Estimasi Parameter Model Regresi Logistik Biner dengan Conditional Maximum Likelihood Estimation pada Data Panel

Authors

  • Fitri Fitri
  • Anna Islamiyati
  • Anisa Kalondeng

Keywords:

Human Development Index, Life Expectancy Rate, Expectation of Old School Years, Average Length of Schooling, Conditional Maximum Likelihood Estimation

Abstract

Binary logistic regression models can be used on panel data with categorical responses that experience repeated measurements based on time. This study aims to determine the factors that influence the Human Development Index in South Sulawesi Province in 2015-2019. Data were analyzed through binary logistic regression with fixed effect model approach through Conditional Maximum Likelihood Estimation (CMLE) for panel data. The results of this study indicate that the variables that have a significant effect are life expectancy (X1), school length expectancy (X2) and the average length of schooling (X3). Obtained the probability value of districts/cities that have a medium low and medium high human development index with a classification accuracy of 56.25%.

References

Kurniawan. Analisis Data dengan Menggunakan STATA 14. Yogyakarta: Deepublish Publisher, 2019.

Khotimah, M. K. & Wulandari, S. P. Model Regresi Logistik Biner Stratifikasi Pada Partisipasi Ekonomi Perempuan Di Provinsi Jawa Timur. Jurnal Sains dan Seni Pomits, 3(1), 2337-3520, 2014.

Wardhani, L. R. Analisis Keputusan Konsumen Memilih Bahan Bakar Minyak (BBM) menggunakan Model Regresi Logistik Biner dan Model Log Liner (Studi Kasus SPBU 44.502.10 Ketileng Semarang). Jurnal Gaussian, 4(4), 927-936, 2015.

Marlenea, L. Regresi Logistik Pada Model Problem Based Learning Berbantu Software Cabri 3D. Jurnal Penelitian Matematika dan Pendidikan Matematika, 5(1), 64-70, 2017.

Khaeri, H. & Ghandi, P. Penerapan Model Regresi Logistik Biner pada Motif Faktor Kewirusahaan Perempuan. Prima Jurnal Pendidikan Matematika. 1(2), 67-80, 2018.

Baltagi, B. Econometric(5th ed). New York : Springer-Verlag Berlin Heidelberg, 2011.

Jayanti, S. Penerapan Regresi Logistik Data Panel pada Evaluasi Kebijakan Inflation Targeting Framework di Pulau Jawa Periode (2006-2015). Skripsi. Statistika. Sekolah Tinggi Ilmu Statistik, 2017.

Atkinson, P.M., German, S.E., Sear, D.A. & Clark, M.J. Exploring the Relation Between Riverbank Erosion and Geomorphological Controls Using Geographically Weighted Logistic Regression. Geographical Analysis, 35, 59-82, 2003.

Baltagi, B. Econometrics Analysis of Panel Data (3rd ed). Chicester: England: John Wiley & Sons Ltd, 2005.

Kurniawan. Analisis Data dengan Menggunakan STATA 14. Yogyakarta: Deepublish Publisher, 2019.

Downloads

Published

2024-07-27