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Abstract. For given graphs G and H, the Ramsey number R(G, H)
is the smallest natural number n such that for every graph F of order
n: either F contains G or the complement of F contains H. This paper
investigates the Ramsey number R(Sn, Wm) of small stars versus large
wheels. We show that R(S6, W8) = 14. Furthermore, for m ≥ 2n− 2 and
n ≥ 3, then R(Sn, Wm) = m + n− µ, where µ = 2 if n is odd and m is
even, and for otherwise µ = 1.
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1 Introduction

For given graphs G and H, the Ramsey number R(G,H) is de-
fined as the smallest positive integer n such that for any graph
F of order n, either F contains G or F contains H, where F is
the complement of F . Chvátal and Harary [4] established a use-
ful lower bound for finding the exact Ramsey numbers R(G,H),
namely R(G,H) ≥ (χ(G) − 1)(C(H) − 1) + 1, where χ(G) is the
chromatic number of G and C(H) is the number of vertices of the
largest component of H. Since then the Ramsey numbers R(G,H)
for many combinations of graphs G and H have been extensively
studied by various authors, see a nice survey paper [6]. In particu-
lar, the Ramsey numbers for combinations involving stars have also
been investigated. Let Sn be a star of n vertices and Wm a wheel
with m spokes. Surahmat et al. [7] proved that R(Sn,W4) = 2n− 1
for n ≥ 3 odd, otherwise R(Sn,W4) = 2n + 1. They also showed
R(Sn,W5) = 3n− 2 for n ≥ 3. Furthermore, it has been shown that
if m is odd, m ≥ 5 and n ≥ 2m − 4, then R(Sn,Wm) = 3n − 2.
This result is strengthened by Chen et al. In [3] by showing that
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this Ramsey number remains the same, even if m (≥ 5) is odd and
n ≥ m− 1 ≥ 2.

In this paper, we determine the Ramsey numbers R(Sn,Wm) for
open cases of n and m. The main results of this paper are the fol-
lowing.

Theorem 1. R(S6, W8) = 14.

Theorem 2. For m ≥ 2n − 2 and n ≥ 3, then R(Sn,Wm) = m +
n− µ, where µ = 2 if n is odd and m is even, and otherwise µ = 1.

Before proving the theorems let us present some notations used
in this note. Let G(V, E) be a graph. Let c(G) be the circumference
of G, that is, the length of a longest cycle, and g(G) be the girth,
that is, the length of a shortest cycle. For any vertex v ∈ V (G), the
neighborhood N(v) is the set of vertices adjacent to v in G, N [v] =
N(v)∪{v}. The number of vertices of a graph G is its order, written
as |G| and the degree of a vertex v in G is denoted by dG(v). The
minimum (maximum) degree in G is denoted by δ(G) (∆(G)). For
S ⊆ V (G), G[S] represents the subgraph induced by S in G. A graph
on n vertices is pancyclic if it contains all cycles of every length l,
3≤ l ≤ n. A graph is weakly pancyclic if it contains cycles of length
from the girth to the circumference.

2 Some Lemmas

The following lemmas will be useful in proving our results.

Lemma 1. (Bondy [1]). Let G be a graph of order n. If δ(G) ≥ n
2
,

then either G is pancyclic or n is even and G = Kn
2

, n
2
.

Lemma 2. (Brandt et al. [2]). Every non-bipartite graph G with
δ(G) ≥ n+2

3
is weakly pancyclic and has girth 3 or 4.

Lemma 3. (Dirac [5]). Let G be a 2-connected graph of order n ≥ 3
with δ(G) = δ. Then c(G) ≥ min{2δ, n}.

22 Jurnal Matematika, Statistika, dan Komputasi
                                       Vol. 5  No. 1 Juli 2008

21Jurnal Matematika, Statistika, & Komputasi
Vol. 5 No 1 Juli 2008

         Hasmawati 21



Small Stars versus Large Wheels 3

3 The Proofs of Theorems

Proof of Theorem 1. Let F be a graph of order 14. Suppose F
contains no S6, and so dF (x) ≤ 4 ∀x ∈ F . Let there exist x0 ∈
F, dF (x0) ≤ 3. If A = V (F )\N [x0] and T = F [A] then |T | ≥ 10

and δ(T ) ≥ |T | − 5) ≥ |T |
2

. By Lemma 1, T contains a C8. With

the center x0, we obtain wheel W8 in F . Now, let for each v ∈ F,
dF (v) = 4. If A = V (F )\N [v0] where v0 any vertex of F , T = F [A],

then |T | = 9. Observe that dT (v) = |T |−5 = 4 ≥ |T |+2
3

. Since |T | = 9

and dT (v) = 4, ∀v ∈ T , obviously T is connected and non bipartite.

Hence, κ(T ) > 0. Since, dT (v) ≥ |T |+2
3

and T is non bipartite, then

by Lemma 2, T is weakly pancyclic, and has girth 3 or 4. In other
words, (T ) contains all cycles Cm, with g(T ) ≤ m ≤ c(T ), where
g(T ) = 3 or 4 and c(T ) is the length of its largest cycle. Next, we
will to find out c(T ).

Let κ(T ) = 1, say u0 is a cut-vertex, then it is easy to see that
T = u0 + 2K4. This is impossible, contradict with d(v) = 4, ∀v ∈ T .
Hence, κ(T ) ≥ 2. Thus, T is 2-connected. By Lemma 3, c(T ) ≥
min{2(4), 9}. Therefore, F contains W8, with the center v0, and so
R(S6,W8) ≤ 14.

On the other hand, it is not difficult to see that graph F1 =
K4,4∪K5 contain no S6 and its complement contain no W8. Observe
that F1 has 13 vertices. Hence, we have R(S6,W8) ≥ 14. ut

Proof of Theorem 2.

For m ≥ 2n − 2 and n ≥ 4. Let n is odd and m is even. Since
(n − 2) − regular regular with the order m + n − 3 contain no Sn

and its complement contain no Wm, then R(Sn,Wm) ≥ m + n − 2.
On the other hand, let F be a graph of order m + n − 2. Suppose
F contains no Sn, and so dF (v) ≤ n − 2, ∀v ∈ F . Since n is odd
and m is even, then there exists x0 ∈ F with dF (x0) ≤ n − 3. Let
A = V (F )\N [x0], and T = F [A]. Since for each v ∈ T, dT (v) ≤ n−2

and |T | ≥ m, then dT (v) ≥ |T | − (n − 1) ≥ |T |
2

. This implies that

T contains a Cm (by Lemma 1). Hence, F contains a Wm, with the
center x0. Therefore, R(Sn,Wm) ≤ m + n− 2 for odd n and even m.
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Now, for other n and m, consider (n− 2)− regular graph with
order m + n− 2, call F1. We can verify that F contain no Sn and its
complement contain no Wm, Hence, we have R(Sn,Wm) ≥ m+n−1.
On the other hand, let F be a graph of order m + n− 1. Suppose F
contains no Sn, and so dF (v) ≤ n− 2, ∀v ∈ F . If B = V (F )\N [v0],
and T = F [B], then |T | ≥ m. Since for each v ∈ T, and dT (v) ≤ n−2,

then dT (v) ≥ |T | − (n − 1) ≥ |T |
2

. By Lemma 1, T contains a cycle

Cl, where 3 ≤ l ≤ m ≤ |T |.
Therefore, we obtain a wheel Wm in F , with the center v0. Hence,

R(Sn,Wm) ≤ m + n− 1. ut

4 Open Problems

As a final remark, let us present the following open problem to work
on.

Problem 1. Find the Ramsey number R(Sn,Wm) for n ≥ 4 and all
m, n + 1 ≤ m < 2n− 2.

Problem 2. Find the Ramsey number R(Sn,r,Wm) for any n, r and
m.
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