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Stability Analysis of Wangersky-Cunningham Model 

with Constant Effort of Harvesting 
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Abstrak 
In this paper we consider another predator-prey model with time delay which is called the 

Wangersky-Cunningham model. In this model, the rate of change of the predator population 

depends on the numbers of prey and predator present at some previous time. The model is 

then improved by considering a constant effort of harvesting into the growth rate of the prey 

and predator populations. The method use in this analysis is linearization the model around the 

equilibrium point and then inspecting the eigenvalues to determine the stability. We found that 

there exists a positive equilibrium point for the model with and without harvesting. The time 

delay can induce instability and Hopf bifurcation can also occur. Some plots of trajectories of 

the prey and predator populations are also given.  

 

Kata Kunci: Wangersky-Cunningham model, time delay, constant effort harvesting, 

Hopf bifurcation. 

 

1. Introduction 

The dynamics relationship between predators and their prey has long been and will 

continue to be one of the dominant themes in both ecology and mathematical ecology due to its 

universal existence and importance, Berryman (1992). This problem may appear simple 

mathematically at first sight, in fact, often very challenging and complicated. 

A rather characteristic behavior of the predator-prey dynamics is the often observed 

oscillatory phenomenon of the population sizes. Some predator-prey models which are considered 

in Beretta and Kuang (1998) provide the same kind of mechanisms of producing oscillatory 

solutions. Another common mechanism of oscillatory solution is to introduce time delays in the 

models, which is a more realistic approach to the understanding of the predator-prey dynamics.  

A simple and natural way to do oscillation is to incorporate a single discrete delay into 

predator equations, Beretta and Kuang (1998). Lotka-Volterra type predator-prey model with 

Michaelis-Menten type functional response and hybrid type of predator-prey model as well 

known as Holling-Tanner predator-prey model have been developed by incorporating the time 

delay in the predator equation. 

Liu and Wang (2004) have considered a non autonomous predator-prey diffusion system 

with Holling III functional response and a continuous time delay and the result showed that the 

system is persistent under any diffusion rate effect and the positive periodic solution is globally 

asymptotically stable. 

Li and Kuang (2001) have studied the sufficient conditions for the existence of the 

positive periodic solutions in periodic delayed Gause-type predator-prey systems and the results 

indicate that when both seasonality and time delay are present, the seasonality is often generating 
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force for the often observed fluctuation in population densities, including the inherently 

oscillatory predator-prey dynamics. 

A model with time delay in a predator-prey system has been considered in Qiu and Mitsui 

(2002) and the results show that the system is permanent under some appropriate conditions and 

sufficient conditions are established for the global asymptotic stability of the positive equilibrium 

point of the system. 

Gourley and Kuang (2004) have formulated a general and robust predator-prey model 

with stage structure with constant maturation time delay and performed a systematic 

mathematical and computational study. The results indicated that if the juvenile death rate is 

nonzero, then for small and large values of maturation time delay, the population dynamics takes 

the simple form of a globally attractive steady state. 

In a predator-prey model, Kar (2003) has considered and discussed the selective 

harvesting of fishes by incorporating a time delay in the harvesting term and the results showed 

that the time delay can cause a stable equilibrium point to become unstable and even a switching 

of stabilities.  

In this paper, we consider another predator-prey model with time delay which is called 

the Wangersky-Cunningham model. In this model, the rate of change of the predator population 

depends on the numbers of prey and predator present at some previous time. We next consider the 

constant effort of harvesting into the model. In the analysis, the sufficient condition for the 

existence of the positive equilibrium point and harvesting level are considered and also the time 

delay margin is studied. 

 

2. Wangersky-Cunningham Model 

In the study of predator – prey model, Volterra in Kuang (1993) has investigated the 

model  
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where x and y are the size of prey and predator, respectively, and all parameters and functions are 

nonnegative. For similar interactions, Wangersky and Cunningham in Kuang (1993) also use the 

model  
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for predator–prey model with time delay. The parameter r is the rate of increase of the prey 

population, c is the death rate of the predator population,   is the coefficient of effect of 

predation on x,   is the coefficient of effect predation on y,   is a positive time delay, and K 

represents the carrying capacity of the prey population when there is no interaction between prey 

and predator. The time delay 0  is a constant based on the assumption that the change rate of 

the predator population depends on the numbers of prey and of predator present at a certain 

previous time. When we put 0  in model (1), the model is reduced to a predator–prey model  
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which has been analyzed in the previous chapter, see also Toaha et al. (2007). This model has an 
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Martin and Ruan (2001) have analyzed the Wangersky-Cunningham model where the 

prey is harvested with constant quota. The considered model is 
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where H is a positive constant, or well known as constant quota of harvesting. The positive 

equilibrium point of the model is  ee yx ,  given by 

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They showed that the time delay can induce instability and oscillations via Hopf bifurcations and 

switching of stability occurs. Their analysis is also valid when 0H . 

 

3. Wangersky-Cunningham Model with Constant Effort of Harvesting 
 

We consider the predator and prey populations in model (1) where the two populations 

are subjected to constant effort of harvesting. The model with harvesting is as follows 
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For analysis we assume that yx EEE  . Here, we assume that the two populations are 

harvested by applying the same effort. For example in fishing, the fisheries use the same net and 

boat. The positive constant E is the effort of harvesting. Then the model becomes 
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The model can be rewritten as  
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where Err 1 , 
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r
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1 , and Ecc 1 . We assume that Er  . This assumption is 

made to guarantee the intrinsic growth of prey population is greater than the effort of harvesting 

so that the population can increase in size. The equilibrium points of model (4) are  0,00 E , 
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equilibrium point 
E  occurs in the first quadrant. For 0 , model (4) is reduced to model (2). 

Consequently, the equilibrium point 
E  of model (4) is also globally asymptotically stable when 
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In order to understand the locally asymptotically stability of the equilibrium point 
E  in 

the model with time delay, we analyze the associated linearization model with perturbation. Let 
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After simplifying and neglecting the product terms, we have the linearized model 
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Analyzing the local stability of the equilibrium point 
E  in the model with time delay is 

equivalent to analyzing the stability of the zero equilibrium point in the linearized model. From 

the linearized model we have the characteristic equation 
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Adding both equations and regrouping by powers of , we obtain the following fourth degree 

polynomial 
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then the equation (9) does not have any real solutions. To find the necessary and sufficient 

conditions for the nonexistence of time delay induced instability, we use the following theorem. 

 

Theorem 2.  (Kar, 2003)  

A set of necessary and sufficient conditions for an equilibrium point   yx ,  to be asymptotically 

stable for all 0  is 

1. The real parts of all the roots of 0)0,(   are negative. 

2. For all real   and 0 , 0),(  i , where 1i  . 

 

Theorem 3.  

If condition (11) and Theorem 4.7 are satisfied, then the equilibrium point 
E  is locally 

asymptotically stable for all 0 . 

 

Proof. From the assumptions Er  , 011  cK , and also 0 , we have that PQ   and 

SR   are both positive. Then the eigenvalues of the characteristic equation (5) have negative 

real parts. From condition (11) and Theorem 2, we conclude that the equilibrium point 
E  is 

locally asymptotically stable for all 0 .  

 

Let us consider model (3) with parameters 5.1r , 100K , 2.0 , 5.2c , 

1.0 , and 3.0E . The equilibrium point of the model is  90.3,00.28E . For 0 , 

the Jacobian matrix of the model associated with the equilibrium point 
E  has eigenvalues 

i46284.121000.0  . This means that the equilibrium point of the model without time delay is 

stable. We can verify that the conditions (11) are satisfied, that is, 17640.02 22  PSQ  and 

.36691022  RS . In this case there is no time delay that induces instability. Some trajectories 

of  )(),( tytx  with various time delays are given in Figures 1 and 2.  
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Figure 1. Trajectory of  )(),( tytx  with 01.28)0( x , 91.3)0( y , and 0.2 . 

 

 
Figure 2. Trajectory of  )(),( tytx  with 01.28)0( x , 91.3)0( y  and 0.12 . 

 

Figure 1 with time delay 0.2  shows that the trajectory of  )(),( tytx  spirally tends to the 
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22 22
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From equation (9), we know that  

   22222224222 2 SQSSQRP    

then we obtain 
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                    222 22sign QSP  .                 (16) 

 

Theorem 4.  

If condition (12) is satisfied, then the equilibrium point 
E  is asymptotically stable for 0  

and unstable for 0 . Further, as   increases through 0 , the equilibrium point 
E  

bifurcates into small amplitude periodic solutions, where 
0

0 k  as 0k . 

 

Proof.  For 0  and under the assumptions Er   and 011  cK , then PQ   and SR   

are both positive. It means that the equilibrium point 
E  is asymptotically stable. Hence, 

following the proof of Theorem in Kuang, 1993, page 66, the equilibrium point 
E  remains 

stable for 0 . We now have to show that 
 

0
Re

00 ,






d

d
. This will signify that there 

exists at least one eigenvalue with positive real part for 0 . Moreover, the conditions of Hopf 

bifurcation are then satisfied yielding the required periodic solution, see Hale (1977), Broer 

(1983), and Nayfeh and Balachandran (1995). From (16) and (10), it follows that  
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then we get  

0
)(Re

00 ,






d

d
 . 

Therefore, the transversality condition is satisfied, and hence, the Hopf bifurcation occurs at 

0 , 0 . This completes the proof.  

Now we consider again model (3) with parameters 5.1r , 100K , 2.0 , 

0.2c , 1.0 , and 3.0E . The equilibrium point of the model is  275.4,00.23E . 

For 0 , the Jacobian matrix of the model associated with the equilibrium point 
E  has 
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eigenvalues i39167.117250.0  . This means that the equilibrium point of the model without 

time delay is stable. It is easy to verify that the condition (12) is satisfied, that is, 

0-0.7462922  RS . Further, we have .8980000   and .5691100  . Some 

trajectories of  )(),( tytx  with various time delays are given in Figures 3, 4, and 5.  

 

 
(a)  

(b) 

 

Figure 3. (a) Trajectory of Prey with 001.23)0( x  and 4.0 ; (b) 

Trajectory of Predator with 274.4)0( y  and 4.0 . 

 

 
(a) 

 
(b) 

 

Figure 4. (a) Trajectory of Prey with 001.23)0( x  and 8.0 ; (b) 

Trajectory of Predator with 274.4)0( y  and 8.0 . 
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Figure 5. Trajectory of  )(),( tytx  with 001.23)0( x , 274.4)0( y ,  

and 56911.0 . 

Figures 3a and 3b with time delay 4.0  show that the equilibrium point 

 275.4,00.23  is stable. Figures 4a and 4b with time delay 8.0  show that the equilibrium 

point  275.4,00.23  is unstable. The critical value of time delay or delay margin is 

.5691100  . When 56911.00   the equilibrium point  275.4,00.23  is asymptotically 

stable; when 0.56911  the equilibrium point  275.4,00.23  loses its stability; and when 

56911.0  the equilibrium point  275.4,00.23  becomes unstable and there is a bifurcating 

periodic solution, see figure 5. 

 

 

Theorem 5.  

Let 
k

 be defined in equation (15). If conditions (14) are satisfied, then there exists a positive 

integer m such that there are m switches from stability to instability and to stability. In other 

words, when ),(),(),0[ 1100





  mm , the equilibrium point 1E  is stable, and 

when ),(),(),( 111100









  mm , the equilibrium point 
E  is unstable. 

Therefore there are bifurcations at the equilibrium point 
E  when 

 k , ,2,1,0k . 

 

Proof. Since conditions (14) are satisfied, then to prove the theorem we need only to verify the 

transversality conditions, see Cushing (1977), 
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From (16) and (10), it follows that  
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Again,  

       ,42sign22sign
)(Re

sign 22222222
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therefore, 

    0
)(Re

,







  k

d

d
. 

Hence, the transversality conditions are satisfied. This completes the proof.  

 

After simplifying we know that 1cP  , 
1

111 )(

K

rKc
Q




 , and 

1

2

11

K

cr
S


  from 

which we have QP  . Further we have 022 QP  and then 02 22  QSP . 

Consequently, it is impossible to have two positive solutions of 
2

  and we verify that there is 

no any switch from stability to instability and to stability for model (3). 

 

 

4. Conclusions 

The model without time delay has one positive equilibrium point and stable. The same 

equilibrium point is found for the model with time delay. The stability of the positive equilibrium 

point for the model with time delay is free from the effect of time delay when condition (11) is 

satisfied. 

When condition (12) hold, there exists a delay margin for which a Hopf bifurcation occur 

and when the value of time delay is greater than the delay margin, then the equilibrium point 

becomes unstable. While when condition (14) is satisfied, the time delay can induce instability 

and some Hopf bifurcations occur. We found finite stability intervals for the equilibrium point. 

For the model with time delay and constant effort of harvesting, there still exists a 

positive equilibrium point. The positive equilibrium point may or may not be stable. It is depend 

on the values of effort of harvesting and time delay. The time delay can affect the stability of the 

equilibrium point. There exist some conditions for the effort and time delay that assure the 

stability of the positive equilibrium point. 
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