

is locally asymptotically stable when the conditions in Theorem 3 are satisfied.  
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From the proof of Theorem 3, ( ) λτ−+−−λ=λ EerEF 2)(  is possible to become 

positive, zero, or negative. It depends on the value of the critical point 
τ
τ

=λ∗
)ln(E . When 

the minimum value of ( ) λτ−+−−λ=λ EerEF 2)(  is positive, this implies there is no real root 
of it, but complex number will exist. 
 
Theorem 4: 

If  and 3/rE < ( ) 012)ln( >+τ−−τ rEE , then the roots of characteristic equation (8) 
are complex conjugate with negative real parts. 

Proof:  

From the proof of Theorem 3 we have 
τ

+τ−−τ
=λ∗

1)2()ln(
)(

rEE
F . Since 

, then ( ) 012)ln( >+τ−−τ rEE 0)( >λ∗F . This means that there is no real root for 

. Let ( ) λτ−+−−λ=λ EerEF 2)( ω+ρ=λ i , 0>ω , is the root of )(λF , then we have 

  ( ) 0sincos)2( =ωτ−ωτ+−−ω+ρ ρτ− iEerEi . 

Separating the real and imaginary parts we have 

   
.sin

cos)2(
ωτ=ω
ωτ−=−−ρ

ρτ−

ρτ−

Ee
EerE

We know that there exists a unique ωτ  in the interval ( )π,0  satisfying both equations. 
Squaring both equations and adding them yields the equation 

  ( )  , ρτ−=ω+−−ρ 2222)2( eErE

  . ρτ−=ω+−+−ρ−ρ 22222 )2()2(2 eErErE

Let  and . Since  and 
graphically, we obtain that the intersection between 

222
1 )2()2(2)( ω+−+−ρ−ρ=ρ rErEF ρτ−=ρ 22

2 )( eEF Er 3>

)(1 ρF  and  occurs for )(2 ρF 0<ρ . 
Further, we have complex number ω+ρ=λ i  with negative real part. It is easy to see 

that  is also a root for ω−ρ=λ i )(λF .  
 

Theorem 4 follows that if  and Er 3> ( ) 012)ln( >+τ−−τ rEE  then the zero 
equilibrium point for model (7) is asymptotically stable and the equilibrium point 

 is locally asymptotically stable. ( ) rErKx /−=

By Theorem in Kuang (1993, pp 66), we know that if the stability of the trivial 
solution  of model (7) switches at 0)( =tu τ=τ , then the characteristic equation (8) must 
have a pair of pure conjugate imaginary roots when τ=τ . We can think of the roots of the 
characteristic equation (8) as continuous functions in terms of the delay τ , 
i.e.,  . 0)2()( )( =+−−τλ ττλ−EerE

Therefore, in order to understand the stability switches of model (7), we need to 
determine the value of τ  at which the characteristic equation (8) may have a pair of 
conjugate pure imaginary roots. We assume ω=λ i , 0>ω  is a root of the characteristic 
equation (8) for τ=τ , 0≥τ . Substituting ω=λ i  into the characteristic equation (8), we 
have:  

0)2( =+−−ω ωτ−iEerEi  , 
0sincos)2( =ωτ−ωτ+−−ω iEErEi . 
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Separating the real and imaginary parts we get the two equations for the real and imaginary 
part, i.e., 

.sin
cos)2(

ωτ=ω
ωτ=−

E
ErE

                                                                                          (9) 

Squaring the two equations and adding them together, we obtain 
                                                                                          
(10) 

( 222 2 rEE −−=ω )

If  or equivalently 0)2( 22 >−− rEE ErE 3<< , then we see that purely imaginary roots of 
the characteristic equation (8) exist. 

From equations (9) we have ErE /)2(cos −=ωτ  and E/sin ω=ωτ . Hence, there is a 
unique , , such that ωτ π<ωτ< 20 ωτ  makes both ErE /)2(cos −=ωτ  and  hold. 
Further, we have  

E/sin ω=ωτ

  ωθ=τ /1 ,                                                                                                     (11) 
where , π<θ< 20 ω−=θ /)2(cot rE , and ω  satisfies (10). 

Differentiating the characteristic equation (8) with respect to τ , we have  

  0=⎟
⎠
⎞

⎜
⎝
⎛ λ+

τ
λ

τ−
τ
λ λτ−

d

d
Ee

d

d . 

From the characteristic equation (8), we know that , hence we have  )2( rEEe −−λ=− λτ−

  ( ) 0)2( =⎟
⎠
⎞

⎜
⎝
⎛ λ+

τ
λ

τ−−λ+
τ
λ

d

d
rE

d

d  , 

  
τ−−λτ+

−λ+λ−
=

τ
λ

)2(1

)2(2

rE

rE

d

d                                                                                   (12) 

Thus, the condition  implies that purely imaginary roots of the characteristic 
equation (8) exist. From the equation (12), we have  

ErE 3<<

ω=λω=λ

⎟
⎠
⎞

⎜
⎝
⎛

τ
λ

=⎟
⎠
⎞

⎜
⎝
⎛

τ
λ

ii d

d

d

d
Resign

)(Re
sign ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
τ−−ωτ+

−ω−ω
=

)2(1

)2(
Resign

2

rEi

rEi  

    
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

τω+τ−−
τ−−−ω+τω+ω

=
222

32

)2(1

))2(1)(2(
Resign

rE

rErEii  

    
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

τω+τ−−
ω

=
222

2

)2(1
sign

rE
 . 

Therefore we see that the sign is always positive. This implies that all the roots that cross 
the imaginary axis at cross from left to right as ωi τ  increases. 

For 0=τ , we have 0<−=λ rE  which means the equilibrium point is 
asymptotically stable. Then the preceding arguments together with the proof of Theorem in 
Kuang (1993, pp 66) show that when 10 τ<τ≤ , the zero equilibrium point of model (7) is 
asymptotically stable; and when 1τ>τ , the zero equilibrium point is unstable. Switch 
stability occurs at  and a Hopf bifurcation occur at this point. 1τ=τ

In the case of , we know that Er 3= 0=ω  is the only solution of (10). However, 
 is not the root of the characteristic equation (8) since 0=λ Er > . Hence, there is no 

stability as well. It is easy to see that if , then there are no pure imaginary roots for 
the characteristic equation (8). In other words, there are no roots of the characteristic 
equation (8) crossing the imaginary axis when 

Er 3>

τ  increases. Therefore, there are no stability 
switches, no matter how the delay τ  is chosen.  

We now consider condition rE <  for model (6) in which the equilibrium point 
 is globally asymptotically stable for ( ) rErKx /−= 0=τ . We would like to relate this 
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equilibrium point to the maximum profit. The cost function is , the total 
revenue is , and profit function is: 

EccTC 21 +=

xEpTR =

      ( ) 12
2

21 cEcpKE
r

pK
Ecc

r

Er
pEKTCTR −−+−=−−⎟

⎠
⎞

⎜
⎝
⎛ −

=−=π . 

 The profit function is the same with the profit function in the previous section. 

We conclude that if we choose the effort of harvesting at ( )
pK

rcpK
EE c 2

2−
== , and the time 

delay satisfies , where 10 τ<τ< 1τ  refers to (11), then the equilibrium point is 
asymptotically stable and also maximizes the profit function. 
 
Example 3.   

Consider model (6) with parameters 2=r  and .100=K  The equilibrium point for 
the model is . Take Ex 50100 −= 11 =c , 5.02 =c , and 1=p . Then the profit function 

becomes . Further, we obtain the critical point . It is 
easy to see that the profit function is concave down ward. Hence, the critical point 

 gives profit maximum, i.e., 

150.9950 2 −+−=π EE 9950.0== cEE

9950.0=cE 50125.48max =π , and the equilibrium point 
25.5050100 =−= cEx  is also asymptotically stable. The delay margin for stability of the 

equilibrium point is . The Hopf bifurcation occurs at . The 
trajectories around the equilibrium point 

58887.11 =τ 58887.11 =τ

25.50=x  with various time delays are given in 
figure 2. 

 
Figure 2: Trajectories of model (6) with 1.65 and;58887.1;45.1=τ . 

 
In figure 2 with initial value 500 =x , the trajectories oscillate around the 

equilibrium point. For , the trajectory tends to the equilibrium point, and for 
, the trajectory oscillates and diverges. However, for 

45.1=τ
65.1=τ 58887.1=τ , the trajectory 

oscillates forever and the Hopf bifurcation occurs since if we disturb the value of time 
delay, the trajectory will converge to the equilibrium point or diverge. 
 
 

4.  Conclusion 

In the model without time delay and harvesting, the positive equilibrium point 
occurs and it is globally asymptotically stable. This means that the population can exist. 
For the model with time delay and constant effort of harvesting and for the model with 
time delay in the harvesting term, there exist some conditions for the time delay and effort 
of harvesting so that the equilibrium point is stable. There exists switch stability and the 
time delay can induce instability and also a Hopf bifurcation can occur. There exists a 
critical value of the effort that maximizes the profit function. This means that under 
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suitable value of the parameters, time delay, and effort of harvesting, the population can 
remain exist and give profit maximum. 
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