Pemodelan Regresi Zero Inflated Negative Binomial pada Data yang Mengalami Overdispersi
DOI:
https://doi.org/10.20956/ejsa.v6i1.21037Keywords:
Overdispersion, Neonatal Mortality, ZINB Regression, MLEAbstract
Poisson regression is a nonlinear regression model with the response variables in the form of discrete data and Poisson distribution. Data analysis using Poisson regression must meet assumptions such as the variance value and the average value of the response variables have the same value. However, in its application, overdispersion often occurs, namely the variance value is greater than the average value. Overdispersion in Poisson regression can occur because of the number of zero observations on the response variable. Data with zero excess and overdispersion are more suitable for using ZINB regression. The ZINB regression model is a model formed from the mixed distribution of the Poisson gamma. The ZINB regression model parameters were estimated using the MLE method with the EM algorithm. This study was applied to data on the number of neonatal deaths in Makassar City in 2018. The results of testing the ZINB regression model parameters showed that the predictor variable that had a partially significant effect was the number of newborns with low birth weight.
References
Dinkes. Profil Kesehatan Kota Makassar Tahun 2018. Dinas Kesehatan Provinsi Kota Makassar, Makassar, 2019.
Garay, A. M., Hashimoto, E. M., Ortega, E. M. M., & Lachos, V. H. On Estimation and Influence Diagnostics for Zero Inflated Negative Binomial Regression Model. Computational Statistics and Data Analysis, 55, 1304-1318, 2011.
Hilbe, J. M. Negative Binomial Regression. Cambridge University Press, New York, 2011.
Ilmi, F. M. Pemodelan Kasus Malaria dan Filariasis di Jawa Timur Menggunakan Regresi Poisson Bivariat. Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember, 2015.
Kurniawan, I. Model Regresi Poisson Terbaik Menggunakan Zero-Inflated Poisson (ZIP) dan Zero-Inflated Negative Binomial (ZINB). Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang, 2017.
McCullagh, P., & Nelder, J. A. Generalized Linear Models. Second Edition. Chapman and Hall, London, 1989.
Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. Generalized Linear Models with Applications in Engineering and The Sciences. Second edition. John Wiley and Sons, New Jersey, 2010.
Simarmata, R. T., & Ispriyanti, D. Penanganan Overdispersi pada Model Regresi Poisson Menggunakan Model Regresi Binomial Negatif. Media Statistika, 4(2), 95-104, 2011.
Downloads
Published
Issue
Section
License
Copyright
It is the author's responsibility to ensure that his or her submitted work does not infringe any existing copyright. Authors should obtain permission to reproduce or adapt copyrighted material and provide evidence of approval upon submitting the final version of a manuscript.