Pemodelan Geographically Weighted Logistic Regression dengan Metode Ridge

Authors

  • Reski Amalah
  • Andi Kresna Jaya
  • Nasrah Sirajang

Keywords:

Proverty, GWLR, Maximum Likelihood Estimation, multikolinieritas, ridge

Abstract

One of the goals of national development is to reduce poverty. Poverty is included in the phenomenon of spatial heterogeneity because it can be shown by the varying economic conditions in each region. The statistical modeling method developed for data analysis takes into account regional factors namely Geographical Weighted Logistic Regression (GWLR). The parameter estimator of the GWLR semiparametric model used in this study was obtained using the Maximum Likelihood Estimation method. In GWLR, the assumption that must be fulfilled is the absence of multicollinearity. One method for dealing with multicollinearity is ridge regression involving the addition of a constant bias . The results obtained were the MSE value of the parameter estimator with the ridge method (707.77) smaller than the GWLR model before using the ridge (715.88). This shows that the ridge method is more effective if there are multicollinearity problems.

References

Badan Pusat Statistik. Data dan Informasi Kemiskinan Sulawesi Selatan Tahun 2017. Makassar: BPS. 2017.

Shara,Y. Pemodelan Geographically Weighted Regression Dengan Pembobot Fixed Bisquare Kernel Pada Data Spasial (Studi Kasus Balita Gizi Buruk di Provinsi Jawa Timur Tahun 2008). Malang: Universitas Brawijaya. 2012.

Fitriyaningsih, I., & Sutikno. Geographically Weighted Lasso dan PCA untuk mengatasi multikolinieritas data spasial (Studi kasus: Perumahan Pondok Indah Jakartas Selatan). Surabaya: Institut Teknologi Sepuluh Nopember. 2015.

Pradita. Geographically Weighted Logistic Regression dan Aplikasinya (Studi Kasus: IPM di Provinsi Jawa Timur). Surabaya: Institut Teknolni Sepuluh Nopember. 2011.

Yan, X., & Su, X. G. inier Regression Analysis: Theory and Computing. Singapore: World Scientific. 2009.

Mar’ah, & Zakiyah. Pemodelan Regresi Terboboti Geografis Semiparametrik Dengan Model Linier Koregionalisasi. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor. 2017.

Anselin, L. Spatial Econometrics. Dalls: School of Social Science. 2009.

Fotheringham, A., Brundson, C., dan Charlthon, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. New York: John Wiley and Sons. 2002.

Pravitasary, Hajarisman, dan Sunendiari. Pemodelan Faktor-faktor yang Berpengaruh Terhadap Angka Buta Huruf di Provinsi Jawa Barat dengan Geographically Weighted Logistic Regression. Bandung: Universitas Islam Bandung. 2015.

Downloads

Published

2023-08-04