Estimation of Factors Affecting Stunting Cases in West Java in 2021 Using Negative Binomial Spatial Regression
DOI:
https://doi.org/10.20956/j.v20i1.26984Keywords:
negative binomial, overdispersion, stunting, spatial regressionAbstract
Stunting is a childhood growth and development disorder characterized by below-normal height. West Java, with its stunting rate of 24.5 percent, is one of the provinces included in the top 12 priority provinces in implementing the National Action Plan to Accelerate Stunting. Stunting cases are count data and their occurrence is rare. The analysis for the count data is Poisson regression with the assumption that equidispersion must be met. One way to overcome overdispersion is to use negative binomial regression. This study aimed to determine predictors/factors affecting stunting cases in West Java province in 2021 using negative binomial spatial regression. The data in this study comes from the publication of the West Java Health Service and the West Java Central Statistics Agency in 2021 with districts/cities as the object of observation. There is a spatial effect in the stunting data, so the spatial regression model is suitable. The results show that there is an overdispersion in the Poisson regression. The spatial effect test shows that there is a spatial dependence on the response variable and some predictors. The negative spatial autoregressive binomial is the best model with the lowest AIC value. The factors that have a significant effect are the percentage of infants aged less than six months who are breastfed, the percentage of food processing establishments that meet the requirements, and the percentage of infants with low birth weight.
References
Anselin, L., 1988. Spatial econometrics: methods and models (Vol. 4). Springer Science & Business Media.
Ayudiati, N., 2021. Pemodelan regresi spasial binomial negatif pada angka kematian ibu di Pulau Jawa tahun 2018. Institut Pertanian Bogor.
Djuraidah, A., 2020. Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, Sosial, dan Ekonomi. IPB Press., Bogor.
Fadliana, A., Drajat, P.P., 2021. Pemetaan Faktor Risiko Stunting Berbasis Sistem Informasi Geografis Menggunakan Metode Geographically Weighted Regression. J IKRAITH-INFORMATIKA. Vol.5, No.3, 91-102.
Glaser, S., 2017. A Review of Spatial Econometric Models for Count Data. Hohenheim Discussion Papers in Business, Economics and Social Sicences, Vol(19).
Gujarati, D., N., & Porter, D., C., 2009. Basic Econometrics. MCGraw-Hill., New York
Hasiru., L., S., Djakaria, I., & Hasan, I., K., 2022. Penerapan Model Spasial Durbin dengan Uji Lanjutan Local Indicator of Spatial Autocorrelation untuk Melihat Penyebaran Stunting di Kabupaten Bone Bolango. Jambura Journal of Probability and Statistics, Vol. 3, No. 1, 19-28.
Hilbe, J.,M., 2011. Negative Binomial Regression Second Edition. Cambridge University Press., New York.
Hilbe, J.,M.. 2014. Modelling Count Data. Cambridge University Press., New York.
Kamilia, A., 2019. Berat Badan Lahir Rendah Dengan Kejadian Stunting Pada Anak. J Ilmiah Kesehatan Sandi Husada, Vol.10, No.2, 311-315.
Manaf, S., A., R., Erfiani., Indahwati., Fitrianto., A., & Amelia., R., 2022. Faktor-Faktor yang Memengaruhi Permasalahan Stunting di Jawa Barat Menggunakan Regresi Logistik Biner. Jurnal Statistika, Vol. 15, No. 2,265-274.
Pramoedyo, H., Pratiwi. E., Astutik, S., & Fauwziyah., F., 2022. Modeling Geographically Weighted Negative Binomial Regression (GWNBR) on Stunting Incidence in Malang Regency. J Matematika, Statistika dan Komputasi, Vol.19, No.1, 163-171.
Purwanti, R., Nurfita, D., 2019. Review Literatur : Analisis Determinan Sosio Demografi Kejadian Stunting Pada Balita Di Berbagai Negara Berkembang. Buletin Penelitian Kesehatan, Vol. 47, No. 3, 153-164.
Sampe, S., A., Toban R., C., Madi, M., A., 2020. Hubungan Pemberian ASI Eksklusif Dengan Kejadian Stunting Pada Balita. J Ilmiah Kesehatan Sandi Husad,. Vol.11, No.1, 448-455.
Putra, P., A., B., Suariyani, N., L., P., 2021. Pemetaan Distribusi Banyaknya Dan Faktor Risiko Stunting Di Kabupaten Bangli Tahun 2019 Dengan Menggunakan Sistem Informasi Geografis. Arc. Com. Health., Vol. 8, No. 1, 72-90.
Vega, S.. H., Elhorst, J., P., 2015. The SLX Model. J Of Regional Science. Vol.0, No.0, 1-25.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.