Comparison of Forecasting Model Using Chen and Lee High Order Fuzzy Time Series (Farmer’s Terms of Trade of Crops Subsector in Nusa Tenggara Timur Province Case)
DOI:
https://doi.org/10.20956/j.v21i2.42000Keywords:
NTPP, fuzzy time series, Chen model, Lee model, high orderAbstract
The farmer’s terms of trade of food crops subsector (NTPP) in Nusa Tenggara Timur Province has always been below 100 in 2019-2023. Food crops are a substantial agricultural subsector in which its contribution to the PDRB is significant and concerns the food adequacy of the region. NTPP is a proxy indicator to see farmers’ welfare and its value is expected to grow periodically. Therefore, predictive modeling is required to know future NTPP values and to know the purchasing power of food crop farmers. The aim of this research is to compare the accuracy of Chen and Lee model with the high order fuzzy time series for NTPP forecasting in Nusa Tenggara Timur Province. This research uses monthly data from NTPP Nusa Tenggara Timur from January 2016 to October 2024. The research results show that additions up to the 3rd order increase forecast accuracy and the Lee model is more accurate than the Chen model seen from the smaller RMSE and MAPE values. The MAPE values of the 3rd order fuzzy time series Chen and Lee model are 0.5453% and 0.5088% respectively. Based on the MAPE value, the 3rd order Lee model is the most accurate in forecasting NTPP in Nusa Tenggara Timur Province.
References
[1] Andhika, G. B., Sumarjaya, I. W., & Srinadi, I. G. A. M., 2020. Peramalan Nilai Tukar Petani Menggunakan Metode Singular Spectrum Analysis. E-JURNAL MATEMATIKA, Vol. 9, No. 3, 171‒176.
[2] Andika, F., Sari, R. P., & Nurviana, N., 2024. Perbandingan Model Chen dan Lee pada Metode Fuzzy Time Series untuk Peramalan Nilai Tukar Petani (NTP) di Provinsi Aceh. Jurnal Sains Matematika dan Statistika, Vol. 10, No. 1, 71‒84. DOI: 10.24014/jsms.v10i1.23463
[3] Ariannor, W., & Razatillah, M. F., 2022. Penerapan Jaringan Saraf Tiruan Backpropagation Dalam Memprediksi Nilai Tukar Petani. Progresif: Jurnal Ilmiah Komputer, Vol. 18, No. 1, 127‒140. DOI: 10.35889/progresif.v18i1.798
[4] BPS, 2022. Statistik Nilai Tukar Petani 2021.
[5] BPS, 2024. Statistik Nilai Tukar Petani Provinsi Nusa Tenggara Timur 2023.
[6] BPS, 2024. Statistik Pertanian Provinsi Nusa Tenggara Timur 2023.
[7] Chang, P.-C., Wang, Y. W, & Liu, C. H., 2007. The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, Vol. 32, No. 1, 86‒96. DOI: 10.1016/j.eswa.2005.11.021
[8] Chen, S.-M., 2002. Forecasting Enrollments Based on High-order Fuzzy Time Series. Cybernetics and Systems, Vol. 33, No. 1, 1–16. DOI: 10.1080/019697202753306479
[9] Dauda, A., 2019. Faktor yang Mempengaruhi Nilai Tukar Petani Sektor Tanaman Pangan di Provinsi Sulawesi Tengah. Bomba: Jurnal Pembangunan Daerah, Vol. 1, No. 2, 49–56.
[10] Fathoni, Y. M., & Wijayanto, S., 2021. Forecasting Penjualan Gas LPG di Toko Sembako Menggunakan Metode Fuzzy Time Series. JUPITER: Jurnal Penelitian Ilmu Dan Teknologi Komputer, Vol. 13, No. 2, 87–96. DOI: 10.5281/3541.jupiter.2021.10
[11] Febrilia, B. R. A., & Setiawan, R. N. S., 2023. Pemodelan Nilai Tukar Petani Subsektor Hortikultura di Provinsi Nusa Tenggara Barat Menggunakan Time Series Box Jenkins. Jurnal Agrimansion, Vol. 24, No. 1, 192‒199. DOI: 10.29303/agrimansion.v24i1.1346
[12] Hasan, I. K., & Ismail Djakaria, 2021. Perbandingan Model Hybrid ARIMA-NN dan Hybrid ARIMA-GARCH untuk Peramalan Data Nilai Tukar Petani di Provinsi Gorontalo. Jurnal Statistika dan Aplikasinya, Vol. 5, No. 2, 155‒165. DOI: 10.21009/JSA.05204
[13] Imalin, S., Anithakumari, V., & Arul Flower Mary, V. M., 2023. A Comparative Study on Fuzzy Time Series Forecasting and Autoregressive Integrated Moving Average Models. Tuijin Jishu/Journal of Propulsion Technology, Vol. 44, No. 3, 257‒270. DOI: 10.52783/tjjpt.v44.i3.263
[14] Ismiarti, D., Nafisah, J. S., Alisah, E., & Sujarwo, I., 2023. Perbandingan Uji Akurasi Fuzzy Time Series Model Cheng dan Lee dalam Memprediksi Perkembangan Harga Cabai Rawit. Jurnal Riset Mahasiswa Matematika, Vol. 2, No. 4, 154‒160. DOI: 10.18860/jrmm.v2i4.16808
[15] Kementerian Pertanian, 2022. Analisis Kesejahteraan Petani Tahun 2022.
[16] Kementerian Pertanian, 2023. Analisis PDB Sektor Pertanian Tahun 2023.
[17] Keumala, C. M., & Zainuddin, Z., 2018. Indikator Kesejahteraan Petani melalui Nilai Tukar Petani (NTP) dan Pembiayaan Syariah sebagai Solusi. Economica: Jurnal Ekonomi Islam, Vol. 9, No. 1, 129‒149, DOI: 10.21580/economica.2018.9.1.2108
[18] Muhammad, M., Wahyuningsih, S., & Siringoringo, M., 2021. Peramalan Nilai Tukar Petani Subsektor Peternakan Menggunakan Fuzzy Time Series Lee. Jambura Journal of Mathematics, Vol. 3, No. 1, 1‒15. DOI: 10.34312/jjom.v1i1.5940
[19] Nugroho, K., 2016. Model Analisis Prediksi Menggunakan Metode Fuzzy Time Series. Jurnal Ilmiah Infokam, Vol. 12, No. 1, 46–50. DOI: 10.53845/infokam.v12i1.91
[20] Pannu, H. S., & Tripathi, A., 2016. High-order fuzzy time series forecasting model for advance prediction of temperature. 2016 International Conference on Inventive Computation Technologies (ICICT), Vol. 1, 531‒536. DOI: 10.1109/inventive.2016.782489
[21] Rachmat, M., 2013. Nilai Tukar Petani: Konsep, Pengukuran dan Relevansinya Sebagai Indikator Kesejahteraan Petani. Forum Penelitian Agro Ekonomi, Vol. 31, No. 2, 111‒122. DOI: 10.21082/fae.v31n2.2013.111-122
[22] Rizki, M. I., & Taqiyyuddin, T. A., 2021. Penerapan Model SARIMA untuk Memprediksi Tingkat Inflasi di Indonesia. Jurnal Sains Matematika dan Statistika, Vol. 7, No. 2, 62‒72. DOI: 10.24014/jsms.v7i2.13168
[23] Song, Q., & Chissom, B. S., 1993. Fuzzy time series and its models. Fuzzy Sets and Systems, Vol. 54, 269‒277. DOI: 10.1016/0165-0114(93)90372-O
[24] Sulandari, W., Suhartono, S., & Yudhanto. Y., 2020. Aplikasi Fuzzy Pada Pemodelan Runtun Waktu, Bandung: Khazanah Intelektual.
[25] Sumartini, S., Hayati, M. N., & Wahyuningsih, S., 2017. Peramalan Menggunakan Metode Fuzzy Time Series Cheng. Jurnal Eksponensial, Vol. 8, No. 1, 51‒56.
[26] Qiu, W., Liu, X., & Li, H., 2011. A generalized method for forecasting based on fuzzy time series. Expert Systems with Applications, Vol. 38, No. 8, 10446–10453. DOI: 10.1016/j.eswa.2011.02.096
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Matematika, Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.