Determining Factors that Influence Unmet Need For Family Planning Using Geographically Weighted Logistic Regression With LASSO
DOI:
https://doi.org/10.20956/j.v21i2.35081Keywords:
Unmet need, keluarga berencana, regresi logistis biner, GWLR, multikolinearitas, LASSOAbstract
Binary logistic regression is a regression used for categorical response variables with two possibilities: success or failure. This regression is a global model, making it inappropriate for spatial data. Binary logistic regression was then developed into geographically weighted logistic regression (GWLR). GWLR considers location factors into the model through a weight function. Nevertheless, GWLR is unable to overcome multicollinearity issue. Multicollinearity can cause the estimated parameters to be insignificant, thus it needs to be solved. A method to deal with multicollinearity is least absolute shrinkage and selection operator (LASSO). LASSO is applicable to various areas, including health, namely in the case of unmet need for family planning (FP). Unmet need for FP refers to productive-age women who do not wish to have more children or wish to postpone having children without using contraceptive methods. This study aims to obtain GWLR model with LASSO and influential factors, and acquire the performance of GWLR model with LASSO on unmet need for FP in South Sulawesi. The AIC value of the GWLR with LASSO model, which is 31,918, is less than the AIC value of the GWLR without LASSO, which is 38,879. This implies that GWLR with LASSO method is able to model unmet need for FP better than GWLR model. In addition, it was obtained that the status of unmet need for FP in 22 districts/cities was affected by the percentage of women with junior high school education or equivalent or lower, number of high-fertility women, percentage of husbands/families who refuse family planning, and number of KB staffs, while there were 2 districts/cities where the status of unmet need for KB was determined by the number of high-fertility women, percentage of husbands/families who refuse family planning, and number of FP staffs.
References
[1] Aliu, M. A., Zubedi, F., Yahya, L., & Oroh, F. A., 2022. The Comparison of Kernel Weighting Functions in Geographically Weighted Logistic Regression in Modeling Poverty in Indonesia. Jurnal Matematika, Statistika dan Komputasi, 18(3), 362–384. https://doi.org/10.20956/j.v18i3.19567
[2] Alwi, W., Ermawati, & Husain, S., 2018. Analisis Regresi Logistik Biner Untuk Memprediksi Kepuasan Pengunjung Pada Rumah Sakit Umum Daerah Majene. Jurnal MSA (Matematika Dan Statistika Serta Aplikasinya), 6(1), 20–26.
[3] Amalah, R., 2020. Pemodelan Geographically Weighted Logistic Regression Dengan Metode Ridge [Skripsi]. Universitas Hasanuddin.
[4] Amalah, R., Jaya, A. K., & Sirajang, N., 2023. Pemodelan Geographically Weighted Logistic Regression dengan Metode Ridge. ESTIMASI: Journal of Statistics and Its Application, 4(2), 130–143. https://doi.org/10.20956/ejsa.v4i2.12250
[5] Annasiyah, F., & Prastuti, M., 2023. Peramalan Konsumsi Energi Listrik untuk Sektor Industri di PT PLN (Persero) Area Gresik Menggunakan Metode Time Series Regression dan ARIMA. Jurnal SAINS dan Seni ITS, 12(1), D96–D102.
[6] Bahmid, N. A., 2018. Metode Least Absolute Shrinkage and Selection Operator untuk Mengatasi Multikolinearitas pada Regresi Logistik Ordinal [Skripsi]. Universitas Hasanuddin.
[7] BKKBN, 2021. Data Statistik Rutin BKKBN 2019-2021.
[8] Chen, S., Notodiputro, K. A., & Rahardiantoro, S., 2020. Penerapan Analisis LASSO Dan Group LASSO Dalam Mengidentifikasi Faktor-Faktor Yang Berhubungan Dengan Tuberkulosis Di Jawa Barat. Indonesian Journal of Statistics and Its Applications, 4(1), 39–54.
[9] Fadliana, A., & Darajat, P. P., 2021. Pemetaan Faktor Risiko Stunting Berbasis Sistem Informasi Geografis Menggunakan Metode Geographically Weighted Regression. IKRA-ITH Informatika: Jurnal Komputer dan Informatika, 5(3), 91–102.
[10] Findasari, & Himayati, A. I. A., 2023. Analisis Regresi Logistik Biner Pada Faktor Resiko Kejadian Tuberkulosis. Jurnal Matematika, Sains, dan Teknologi, 24(1), 1–14.
[11] Hastuti, T., 2022. Penerapan Model Geographically Weighted Logistic Regression (GWLR) Dengan Fungsi Pembobot Adaptive Gaussian Kernel Pada Data Kemiskinan Di Indonesia [Skripsi]. Universitas Lampung.
[12] He, Y., Zhao, Y., & Tsui, K. L., 2019. Exploring influencing factors on transit ridership from a local perspective. Smart and Resilient Transportation, 1(1), 2–16. https://doi.org/10.1108/srt-06-2019-0002
[13] Hidayah, I., & Adnan, A., 2021. Metode Regresi Logistik LASSO Untuk Analisis Gizi Buruk Pada Balita Di Sumatera Tengah. 1–11.
[14] Kasim, S. I. A., 2021. Estimasi Parameter Model Geographically Weighted Logistic Regression Principal Component Analysis Dengan Maksimum Likelihood [Skripsi]. Universitas Hasanuddin.
[15] Khariyani, A. M., Kismiantini, & Setiawan, E. P., 2022. Analisis Faktor-Faktor Yang Memengaruhi Jumlah Tuberkulosis menggunakan Geographically Weighted Regression Di Provinsi Jawa Timur. Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, 16–26.
[16] Kumar, C., Rangappa, K. B., & Suchitra, S., 2022. Effectiveness of online capacity building programs in wholistic development of faculties: an empirical analysis. Asian Association of Open Universities Journal, 17(2), 194–211. https://doi.org/10.1108/AAOUJ-04-2022-0058
[17] Lanfranchi, M., Alibrandi, A., Zirilli, A., Sakka, G., & Giannetto, C., 2020. Analysis of the wine consumer’s behavior: an inferential statistics approach. British Food Journal, 122(3), 884–895. https://doi.org/10.1108/BFJ-08-2019-0581
[18] Lestari, F. D., Kusnandar, D., & Debataraja, N. N., 2020. Estimasi Parameter Model Geographically Weighted Logistic Regression. Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster), 09(1), 159–164.
[19] Lestari, S. S. S., Meimela, A., & Revildy, W. D., 2020. Analisis Faktor Tingkat Pengangguran Terbuka dengan Metode Geographically Weighted Lasso (Studi Kasus di Provinsi Jawa Barat Tahun 2019). Seminar NasionalOfficial Statistics 2020 :Statistics In The New Normal A Challenge Of Big Data And Official Statistics, 1286–1293.
[20] Lestari, V. D., 2020. Model Geographically Weighted Logistic Regression dengan Fungsi Pembobot Adaptive Tricube (Studi Kasus: Indikator Pencemaran Air Dissolve Oxygen di Daerah Aliran Sungai Mahakam Kalimantan Timur Tahun 2018). Universitas Mulawarman.
[21] Lestari, V. D., Suyitno, & Siringoringo, M., 2021. Analisis Faktor-Faktor Yang Berpengaruh Terhadap Pencemaran Air Sungai Mahakam Menggunakan Pemodelan Geographically Weighted Logistic Regression Pada Data Dissolved Oxygen. Jurnal EKSPONENSIAL, 12(1).
[22] Maulidina, T. P., & Oktora, S. I., 2020. Analisis Spasial Ketertinggalan Daerah Di Indonesia Tahun 2018 Menggunakan Geographically Weighted Logistic Regression. Indonesian Journal of Statistics and Its Applications, 4(3), 528–544.
[23] Mayfield, H. J., Lowry, J. H., Watson, C. H., Kama, M., Nilles, E. J., & Lau, C. L., 2018. Use of Geographically Weighted Logistic Regression to Quantify Spatial Variation in the Environmental and Sociodemographic Drivers of Leptospirosis in Fiji: a Modelling Study. The lancet Planetary health, 2(5), e223–e232. www.thelancet.com/
[24] Meimela, A., 2021. MODELING OF THE NUMBER OF TUBERCULOSIS CASES IN INDONESIA. Jurnal Litbang Sukowati : Media Penelitian dan Pengembangan, 4(2), 79–85. https://doi.org/10.32630/sukowati.v4i2.204
[25] Nakyeyune, G. K., Bananuka, J., Tumwebaze, Z., & Kezaabu, S., 2022. Knowledge management practices and sustainability reporting: the mediating role of intellectual capital. Journal of Money and Business. https://doi.org/10.1108/jmb-06-2022-0032
[26] Nifueki, A. D., Riwu, R. R., & Sir, A. B., 2022. Analisis Pengambilan Keputusan Pasangan Usia Subur Untuk Tidak Berpartisipasi Dalam Program KB. Cendana Medical Journal, 23(1), 209–216.
[27] Pardede, T. T., Sumargo, B., & Rahayu, W., 2022. Penerapan Regresi Least Absolute Shrinkage and Selection Operator (LASSO) Untuk Mengidentifikasi Variabel yang Berpengaruh terhadap Kejadian Stunting di Indonesia. Jurnal Statistika dan Aplikasinya, 6(1), 37–48.
[28] Permai, S. D., Christina, A., & Santoso Gunawan, A. A., 2021. Fiscal decentralization analysis that affect economic performance using geographically weighted regression (GWR). Procedia Computer Science, 179, 399–406. https://doi.org/10.1016/j.procs.2021.01.022
[29] Pratiwi, N., Suyitno, & Siringoringo, M., 2020. Penerapan Model Geographically Weighted Logistic Regression Pada Data Status Kesejahteraan Masyarakat di Kalimantan Tahun 2017. Jurnal EKSPONENSIAL, 11(1).
[30] Pratiwi, Y. D., Mariani, S., & Hendikawati, P., 2020. Pemodelan Regresi Spasial Menggunakan Geographically Weighted Regression. UNNES Journal of Mathematics, 8(2), 32–41. http://journal.unnes.ac.id/sju/index.php/ujm
[31] Purba, M., Budiati, E., & Djamil, A., 2020. Determinan Perilaku Yang Berhubungan Dengan Terjadinya Unmet Need KB Pada Pasangan Usia Subur (PUS) Di Kota Bandar Lampung. Manuju: Malahayati Nursing Journal, 2(3), 491–504.
[32] Purnatirani, F. T., 2019. Estimasi Parameter Model Geographically Weighted Logistic Regression (GWLR) Dengan Fungsi Pembobot Gaussian Kernel [Skripsi]. Universitas Lampung.
[33] Rai, A., & Ramadhan, R. R., 2018. Faktor-Faktor Yang Memengaruhi Unmet Need KB Di Provinsi Bengkulu Tahun 2015 Dengan Pemodelan Regresi Logistik Biner. Indonesian Journal of Statistics and Its Applications, 2(1), 46–55.
[34] Ramadhan, H. W., 2017. Pendugaan Parameter Regresi Logistik Multinomial Menggunakan Metode Least Absolute Shrinkage And Selection Operator (LASSO) (Studi Kasus Pilihan Sekolah SMA Sederajat Oleh Siswa SMP dan MTs Negeri di Kabupaten Trenggalek).
[35] Reskia, A., & Harison., 2022. Analisis Spasial Tingkat Kesejahteraan Di Indonesia Menggunakan Geographically Weighted Logistic Regression. 1–8.
[36] Salsabila, R., Putra, A. A., Amalita, N., & Fitri, F., 2023. Analysis of Factors Influencing the Population Growth Rate in West Sumatra Using Geographically Weighted Logistic Regression. UNP JOURNAL OF STATISTICS AND DATA SCIENCE, 1(3), 196–202. https://doi.org/10.24036/ujsds/vol1-iss3/59
[37] Sholicha, C. N., Budiantara, I. N., & Ratna, M., 2018. Regresi Nonparametrik Spline Truncated untuk Memodelkan Persentase Unmet Need di Kabupaten Gresik. Jurnal Sains dan Seni ITS, 7(2), D61–D68.
[38] Sholicha, C. N., Budiantara, I. N., & Ratna, M., 2018. Regresi Nonparametrik Spline Truncated untuk Memodelkan Persentase Unmet Need di Kabupaten Gresik. Jurnal Sains dan Seni ITS, 7(2), D61–D68.
[39] Sofiyat, A. I., Tjalla, A., & Mahdiyah., 2023. Pemodelan Regresi Logistik Biner Terhadap Penerimaan Pegawai Di PT XYZ Jakarta. Matematika Sains, 1(1), 1–11.
[40] Solekha, N. A., & Qudratullah, M. F., 2022. Pemodelan Geographically Weighted Logistic Regression dengan Fungsi Adaptive Gaussian Kernel Terhadap Kemiskinan di Provinsi NTT. Jambura Journal of Mathematics, 4(1), 17–32. https://doi.org/10.34312/jjom.v4i1.11452
[41] Sriningsih, M., Hatidja, D., & Prang, J. D., 2018. Penanganan multikolinearitas dengan menggunakan analisis regresi komponen utama pada kasus impor beras di Provinsi Sulut. Jurnal Ilmiah Sains, 18(1), 18–24.
[42] Sulistiawan, D., Gustina, E., Matahari, R., & Marthasari, V., 2020. Profil Sosiodemografis Unmet Need Keluarga Berencana Pada Wanita Kawin Di Daerah Istimewa Yogyakarta. Jurnal Keluarga Berencana, 5(02), 1–9.
[43] Sulistiawan, D., Gustina, E., Matahari, R., & Marthasari, V. M. U. A. D. Y. F., 2020. Profil Sosiodemografis Unmet Need Keluarga Berencana Pada Wanita Kawin Di Daerah Istimewa Yogyakarta. Jurnal Keluarga Berencana, 5(02), 1–9.
[44] Uljanah, K., Winarni, S., & Mawarni, A., 2016. Hubungan Faktor Risiko Kejadian Unmet Need KB (Keluarga Berencana) Di Desa Adiwerna, Kecamatan Adiwerna, Kabupaten Tegal, Triwulan III Tahun 2016. Jurnal Kesehatan Masyarakat, 4(4), 204–2012. http://ejournal-s1.undip.ac.id/index.php/jkm
[45] Wantoro, D. D., 2017. Pendugaan Parameter Regresi Logistik Biner Dengan Metode Least Absolute Shrinkage And Selection Operator (LASSO) (Studi Pada Persentase Tingkat Kemiskinan Kota/Kabupaten di Jawa Timur Tahun 2014). Universitas Brawijaya.
[46] Wardana, L. O., & Sari, L. K., 2020. Analisis Faktor-Faktor Yang Memengaruhi Eksploitasi Pekerja Anak Di Indonesia Menggunakan Regresi Logistik Biner. Indonesian Journal of Statistics and Its Applications, 4(3), 432–447.
[47] Wirdiastuti, C., Syafitri, U. D., Sumertajaya, I. M., Rohaeti, E., & Rafi, M., 2023. Application Of LASSO For Identification Of Functional Groups With Significant Contributions To Antioxidant Activities Of Centella Asiatica. Communications in Mathematical Biology and Neuroscience, 1–17. https://doi.org/10.28919/cmbn/7843
[48] Wulandari, 2018. Geographically Weighted Logistic Regression Dengan Fungsi Kernel Fixed Gaussian Pada Kemiskinan Jawa Tengah. Indonesian Journal of Statistics and Its Applications, 2(2), 101–112.
[49] Yolanda, D., & Destri, N., 2019. Faktor Determinan Yang Mempengaruhi Kejadian Unmet Need KB Pada Pasangan Usia Subur Di Kelurahan Campago Ipuah Kecamatan Mandiangin Koto Selayan Kota Bukittinggi Tahun 2018. Menara Ilmu, 13(3), 10–15.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Matematika, Statistika dan Komputasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.