This is an outdated version published on 2022-07-01. Read the most recent version.

Analisis Perubahan Berat Badan Balita dengan Estimator Penalized Spline Kuadratik

Authors

  • Muhammad Jayzul Usrah Universitas Hasanuddin
  • Anna Islamiyati Universitas Hasanuddin
  • Anisa Universitas Hasanuddin

Keywords:

GCV, Growth of Toddler, Knots Point, Nonparametric Regression, Spline

Abstract

Nonparametric regression is a regression approach that is used when one of the parametric assumptions are not fulfilled. One of the estimators in nonparametric regression is penalized spline. The growth pattern of toddler that varied each month of observation make the suitable regression approach is nonparametric penalized spline regression because of its high flexibility. This study aims to obtain an estimate of the growth model for toddler in South Sulawesi. The optimal model obtained with a minimum GCV value of 4.87E-05 using two point knots that is 14 and 56 with lamda 100. The estimation results show that there are 3 intervals of change patterns in the growth of toddler in South Sulawesi

Author Biography

Anna Islamiyati, Universitas Hasanuddin

Departemen Statistika

References

Islamiyati, A., Fatmawati & Chamidah, N. Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression. J. Phys.: Conf. Ser. 979 012093, 2018

Lestari, B., & Budiantara, I. N. Spline Estimator of Triple Response Nonparametric Regression Model. Jurnal Ilmu Dasar, Vol. 11, 17-22, 2010.

Rumlawang, F.Y., Aulele, S.N. & Kasim, N. Penentuan Model Regresi Nonparametrik Spline Pada Data Pertumbuhan Balita Di Desa Nania Provinsi Maluku Tahun 2013-2014. Barekeng : Jurnal Ilmu Matematika dan Terapan, 12(1): 27-32, 2018.

Islamiyati, A. Taksiran Kurva Regresi Spline pada Data Longitudinal dengan Kuadrat Terkecil. Jurnal Matematika, Statistika & Komputasi, 11(1) : 97-102, 2014.

Ramdhani, Z.A., Islamiyati, A. & Raupong. Hubungan Faktor Kolesterol Terhadap Gula Darah Diabetes dengan Spline Kubik Terbobot. ESTIMASI: Journal of Statistics and Its Application, 1 (1) : 32-39, 2020.

Arifin, S., Islamiyati, A. & Raupong. Kemampuan Estimator Spline Linear dalam Analisis Komponen Utama. ESTIMASI: Journal of Statistics and Its Application, 1 (1) : 40-47, 2020.

Lestari, B., Fatmawati & Budiantara, I.N. Smoothing Spline Estimator in Multiresponse Nonparametric Regression for Predicting Blood Pressure and Heart Rate. International Journal of Academic and Applied Research, 3 (9) : 1-8, 2019.

Islamiyati, A., Fatmawati & Chamidah, N. Fungsi Goodness of Fit dalam Kriteria Penalized Spline pada Estimasi Regresi Nonparametrik Birespon untuk Data Longitudinal. Proseding Seminar Nasional Matematika dan Aplikasinya. UNAIR Surabaya, 2017.

Islamiyati, A., Fatmawati & Chamidah, N. Penalized Spline Estimator With Multi Smoothing Parameters in Biresponse Multipredictor Regression Model for Longitudinal Data. Songklanakarin Journal of Science and Technology, 42 (4) : 897-909, 2020.

Islamiyati, A., Sunusi, N., Kalondeng, A., Wati, F. & Chamidah, N. Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-Variate Predictor Non-Parametric Regression Model. Journal of Sciences, Islamic Republic of Iran, 31 (2) : 175-183, 2020.

Ahmad, R.R., Ghazali, N., Rambeli, A.S., Din, U. K. S. & Hassan, N. Application of Cubic Spline in the Implementation of Braces for the Case of a Child. Journal of Mathematics and Statistics, 8 (1) : 144-149, 2012.

Islamiyati, A., Fatmawati & Chamidah, N. Changes in Blood Glucose 2 Hours After Meals in Type 2 Diabetes Patients Based On Length of Treatment at Hasanuddin University Hospital, Indonesia. Rawal Medical Journal, 45 (1) : 31-34, 2020.

Zia, G.N., Suparti, & Safitri, D. Pemodelan Regresi Spline Menggunakan Metode Penalized Spline Pada Data Longitudinal (Studi Kasus: Harga Penutupan Saham Lq45 Sektor Keuangan Dengan Kurs Usd Terhadap Rupiah Periode Januari 2011-Januari 2016). Gaussian : Jurnal Statistika UNDIP, 6(2) : 221-230,2017.

Islamiyati, A., Raupong & Anisa. Use of Penalized Spline Linear to Identify Change in Pattern of Blood Sugar Based On the Weight of Diabetes Patients. International Journal of Academic and Applied Research, 3(12) : 75-78, 2019.

Downloads

Published

2022-07-01

Versions