The Anatomy of Asian Palm Civet (*Paradoxurus hermaphroditus*) Brain in Timor Island

Filphin Adolfin Amalo¹, Yulfia Nellymalik Selan¹, Antin Yeftanti Nugrahening Widi², Andry Ndula Rimu³

¹Anatomy, Physiology, Pharmacology, and Biochemistry Department of Faculty of Veterinary Medicine, Nusa Cendana University
²Clinics, Reproduction, Pathology, and Animal Nutrition Department of Faculty of Veterinary Medicine, Nusa Cendana University
³Student of Faculty of Veterinary Medicine, Nusa Cendana University

*Correspondence: drh.filphin.amalo@gmail.com*

Abstract

Asian palm civet (*Paradoxurus hermaphroditus*) is native to some Asian regions, include Indonesia. Despite its wide spreading in those areas, study in regards to its anatomy is very few. This study is aimed to unveil the anatomy of Asian palm civet brain in Timor island. This study was performed in three Asian palm civets. The palm civets were anesthetized and humanely euthanized using perfusion technique, and macroscopically observed for their brains anatomy. Results showed Asian palm civet consisted of three main parts which were cerebrum, cerebellum, and brain stem. Compared to brain of dog, sulci and gyri of the Asian palm civet is simpler, with paraflocculus lobes were merely located in dorsal and ventral parts of the brain. However, the vermis was more similar to dogs, and more developed compare to *Rousettussp* (Javanese codot). This suggests that the anatomical difference is a result of the different behavior, which are nocturnal animal and live on trees.

Key words: brain, cerebrum, cerebellum, brain stem, *Paradoxurus hermaphroditus*

Introduction

Asian palm civet (*Paradoxurus hermaphroditus*) has become one of Indonesian biodiversity. IUCN categorizes it as least concern species (Duckworth *et al.*, 2008). Lately, this wild animal has turned into pet animal, without any considerations from the owner that it is a reservoir which transmits rabies, the zoonotic disease. Few rabies cases in monkeys and civets had been reported before (Sidharta *et al.*, 1996 *cited in Sarosaet *et al.*, 2000). Based on the brain anatomy similarity to dogs, *Rousettussp* may become a natural reservoir of rabies (Sari *et al.*, 2014).

Brain is a vital organ of living creatures as it serves as the center of body coordination. Brain is the place where any activities of living organism are regulated; include responses to any stimulation from surrounding environment (Ma’ruf, 2001). Brain shows its uniqueness in its regulatory mechanism towards body, from receiving information from sensory organs, combine them, and sending responses in the form of action by the body. Another important function of
brain is the memory center (Guyton, 1983 cited in Gunawan, 2001). The capacity of brain function in some manner is related to its anatomy.

This study is aimed to unveil the anatomy of Asian palm civet brain macroscopically. By doing so, this may give the latest information in regards to the topic, and may become a reference for further studies.

**Materials and Methods**

Three 16-18 grams of Asian palm civet were taken from East Central Timor District in East Nusa Tenggara Province, Indonesia. Deep anesthesia, perfusion and remove brain from cranium were applied to the civets in order to obtain brain. Macroscopical observation was performed to the three brain samples.

**Results and Discussion**

**Lateral view of Asian palm civet brain**

Lateral view of Asian palm civet brain shows three main parts, which were cerebrum, cerebellum, and brain stem (Figure 1).

![Figure 1. (A) Lateral view of Asian palm civet (Paradoxurus hermaphroditus) brain, (B) schematic picture of (A); (I) cerebrum, (II) cerebellum, (III) brain stem, (a) olfactory bulb, (b) frontal lobe, (c) parietal lobe, (d) occipital lobe, (e) temporal lobe, (f) paraflocculus lobe, (g) flocculus lobe, (h) simplex lobe, (i) asiform lobe, (j) vermis.](image)

Cerebrum was divided into a pair of hemispheres which were separated by longitudinal fissure. Olfactory bulb was located at the anterior of cerebrum, whereas the posterior was separated by transverse fissure from cerebellum. Cerebrum consisted of four lobes; they are frontal, parietal, occipital, and temporal lobes. Frontal lobe situated in the anterior part of the brain, meanwhile parietal lobe located at the caudal part of frontal lobe. Occipital lobe sited at the caudal part of parietal lobe, and temporal lobe was found at the lateral side of frontal lobe (Figure 1). Lateral side of the vermis was the place where ansiform lobe, simplex lobe, paraflocculus lobe, and flocculus lobe can be found. Each ansiform lobe located on the right and left sides of the cerebellum, whereas the caudal part of this lobe was simplex lobe. At the lateral side of asiform lobe can be found flocculus lobe, meanwhile the caudal part of this lobe was paraflocculus lobe. Ventral and dorsal lobes were located inside the paraflocculus lobe. This is similar to dogs (Sari et al., 2014), however different from Rousettussp which does not have paraflocculus lobe. Paraflocculus lobes in monkeys are considerably broad, whereas in aves, is merely in ventral paraflocculus lobe (Nieuwenhugset et al., 2014). Paraflocculus lobe's
functions are balancing center, also coordinating and receiving stimuli from vestibular (Macrini, 2006), in addition to increasing intelligence (Nieuwenhugs et al., 2014).

**Dorsal view of Asian palm civet brain**

Gyri and sulci are commonly found in cerebral hemisphere surface (Akers dan Denbow, 2008). The shape of Asian palm civet cerebral sulci and gyri were simpler compared to dog, due to more curved gyri and deeper sulci in the dog brain. However, sulci of Asian palm civet brain is more developed compared to Rouetussp which merely a line (Sari et al., 2014). Gyri of the Asian palm civet brain were marginal, ectomarginal, suprasylvian, and ectosylvian gyrus. Marginal gyri were located at the right and left sides of longitudinal fissure, whereas ectomarginal gyrus was found in the cranial side of ectomarginal sulcus. Suprasylvian gyrus was laid at the lateral side of marginal sulcus, while ectosylvian gyrus was situated at the caudal side of ectosylvian sulcus. Sulci of the Asian palm civet brain were marginal, ectomarginal, suprasylvian, ectosylvian, cruciate, and rhinal sulcus. Marginal sulcus was located at the lateral side of marginal gyrus, while ectomarginal sulcus was positioned at the ventral side of ectomarginal gyrus. Suprasylvian sulcus was found at the cranial side of suprasylvian gyrus, whereas ectosylvian sulcus was situated at the caudal side of ectosylvian gyrus. Cruciate sulcus was laid at the lateral side of longitudinal fissure, and rhinal sulcus located at the ventral side of the cerebrum where which separated cerebrum from olfactory bulb (Fig. 2A3).

Figure 2. (A1) Dog brain (Dyce et al., 2010), (A2) Rouetussp brain (Sari et al., 2014), (A3) Asian palm civet brain, (A) cerebrum, (B) cerebellum, (C) brain stem. (1) longitudinal fissure l, (2) transversal fissure, (3) dorso-medial sulcus, (4) tractus gracilis, (5) nucleus gracilis, (6) tractus cuneatus, (7) nucleus cuneatus, (8) cerebellar hemisphere, (9) cerebellar vermis, (10) marginal sulcus, (10’) marginal gyrus, (11) ectomarginal sulcus, (11’) ectomarginal gyrus, (12) suprasylvian sulcus, (12’) suprasylvian gyrus, (13) ectosylvian sulcus, (13’) ectosylvian gyrus, (14) cruciate sulcus, (15) olfactory bulb, (16) paraflocculus lobe, (17) flocculus lobe.
According to Miller (1969) *cit.* Sari *et al.* 2014 and Dyce *et al.* (2010), dog has anterior and posterior sulci and gyri of rhinal sulcus, marginal sulci and gyri which consists of marginal, ectomarginal, and post marginal. Lateral side of dog brain sylvian sulcus, also suprasylvian sulci which comprised of anterior, posterior, and medial part. The more developed sulci and gyri found in an animal, the more neuron located in the cortex cerebri, thus the more intelligent an animal is (Kardong, 2012). This means that intelligence is influenced by the brain size, both absolute and relative, also cortex of the brain (Roth dan Dicke, 2005).

Vermis of the Asian palm civet cerebellum was found in the medial part of cerebellum. This vermis was similar to vermis of dogs, and more developed compare to *Reusettussp.* This owe to nocturnal activity of Asian palm civet as well as their behavior to live on the tree, since cerebellum commonly organizes somatic-motoric activity, also regulate muscle, body balance and posture (Strata, 2011; Fletcher, 2006). Vermis of the Asian palm civet cerebellum was divided in the same way as in mice, which consisted of ten lobes. Mice vermis lobes are IV b, V a, V b, VI a, VI b, VI c, VII a, VII b, VIII a, VIII b, IX a, dan IX b lobes (Byanet *et al.*, 2013). Lobes that were identified in Asian palm civet cerebellum were Ia, Ib, II a, II b, III a, III b, IV a, IV b, V a, V b, VI a, VI b VII a, VII b, VIII a, VIII b, IXa, IXb, XadanXb lobes. Lobila, Ib, IIa, IIb, IIIa, IIIb, IVa, IVb, V a, V b, VI a, VI b VII a, VII b, VIII a, VIII b, IXa, IXb, XadanXb were seen at the sagittal cut of the cerebellum. The anterior side of vermis was the place where lobii a dan III b were found. Towards caudal direction of these lobi were lobi IV a dan IV b, V a and V b, VI a dan Vb. Nucleus gracillis was located at the dorsal part of brain stem. Tractus gracillis was situated at the caudal of the nucleus gracillis, while at the lateral side of this tractus was tractus cuneatus. Nucleus cuneatus was located at the dorsal part of brain stem. Tractus cuneatus was situated at the caudal of the nucleus cuneate, while at the lateral side of this tractus was tractus cuneatus. Lateral side of tractus gracillii was dorsomedial sulcus (Fig. 2B).

Nucleuses that were found in Asian palm civet brain were nucleus gracilli and nucleus cuneate, whereas the tractus were tractus gracilliis and tractus cuneateus. Nucleus gracilliis was located at the dorsal part of brain stem. Tractus gracilliis was situated at the caudal of the nucleus gracilli, while at the lateral side of this tractus was tractus cuneateus. Lateral side of tractus gracilliis was dorsomedial sulcus (Fig. 2C).

Ventral view of Asian palm civet brain

Ventral view of Asian palm civet brain showed olfactory bulb at the anterior part of the brain, and olfactory medial stria at the caudal side of olfactory bulb, while olfactory tractus was at the lateral side of olfactory medial stria, with optic chiasm, mammillary body infundibulum, and interpendicular fossa were located at the caudal side of olfactory tractus. Rhinal sulcus was placed between cerebellum and olfactory bulb. At the lateral side of mammillary body there was tuber cinereum. Cerebral peduncles was situated at the lateral side of interpendicular fossa, while at the caudal part, there was pons. Lateral side of medulla oblongata was occupied by trapezoid body, whereas the caudal ventral was pyramid and ventro-medial fissure respectively (Fig. 3).

The other part of ventral view of Asian palm civet brain displayed the similar feature as seen in *Reusettussp* (Sari *et al.*, 2014), which consisted of twelve pairs of cranial nerves. Olfactory nerve was found at the anterior part, followed by optical nerve at its caudal part. Oculomotor nerve was found at the lateral side of mammillary body and interpendicular fossa. Trochlear nerve was located at the caudal side of pons, while at its lateral side was vestibulo-throchlear nerve. Towards caudal direction of cerebral peduncles there were trigeminal nerve and facial nerve respectively. At the ventral part of medulla oblongata there was abducens nerve, while at the lateral side was glossopharyngeal nerve. In the caudal direction of glossopharyngeal nerve there were vagus nerve, accessory nerve, and hypoglossal nerve respectively (Fig. 3).
Sagittal view of Asian palm civet brain

Sagittal view of Asian palm civet brain exhibited olfactory bulb at the posterior part of cerebrum, while corpus calosum fibre was located at the dorsal side of olfactory bulb. Towards caudal direction of corpus calosum fibre were corpus calosum genu and splenic sulcus respectively. At the dorsal side of splenic sulcus, there was fornix. In the caudal direction of fornix there were interventricular foramen and thalamus, while the caudal side of thalamus there was mecenephalicaqueduct. Ventral side of fornix was the place of optic chiasm, whereas caudal side of optic chiasm was splenium. At the anterior side of medulla oblongata there was pons, while at the dorsal side, postoriolateral fissure, which was located next to cerebellum. At cerebellervermis were seen lingual, central lobe, ascendens lobe, culmen, declive, uvula, and nodules (Fig. 4).

Medial cut of Asian palm civet brain revealed corpus calosum and fornix, which interconnected cerebral hemisphere and thalamus. Corpus calosum was at the top of the lateral ventricle and base of cerebral hemisphere. Lateral ventricle was located at the right and left of cerebral hemisphere, and connected to ventricle III through interventricular foramen. Some portion of ventricle III was attached to hypophysis infundibulum, whereas ventricle IV was found between cerebellum and upper part of pons.

Conclusion

In conclusion, Asian palm civet (Paradoxurus hermaphroditus) brain consisted of three main parts, which are cerebrum, cerebellum, and brain stem. Sulci anggyri of this animal brain are simpler compare to sulci and gyri of dogs, however more developed than Reusettus sp. This indicates the higher intelligence of Asian palm civet compare to Reusettus sp. Vermis of Asian palm civet brain is more similar to dog, however more developed than Reusettus sp., which may relate to its nocturnal activity and its life on the tree.

Acknowledgment

The author would like to thank the Faculty of Veterinary Medicine, Nusa Cendana University for giving permission to use laboratory facilities available in Department of Anatomy, Physiology, Pharmacology, and Biochemistry.

References


Macrini, TE. 2006. The evolution of endocranial space in mammals and non-mammalian cynodonts. Dissertation. The University Of Texas at austin. USA.


