MODEL TIKUS DIABETES YANG DIINDUKSI STREPTOZOTOCIN-SUKROSA UNTUK PENDEKATAN PENELITIAN DIABETES MELITUS GESTASIONAL

Authors

  • Firdaus Firdaus
  • Rimbawan Rimbawan
  • Sri Anna Marliyati
  • Katrin Roosita

Keywords:

Streptozotocin, sukrosa, Gestasional Diabetes Melitus (GDM)

Abstract

Diabetes melitus gestasional (DMG) merupakan intoleransi glukosa pada berbagai tingkatan yang terjadi selama kehamilan. DMG pada wanita meningkatkan risiko kematian sebelum kelahiran pada ibu dan bayinya, tingkat kesakitan pada ibu dan meningkatkan risiko berkembangnya DM tipe-2 setelah melahirkan. Penggunaan hewan coba alternatif dengan metode yang tepat dalam penelitian DMG dengan pendekatan DM tipe-2 telah banyak dilakukan dan cukup mendesak. Tujuan penelitian ini untuk mengetahui apakah induksi Streptozotocin-sukrosa dapat menghasilkan DM tipe-2 pada tikus yang dapat digunakan sebagai pendekatan dalam penelitian DMG. Peneltian ini bersifat eksperimental, tikus Sprague Dawley jantan berjumlah 45 ekor berusia 6 minggu dialokasikan pada 2 kelompok: kontrol (n=5) dan diabetes (n=40). Kelompok kontrol diinjeksi secara intraperitoneal dengan phosphat buffer saline (PBS) tanpa sukrosa dan kelompok diabetes diinjeksi secara intraperitonela dengan streptozotocin (STZ) dosis 40 mg/kg berat badan dan diberikan 30% sukrosa secaraad libitum, pengukuran glukosa darah puasa dan berat badan dilakukan tiap 3 hari. Setelah minggu ke-4 perlakuan, terdapat 24 tikus pada kelompok diabetes dengan glukosa darah puasa diatas 126 mg/dL dan menunjukkan perbedaan signifikan glukosa darah (p<0.05)dan peningkatan berat badan (p<0.05) dibandingkan dengan kelompok kontrol. Induksi STZ-sukrosa dapat menghasilkan DM tipe-2 pada tikusSprague dawley Jantan dan dapat digunakan sebagai pendekatan peneltian DMG.

References

Zhang H, Zhang J, Pope CF, Crawford LA, Vasavada RC, Jagasia SM, Gannon M.. Gestational diabetes mellitus resulting from impaired β-Cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen. Diabetes 2010;59:143–152.

Adam JMF. Klasifikasi dan kriteria diagosis diabetes melitus yang baru. Cermin Dunia Kedokteran. 2000;127:37-40.

Lowdermilk DL, Perry SE, Bobak IM.. Maternity nursing. Edisi ke-5. St. Louis : Mosby; 1999

Sutanegara D, Darmono, Budhiarta AAG. The epidemiology and management of diabetes mellitus in indonesia. Diabet Res Clin Prac. 2000;50(2):S9-S16.

Purnamasari D, Waspadji S, Adam JMF, Rudijanto A, Tahapary D. Indonesian Clinical Practice Guidelines for Diabetes in Pregnancy. JAFES. 2013;28(1):9-13.

Ferrara A.. Increasing prevalence of gestational diabetes mellitus: A public health perspective. Diabetes Care. 2007;30(2).

Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. The Lancet. 2009;373(9677):1773 – 1779.

Hirst JE, Greenow CHR, Jeffery HE. A systematic review of trends of gestational diabetes mellitus in Asia. Journal of Diabetology. 2012;3(4).

Etuk EU. Animals models for studying diabetes mellitus. Agric. Biol. J. N. Am. 2010; 1(2):130-134.

Koolhaas JM.. The Laboratory Rat Chapter 22. Di dalam: Hubercht R, Kirkwood J, editor. The UFAW Handbook on The Care and Management of Laboratory and Others Research Animals. Wheathampstead (UK). Wiley-Blackwell; 2010

Hellerstrom C, Swenne I, Erikkson UJ. Is there an animal model for gestational diabetes?. Diabetes. 1985;34(2).

Rantam FA.. Metode Imunologi. Cet.1. Surabaya (ID): Airlangga University Press; 2003.

Jung JY, Lim Y, Moon MS, Kim JY,Kwon O. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutrition and Metabolism. 2011;8(18).

American Diabetes Association. Standards of medical care in diabetes . Diabetes Care. 2015;38(1):S1-S94.

Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic Action of Streptozotocin: Relationship of Dose to Metabolic Response. The Journal of Clinical Investigation. 1969;48:2129-2139.

Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001;50: 536-546.

Garvey WT. Glucose transport and NIDDM [ulasan]. Diabetes Care. 1992;15(3).

Mayfild JA, White RD. Insulin therapy for type 2 diabetes: rescue, augmentation, and replacement of beta-cell function. American Family Physycian. 2004;70(3).

Cao D, Lu H, Lewis TL, Li L. Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. The Journal Of Biological Chemistry. 2007;282(50):36275–36282.

Chicco A, D’Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB. Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutr. 2003;133: 127-133.

Daly M. Sugars, insulin sensitivity, and the postprandial state. Am J Clin Nutr:2003;78:865S–72S.

Pagliassoti MJ, Gayles EC, Podolin DA, Wei Y, Morin CL. Developmental stage modifies diet-induced peripheral insulin resistance in rats. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 2000;278: R66–R73.

Calcutt NA.. Modeling Diabetic Sensory Neuropathy in Rats. Di dalam: Luo ZD, editor. Pain Research: Methods and Protocols. New Jersey (US). Humana Press; 2004.

Archer ZA, Rayner DV, Rozman J, Klingespor M, Mercer JG.. Normal distribution of body weight gain in male sprague-dawley rats fed a high-energy diet. Obes Res. 2003;11:1376-1383.

Russel-Jones D, Khan R.. Insulin-associated weight gain in diabetes--causes, effects and coping strategies. Diabetes Obes Metab. 2007;9(6):799-812.

Downloads

Published

2016-06-22

Issue

Section

Articles