Mengatasi Overdispersi Menggunakan Regresi Binomial Negatif dengan Penaksir Maksimum Likelihood pada Kasus Demam Berdarah di Kota Makassar

Authors

  • Muhammad Fadil a:1:{s:5:"en_US";s:5:"UNHAS";}
  • Raupong Raupong
  • Nirwan Ilyas

Keywords:

GLM, Poisson regression, Overdispersion, Negative Binomial Regression Model, AIC

Abstract

The basic assumption in Poisson regression is that the mean value is the same as the variance value, which is called equidispersion. However, in some cases, this assumption is not met. A variance value that is greater than the average is called overdispersion and is called underdispersion if the variance value is smaller than the average value. So the Poisson regression model is no longer suitable for modeling this type of data because it will produce biased parameter estimates, therefore a negative binomial regression model is used. The research results show that estimating the parameters of the negative binomial regression model uses the maximum likelihood estimation method and then continues with the Newton-Raphson iteration method. The results obtained show that the negative binomial regression model overcomes the overdispersion that occurs in data on the number of dengue fever cases in Makassar City with the model  and an AIC value of 236.06647. The negative binomial regression model produces many models and then the best model with the smallest AIC criteria is selected.

References

Badan Pusat Statistik. Provinsi Sulawesi Selatan dalam Angka 2021. Makassar: Badan Pusat Statistik Sulawesi Selatan. 2021.

Kutner, M. H., Nachtsheim, C. J., & Neter, J. Applied Linear Regression Models. 4th ed. New York: McGraw-Hill Companies Inc. 2004.

Hardle, W. Applied Nonparametric Regression. United State: Cambridge University Press. 1995.

McCullagh, P., & Nelder, J. A. Generalized Liner Model, second edition. London: Chapman and Hall. 1989.

Ismail, N., & Jemain, A. A. Handling Overdispersion with Negative Binomial and Generalized Poisson Regression Models. Casualty Actuarial Society Forum, 8, 367-394, 2007.

Simarmata, R. T., & Ispriyanti, D. Penanganan Overdispersi pada Model Regresi Poisson Menggunakan Model Regresi Binomial Negatif. Media Statistika, 4(2), 95-104, 2011.

Cameron, A. C., & Trivedi, P. K. Regression Analysis of Count Data. New York: Cambridge University Press. 1998.

Hilbe, J. M. Negative Binomial Regression (2nd ed.). New York, NY, US: Cambridge University Press. 2011.

Downloads

Published

2024-01-29