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Stability Analysis of Prey-Predator Population Model 

with Harvesting on The Predator Population 

 

Syamsuddin Toaha 

 

Abstract 

In this paper we present a deterministic and continuous model for one prey–one predator 

population model based on Lotka-Volterra model. The predator population is subjected to 

both constant effort and constant quota of harvesting. We study analytically the sufficient 

conditions of harvesting to ensure the stability of the equilibrium point. The method used to 

analyze the stability of the equilibrium point is linearization and Hurwitz stability test. The 

results show that the equilibrium point which occurs in positive quadrant is stable although the 

predator population is subjected to harvesting. This means that the prey and predator 

populations can live in coexistence although the predator is harvested provided the level of 

harvesting is controlled. Some examples are given to illustrate the behavior of the trajectories. 
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1. Introduction 

The prey-predator model based on Lotka-Volterra model is one of the most popular 

equations in mathematical ecology. The results of some authors on Lotka-Volterra model can be 

found in (Luckinbill, 1973). Their conclusions indicate that the prey and predator population can 

coexist by reducing the frequency of contact between them. In Danca et al. (1997), they have 

analyzed a prey-predator model using analytical and numerical methods. They found that the 

system can exhibit a rich behavior and determined the domain of the value of the parameters for 

which the system has stationary states or chaotic behavior. 

In Brauer & Soudack (1979a, 1979b, 1981), they have considered some general prey-

predator models which include harvesting problems at a constant rate. They analyzed the global 

behavior of the prey-predator model and classified the possibilities and also determined the 

domain of attraction of the trajectory. They also found that under certain conditions the model 

with harvesting is stable. When the prey-predator model enjoys an asymptotically stable 

condition and the stability is weak then an asymptotically limit cycle will probably exist (Jeffries, 

1974).  

In Kar & Chaudhuri (2004), they have studied the prey-predator model based on Lotka-

Volterra model with harvesting. They discussed about the possibility of existence of bionomic 

equilibrium and optimal harvesting. The stability of effect constant quota and effort constant has 

been studied by Holmberg (1995) and he showed that constant catch quota can lead to both 

oscillations and chaos and an increased risk for over exploitation. 

A prey-predator model with Holling type using harvesting effort s as control has been 

presented by Srinivasu et al. (2001). He showed that with harvesting is possible to break the 

cyclic behavior of the system and introduce globally stable limit cycle in the system.  
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In this paper we present a deterministic and continuous prey-predator population model 

based on Lotka-Volterra model. The predator population is harvested with constant effort and 

constant quota of harvesting. The stability of the equilibrium point and the effect of harvesting are 

investigated. Some examples are given to show the behavior of the trajectories around the 

equilibrium points. The Maple software is used to plot the trajectories and direction field of the 

model. 

 

 

2. Prey-Predator Model without Harvesting 

We consider a prey-predator model based on Lotka-Volterra model with one-prey and 

one-predator populations. The models for the rate of change of prey population (x) and predator 

population (y) with respect to time t are as follows 
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The model includes parameter K, the carrying capacity, of the prey population in the 

absence of the predator. Parameter a is the intrinsic growth rate of prey, c is the mortality rate of 

the predator without prey,  measures the rate of consumption of prey by the predator, and  

measures the conversion of prey consumed into the predator reproduction rate. We assume all 

parameters are real positive numbers. 

For simplification model (1) is written on the form 
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The possible positive equilibrium point of this model is   
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
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0bca . Jacobian matrix of (2) takes the form  
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and at 
E , we have  
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The characteristic function of Jacobian matrix J at this point is 

 

 
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The eigenvalues are 
2

42

2,1

QPP
r


 , where 



bc
P   and  bca

c
Q  


. 

Since P and Q are both positive numbers, then both eigenvalues have negative real parts. Then 

the equilibrium point 
E  is locally asymptotically stable. However, since 0bca the 

equilibrium point 
E  of the model (2) is also globally asymptotically stable as stated in the 

theorem by Chao & Yuei (2002). 

 

 
 

3. Prey-Predator Model with Constant Effort of Harvesting 

The model (2) is improved by considering harvesting with a constant effort on the 

predator population. The harvesting function is proportional the population size of predator. The 

model becomes  

 
 

  ,Eyxcyy

ybxaxx












         (4) 

where E is a positive constant effort. 

The model (4) is mathematically similar to the model (2). The model (4) possibly has a positive 

equilibrium point  

   
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when
b

bca
E





0 . By following the similar procedure as before, we conclude that the 

equilibrium point  


HE   of model (4) is also globally asymptotically stable, whenever the effort of 

harvesting satisfies the condition 
b

bca
E





0 . 

 

 

4. Prey-Predator Model with Constant Quota of Harvesting  

We consider the model (2) where the predator population is now subjected to harvesting 

at constant quota. The model becomes  

 
 
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ybxaxx
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where H is a positive constant quota of harvesting. 
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The possible positive equilibrium point of model (5) is   yx , , where 
b

ka
x




, ky 
, 

and k  is the root of quadratic equation   02  HbZbcaZ  . The Jacobian matrix for 

this model still refers to (3). 

 Let ybxaA  2 , xB  , yC  , and xcD  , then the characteristic 

function from the Jacobian matrix (3) can be written in the form 

     .02  BCADrDAr           (6) 

From equation (6) we write BCADp 0  and  DAp 1 .                                              

 Let P , bcaQ   , and HbR  . Assume that 0bca  and 

042  PRQ .  
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 

b
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2
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The equilibrium point for model (2) is 
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It follows that the determinant of the Jacobian matrix at this point is zero so that linearization 

method cannot be used to analyze the stability of the equilibrium point. By using phase plane 

analysis, we found that the equilibrium point is not stable.  

 

 
Figure 1. Phase plane for case1. 
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extinct. While when the initial population  )0(),0( yx  is in the region B, then the trajectory of 

 )(),( tytx  will enter the region A and finally the predator population )(ty also becomes extinct. 

Case2. If 042  PRQ ; that is, 
 

b

bca
H





4

2


 .  

In this case there are two equilibrium points namely    111 , yxE   and    222 , yxE , where   

b
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, 
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2
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

. 

 

 

Lemma 1.  

Let 
 

b

bca
H





4

2


 and    111 , yxE  be the equilibrium point for model (5). The determinant 

of the Jacobian matrix J at 


1E  is positive. 

 

Proof: The determinant of the Jacobian matrix J at 


1E  is 

        1

2

111 22det cyxbbcxxaacBCADJ  . 

Substitute 



 
 1

1

bxa
y  into the above equation  we obtain      11 2det xbbcaxJ  . 

From the term 042  PRQ  then the following inequality is valid  
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, we have 

  02 1  xbbca  , or equivalently 

   .02 11   xbbcax          (7) 

Therefore, from (7) we conclude that   0det J  or 00 p . 

 

 

Theorem 1.  

Let 
 

b

bca
H





4

2


 . Then the equilibrium point    111 , yxE  is an attractor trajectory, if  

i) b , or 
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ii) b and   0 bcba  , or 

iii) b and   02  cbbcba  , or 

iv) b and 
 

 2









b

bcbcaba
H . 

 

Note that   DAJtr   and  DAp 1 . We have 
  1112 xcybxaDA  . 

Substitute 
b
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
 
 1

1


 to get 

 
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 and also substitute 

P
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y
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

 into the numerator so that the numerator is on the form 

  


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



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
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bbcaba .   (8) 

In order to determine the sign of   DAJtr  , we will consider the sign of (8). 

 

Proof of Theorem 1: Since b , then (8) is negative. It follows that   DAJtr   is negative 

or 01 p .  

i) Since b  and   0 bcba  , it follows (8) is negative and 01 p . We consider 

  cbbcba 2  . This form can be written as  

      bbcabcba  2 . 

 Since b  and   02  cbbcba  , then we have the inequality 
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 
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
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 After some algebraic manipulations, the inequality becomes 
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 Since b , we  have   0
2
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 This follows that 01 p .  
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Therefore, since 01 p  and 00 p  (Lemma 1), we conclude that if the condition i) or ii) or iii) 

or iv) is satisfied and following the Hurwitz stability test (Willems, 1970; Jeffries, 1989) the 

equilibrium point 


1E  is an attractor trajectory.  

 

 

Theorem 2.  

The equilibrium point    111 , yxE  is an attractor trajectory if the conditions 

 
b
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H
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
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2
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 
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4
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 22 4 QGPRQ  . It is easy to show that 0QG , then the inequality can be written in 

the form QGPRQ  42
, or 
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2 2 
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
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PRQQ
bbcaba . It follows that 01 p . Therefore, 

since 01 p  and 00 p  (Lemma 1), we conclude that the equilibrium point 


1E  is an attractor 

trajectory.  

  

From the two cases we know that the equilibrium 


1E  may be a stable or an unstable equilibrium 

point. It depends on the values of the parameters and the harvesting function. 

 

Apparently, the equilibrium point 


1E  tends to the equilibrium point 






 







bcac
, when 

the harvesting function H approaches zero. If the equilibrium point 






 







bcac
, for the non-

harvesting model, model (2), is asymptotically stable, the eigenvalues of the Jacobian matrix of 

the linearized system have negative real part. Since the eigenvalues are continuous in H, the 

equilibrium point 


1E  is asymptotically stable for sufficiently small . On the other hand, if 

the equilibrium point 


1E  is unstable, so that there is an asymptotically stable limit cycle, then the 

theory of perturbation of periodic solutions (Coddington & Levinson, 1955) shows that there is an 

asymptotically stable limit cycle for small . Thus, the qualitative behavior of the system 

for carries over to small  (Brauer & Soudack, 1979b).  

 

0H

0H

0H

0H 0H
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Lemma 4.  

Let 
 

b

bca
H





4

2


 , and    222 , yxE  be an equilibrium point for model (5). Then the 

determinant of the Jacobian matrix J at 


2E  is negative. 

 

Proof: The determinant of the Jacobian matrix J associated with the equilibrium point 


2E  is 

      .22det 2

2

222

  cyxbbcxxaacBCADJ   

Substitute 



 
 2

2
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y  into the above equation to get      22 2det xbbcaxJ  . We 

show that   0det J  by contradiction. Let   0det J , that is   02 22   xbbcax  . Since

 
b
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H





4

2


 , the two equilibrium points are positive and different, thus 02 
x . So we have 

  02 2  xbbca  , or 




b

bca
x

2
2




. Since
b

ya
x


 
 2

2


, the inequality becomes 





b

bca

b
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2

2 


 

, or 
 22 ybca  . Substitute 

P

PRQQ
y

2
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2




 into the above 

inequality to obtain 












 





2

4
2

2 PRQQ
bca , or 042  PRQ . This contradicts 

the fact that . Therefore we conclude that   0det J . 

 

 

Theorem 3.  

Let 
 

b

bca
H





4

2


 . Then the equilibrium point    222 , yxE  is a saddle point. 

 

Proof: Since the determinant of the Jacobian matrix associated with this equilibrium point is 

negative (Lemma 4), it follows that the eigenvalues of the Jacobian matrix are real with different 

signs. This means that the equilibrium point 


2E  is a saddle point.  

 

 

5. Some Examples 

In this section, we illustrate our result by some examples. Graph of the trajectories 

for non linear model are plotted. 

 

042  PRQ
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Example 1. Consider model (5) with parameters ,1a  ,04.0b ,1  1.0c ,05.0  

27.0H . There is no equilibrium point since
 

b

bca
H





4

2


 . Some trajectories of 

 )(),( tytx  are given in Figure 2. The predator population )(ty will become extinct.  

 
Figure 2. Some trajectories of  )(),( tytx , where the predator population  

will be extinct. 

 

Example 2. Consider model (5) with parameters ,1a  ,04.0b ,1  3.0c ,5.0  

and 728.1H . There is only one equilibrium point, i.e.  48.0,00.13  since

 
b

bca
H





4

2


 .  Some trajectories of  )(),( tytx  are given in figure 3. The trajectories 

finally tend away from the equilibrium point. The predator population )(ty will become 

extinct.  

 

 
Figure 3. The trajectories of  )(),( tytx  keep away from the  

unstable equilibrium point. 
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Example 3. Consider model (5) with parameters ,1a  ,04.0b ,1  3.0c ,05.0  

and .0805.0H  There are two equilibrium points i.e.  6628.0,4289.81 E  and  

 9716.0,5711.222 E  since
 

b

bca
H





4

2


 .  The eigenvalues associated with the 

equilibrium point 


1E  for linear model are . 0.47620.1079- i Some trajectories of 

 )(),( tytx  are given in figure 4. Some of trajectories tend spirally to the locally stable


1E . 

If   )0(),0( yx  is close enough to


1E , the predator and prey populations will continue to 

exist although the predator population is harvested.  

 
Figure 4. Some trajectories of  )(),( tytx  tend to the local stable equilibrium point. 

 

 

Example 4. Consider model (5) with parameters ,1a  ,04.0b ,1  1.0c ,05.0  

and 0.2390H  There are two equilibrium points i.e.  6028.0,9293.91 E  and  

 3172.0,0707.172 E  since
 

b

bca
H





4

2


 .  The eigenvalues associated with the 

equilibrium point 


1E  for linear model are . 0.37660.0003- i Some trajectories of 

 )(),( tytx  are given in figure 5. Some of trajectories tend spirally to the locally stable


1E . 

There are trajectories move spirally around the


1E  but finally tend away from it.    
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Figure 5. Trajectories of  )(),( tytx  around the local stable equilibrium point. 

 

 

 

 

Example 5. Consider model (5) with parameters ,1a  ,04.0b ,1  1.0c ,05.0  

and 0.2600H  There are two equilibrium points i.e.  5200.0,0000.121 E  and  

 4000.0,0000.152 E  since
 

b

bca
H





4

2


 .  Although the two equilibrium points exist, 

the conditions do not satisfy theorem 2.iv, i.e.
 

 2









b

bcbcaba
H , the two equilibrium 

points are not stable.  The eigenvalues associated with the equilibrium point 


1E  for linear 

model are . 0.26810.0100 i  Some trajectories of  )(),( tytx  are given in figure 6. The 

trajectories move around the two equilibrium points and then tend away from the 

equilibrium points. The predator population )(ty will become extinct.  

 
Figure 6. The trajectories of  )(),( tytx move and then tend away from two  

unstable equilibrium points. 

 
 

9. Conclusions 

From the analysis of the prey-predator model, we found that model without harvesting 

has a globally stable equilibrium point, when 0bca .  It means that the two populations 

may live in coexistence. When the predator population is harvested with constant effort of 

harvesting satisfying
b

bca
E





0 , the two populations remain stable.  

 If the predator population is harvested with constant quota of harvesting, the model also 

possibly has a locally stable equilibrium point. This situation occurs when the parameters of the 

model and harvesting level are strictly controlled, Theorem 1 and 2. 

 The coexistence of both populations depends on the considered values of the parameters, 

the level of harvesting, and the initial size of the populations. When the initial size of the 
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populations is too far from the stable equilibrium point, the trajectories may not tend to the stable 

equilibrium point as time passes since we just consider local stability of the equilibrium point. 
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