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Abstract 
The Ramsey number for a graph   versus a graph  , denoted by       , is the smallest 

positive integer   such that for any graph   of order  , either   contains   as a subgraph or  ̅ 

contains   as a subgraph. In this paper, we investigate the Ramsey numbers for stars versus 

small cycle. We show that                 and                              for 

      and     . 
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1. Introduction 

Throughout this paper, all graphs are finite and simple. Let   be any graph with the 

vertex set      and the edge set     . The graph  , the complement of  , is obtained from the 

complete graph on         vertices by deleting the edges of  . A graph           is a subgraph 

of   if          and         . For       ,      represents the subgraph induced by   in 

 . For        and       , the neighborhood       is the set of vertices in S which are 

adjacent to  . Furthermore, we define       =      ∪ {u}. If S =      , then we use      and 

     instead of          and         , respectively. The degree of a vertex   in   is denoted by 

     . The order of  , denoted by    , is the number of its vertices. Let    be a star on n vertices 

and    be a cycle on m vertices. Cocktail-party graph    is the graph which is obtained by 

removing s disjoint edges from    . We denote the complete bipartite whose partite sets are of 

order   and   by     . A windmill graph    is a graph on        vertices obtained from   

disjoint triangles by identifying precisely one vertex of every triangle. 

Given two graphs   and  , the Ramsey number        is defined as the smallest  

natural number   such that for any graph   on   vertices, either   contains   or  ̅ contains  . 

Chvatal and Harary (1972) established a useful and general lower bound on the exact Ramsey 

numbers        as follows. 

 

Theorem 1. (Chavatal, Harary, 1972)  

Let G and H be teo graphs (not necessarily different) with no isolated vertices. Then the following 

lower bound holds, 

                           

where x(G) is the chromatic number of G and n(H) is the number of vertices in the largest 

component of H. 
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This result of the Chavatal and Harary has motivated various authors to determined the Ramsey 

numbers R(G,H) for many combinations of graphs G and H, see the nicesurvey paper 

Radziszowski (2006). 

 

Corollary 1.   

 (       )           ( (    )   )        . 

 

Some results about the Ramsey numbers for stars versus cycle have obtained. For instance, 

Lawrence (1987) showed that  (      )=20 and 

 (       )  {
          

                           
. 

Parsons (1975) considered about the Ramsey numbers for      versus    as presented in 

Theorem 2. 

 

Theorem 2. (Parson’s Upper Bound)   

For    ,  

 (       )    √     

 

Recently, Hasmawati et al. (2006, 2009) proved that  (     )   , and  (       )     for 

m=5 or 6 respectively. Recently, Baskoro et al. (2006) determined the Ramsey numbers for 

multiple copies of a star versus a wheel and for a forest versus a complete graph. Their results are 

given in the following three theorems. 

 

Theorem 3. (Baskoro et al., 2006)  

If m is odd and 5 m 2n-1, then  

 (      )             . 

 

Theorem 4. (Baskoro et al., 2006)  

For n 3, 

 (      )  {
                                

                               
 

 

Theorem 5. (Baskoro et al., 2006) 

Let          for i = 1,2,...,k-1. If m is such that    (        )      for every i, 

 then  (⋃     
 
     ) =  (      )   ∑    

   
    

 

In this paper, we study the Ramsey numbers for multiple copies of stars versus small 

cycle. We determine the Ramsey numbers  (     ) and  (        ) for p 3 and k 2. 

 

 

2. Main Results 

The results are presented in the next two theorems. 
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Theorem 6.  

 (     )      
 

Proof. Consider     ∪     Clearly, F has nine vertices and contains no     Its complement is 

isomorphic with   . Thus it’s clear that    contains no   . Hence, we have  (     )      By 

Parson’s upper bound in Parsons (1976),  (     )    √   Therefore, we have  (     )      

Thus,  (     )      
 

Lemma 1.  

For k 2 and p 3. Consider            ∪     F has k(p+1) vertices, however it contains no 

       It is easy to see that  ̅ is isomorphic with            . So,  ̅ contains no   . Hence, 

 (        )          . 

 

Theorem 7.  

For p 3,  

 (        )          . 

 

Proof. Let    be a graph of order          for    . Suppose  ̅  contains no   . By 

Parsons’supper bound, we have       (       ) for    . Thus        . Let  (    )  

{          } with center   . Write A=        and        . Thus        . If there 

exists     with        , then T contains     . Hence    contains      . Therefore, we 

assume taht for every vertex    ,            . 

Let u be any vertex in T. Write          . Clearly,      . Observe that if there exists 

     where     which is not adjacent to at least two vertices in  , the proof we will use the 

following assumption. 

Assumption 1. Every vertex      ,     is not adjacent to at most one vertex in  . 

Let u be adjacent to at least           vertices in      {  }, call them                . 

Observe that                . By Assumption 1, vertex     is adjacent to at least       

vertices in  , namely                . Then we have two new stars, namely     
  and     

  , 

where 

 (    
 )   (     {               }) ∪ {               } 

With    as the center and 

 (    
  )        ∪ {               } 

With u as the center. Hence, we have         . 

Now we assume that u is adjacent to at most             vertices in      {  }. This means 

u is not adjacent to least           vertices in      {  }. Let             Y = {         

{  }           }. Then                . It will be shown that there is      so that    

is adjacent to all vertices in        (see Figure 1). Suppose for every    , there exists   
      such that         . Since            , then there exists          so that    is not 

adjacent to at least two vertices in Y, say    and   . This implies,   ̅[          ] forms a   , a 

contradiction. Hence, there exists      so that    is adjacent to all vertices in      . 

Furthermore, by Assumption 1 we have that                               . 
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Let    be the vertex in   which   . If           , then    must be adjacent to   . (Otherwise  ̅ 

would contain    formed by {    
      }). Now we have two new stars, namely      

  and     
 , 

where      
         with    as the center and      

       {  } ∪ {  }. If            , 

then we also have two new stars. The first one is     
  as in the previous case and the second one 

is     
  where      

       {  } ∪ { } with    as the center. In case that    is adjacent with all 

vertices in  , then the first star is        { } and the second star is     
  where  (    

 )  

     {  } ∪ { },     with    as the center. The fact            is guaranteed by 

Assumption 1. Therefore, we have  (        )          . The proof is now complete. 

 

 

Figure. 1. An illustration of Proof of Theorem 2. 

 

 

Theorem 3.  

For     and    ,  

 (        )          . 

 

To obtain the ramsey nmber we use induction on k. We assume the theorem holds for every 

     . Let    be a graph of order k(p+1)+1. Suppose  ̅       . By induction hypothesis, 

            . Write                 and         . Thus              . 

Since  ̅ contains no    and follows from Theorem 2 that    contains      . Hence    contains 

         ∪            . Thus we have  (        )           . On the other hand, 

we have  (        )             (by Lemma 1). The assertion follows. 
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