Modeling the Percentage of Poor Population in Java Island using Geographically Weighted Regression Approach

Authors

  • Muhammad Rafi Ikhsanudin Politeknik Statistika STIS
  • Ernawati Pasaribu Politeknik Statistika STIS

DOI:

https://doi.org/10.20956/j.v20i1.27804

Keywords:

Poverty, GWR, spatial heterogeneity, ixed bisquare, percentage of poor population

Abstract

Poverty is a multidimensional problem faced by all countries in the world. Poverty is the inability of individual or group to meet their basic needs in terms of expenditure. In poverty problem, there is a tendency that the poor will group in locations with certain characteristics. This spatial clustering indicates spatial diversity that making global regression analysis inappropriate for application. Therefore, the purpose of this research is to model the percentage of poor population in 119 districts on Java Island in 2021 using the Geographically Weighted Regression (GWR) method. The analysis results state that the GWR model with Kernel Fixed Bisquare provides superior results compared to the global regression model and able to overcome spatial heterogeneity problem. The model is able to provide a fairly high coefficient of determination, which is 70,73 percent. The GWR model identifies ten groups of districts based on the significance of the independent variables, with the majority of them (61 districts) having a significant RLS variable. This indicates that education is an important aspect that needs to be considered by local governments to alleviate poverty.

References

Arnastauskaitė, J., Ruzgas, T., & Bražėnas, M., 2021. An exhaustive power comparison of normality tests. Mathematics, Vol. 9, No. 7, 788.

Chazar, C., Gunawan, H., & Sumpena., 2022. Implementasi Support Vector Machine pada Klasifikasi Penduduk Miskin Wilayah Desa Taraju Kabupaten Tasikmalaya. INFORMASI (Jurnal Informatika Dan Sistem Informasi), Vol. 14, No. 2, 136–148.

Daud, M., 2021. Implementasi Program Keluarga Harapan Dalam Meningkatkan Kesejahteraan Masyarakat Miskin. Jurnal Pendidikan, Sains, Dan Humaniora, Vol. 9, No. 4, 620–624.

Firda, M., Wasono, R., & Darsyah, Y., 2015. Pemodelan Geographically Weighted Regression (GWR) Pada Tingkat Kemiskinan di Provinsi Jawa Tengah. Jurnal Statistika, Vol. 3, No. 2, 67–74.

Fotheringham, A. S., Brunsdon, C., & Charlton, M., 2002. Geographically Weighted Regression: the analysis of spatially varying relationships. John Wiley & Sons Ltd.

Gong, S., Dong, X., Wang, K., Lei, B., Jia, Z., Qin, J., Roadknight, C., Liu, Y., & Cao, R., 2023. Agent-based modelling with geographically weighted calibration for intra-urban activities simulation using taxi GPS trajectories. International Journal of Applied Earth Observation and Geoinformation, Vol. 122, 103368.

Gujarati, D. N., & Porter, D. C., 2009. Basic Econometrics Fifth Edition. McGraw-Hill/Irwin.

Gupta, A. K., Singh, V., Mathur, P., & Travieso-Gonzalez, C. M., 2021. Prediction of COVID-19 pandemic measuring criteria using support vector machine, prophet and linear regression models in Indian scenario. Journal of Interdisciplinary Mathematics, Vol. 24, No. 1, 89–108.

Jia, Z., Wang, X., Feng, X., Ma, J., Wang, X., Zhang, X., Zhou, J., Sun, Z., Yao, W., & Tu, Y., 2023. Exploring the spatial heterogeneity of ecosystem services and influencing factors on the Qinghai Tibet Plateau. Ecological Indicators, Vol. 154, 110521.

Li, J., Jia, K., Liu, Y., Yuan, B., Xia, M., & Zhao, W., 2021. Spatiotemporal distribution of zika virus and its spatially heterogeneous relationship with the environment. International Journal of Environmental Research and Public Health, Vol. 18, No. 1, 1–14.

Munikah, T., Pramoedyo, H., & Fitriani, R., 2014. Pemodelan Geographically Weighted Regression dengan Pembobot Fixed Gaussian Kernel pada Data Spasial ( Studi Kasus Ketahanan Pangan di Kabupaten Tanah Laut Kalimantan Selatan ). Natural, Vol. 2, No. 3, 296–302.

Nirwana, I. D., 2013. Pengaruh Variabel Pendidikan Terhadap Persentase Penduduk Miskin (Studi Pada 33 Provinsi Di Indonesia, 6 Provinsi Di Pulau Jawa, Dan 27 Provinsi Di Luar Pulau Jawa Pada Tahun 2006-2011). Jurnal Ilmiah Mahasiswa FEB, Vol. 1, No. 2.

Palomino, J., & Sánchez, T., 2021. Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru. Economia, Vol. 44, No. 87, 89–114.

Runadi, T., Widyaningsih, Y., & Lestari, D., 2020. Modeling total crime and the affecting factors in Central Java using geographically weighted regression. Journal of Physics: Conference Series, Vol. 1442, No. 1.

Safitri, U., & Amaliana, L., 2021. Model Geographically Weighted Regression dengan Fungsi Pembobot Adaptive dan Fixed Kernel pada Kasus Kematian Ibu di Jawa Timur. Jurnal Statistika Dan Aplikasinya, Vol. 5, No. 2, 208–220.

Saleem, S., Aslam, M., Sherwani, R. A. K., Jadoon, A. K., Sarwar, A., & Butt, I., 2023. Determinants of rural household poverty in Pakistan with multilevel approach. Cogent Economics and Finance, Vol. 11, No. 1.

Saputra, H. Y., & Radam, I. F., 2022. Accessibility model of BRT stop locations using Geographically Weighted regression (GWR): A case study in Banjarmasin, Indonesia. International Journal of Transportation Science and Technology, Vol. 12, No. 3, 779–792.

Sari, N. K., Susilowati, D., & Arifin, Z., 2020. Analisis Pertumbuhan Ekonomi, Pendidikan Dan Indeks Pembangunan Manusia Terhadap Tingkat Kemiskinan Di Madura. Jurnal Ilmu Ekonomi JIE, Vol. 4, No. 3, 577–590.

Setyani, A. I., & Sugiarto., 2021. Aplikasi Metode Geographically Weighted Regression Determinan Kemiskinan Multidimensi Kabupaten/kota di Kawasan Timur Indonesia. Jurnal Statistika Dan Aplikasinya, Vol. 5, No. 2, 121–132.

Shrestha, N., 2020. Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, Vol. 8, No. 2, 39–42.

Sugiarto, & Arsyadana, H. H., 2015. Perbandingan Regresi Global Dan Geographical Weighted Regression (GWR) Pada Model Kasus Prevalensi Penyakit Hepatitis. Statistika, Vol. 3, No. 2, 31–40.

Suhandi, N., Putri, E. A. K., & Agnisa, S., 2018. Analisis Pengaruh Jumlah Penduduk terhadap Jumlah Kemiskinan Menggunakan Metode Regresi Linear di Kota Palembang. Jurnal Ilmiah Informatika Global, Vol. 9, No. 2, 77–82.

Yuhan, R. J., & Sitorus, J. R. H., 2018. Metode Geographically Weighted Regression Pada Karakteristik Penduduk Hampir Miskin Di Kabupaten/Kota Pulau Jawa. E-Journal Widya Eksakta, Vol. 1, No. 1, 41–47.

Downloads

Published

2023-09-06

How to Cite

Ikhsanudin, M. R. ., & Pasaribu, E. . (2023). Modeling the Percentage of Poor Population in Java Island using Geographically Weighted Regression Approach. Jurnal Matematika, Statistika Dan Komputasi, 20(1), 229–244. https://doi.org/10.20956/j.v20i1.27804

Issue

Section

Research Articles