Estimasi Model Perubahan Indeks Harga Saham Gabungan melalui Regresi Kuantil Spline Smoothing
DOI:
https://doi.org/10.20956/ejsa.v6i1.25198Keywords:
JCI, IDJ, Quantile, Nonparametric, Spline SmoothingAbstract
Regression of nonparametric quantile is conducted on purpose to help estimating the function of regression when the assumptions about the regression curve shape are not known involving quantile values. Spline is claimed as one of the estimators commonly applied in nonparametric regression. Patterns of platelet change in Jacarta Composite Indeks (JCI) based on Dow Jones Index (IDJ) were analyszed by quantile spline smoothing using τ 0.25, 0.50, and 0.75. The analysis results show two patterns of change in the relationship of JCI and the IDJ. It can be seen from the optimal knot point for each quantile, namely 28500, 35000 and 29600, which shows that before and after the IDJ value reaches the point from the knot point, there is a tendency to decrease and then increase in the JCI data. The optimal model with the one-knot point. According to the minimum GCV value, the optimal model with the smallest GCV vaue, which is 5243.45 on quantile 0.75.
References
Wahyudi, V. E., & Zain, I. Analisis IPM di Pulau Jawa Menggunakan Analisis Regresi Kuantil. Jurnal Statistika, 2(1), 64-69, 2014.
Balami, A. M. Estimasi Parameter Regresi Kuantil Pada Kasus Demam Berdarah Dengue di Kota Surabaya. Departemen Statistika FMIPA ITS, 2017.
Furno, M. Prediction on Quantile Regression. Open Journal of Statistics, 4, 504-517, 2014.
Puteri, W. N. A. Pemodelan Regresi Kuanil dengan Spline Multivariat pada Data Trombosit PAsien Demam Berdarah Dengue. Departemen Statistika FMIPA UNHAS, 2019.
Putri, W. N. A., Islamiyati, A., & Anisa. Penggunaan Regresi Multivariat pada Perubahan Trombosit Pasien Demam Berdarah Dengue. ESTIMASI: Journal of Statistics and Its Application, 1(1), 1-9, 2020.
Islamiyati, A. Spline Polynomial Truncated dalam Regresi Nonparametrik. Jurnal Matematika, Statistika & Komputasi, 14(1), 54-60, 2017.
Islamiyati, A. Taksiran Kurva Regresi Spline pada Data Longitudinal dengan Kuadrat Terkecil. Jurnal Matematika, Statistika & Komputasi, 11(1), 97-102, 2014.
Mulyani, S. Pemodelan Hubungan Indeks Pembangunan Manusia dan Persentase Penduduk Miskin Menggunakan Regresi Kuantil Smoothing Spline. Bandung: Departemen Statistika FMIPA UNPAD, 2017.
Islamiyati, A., Fatmawati, & Chamidah, N. Fungsi Goodness of Fit dalam Kriteria Penalized Spline pada Estimasi Regresi Nonparametrik Birespon untuk Data Longitudinal. Proseding Seminar Nasional Matematika dan Aplikasinya. UNAIR Surabaya, 2017.
Islamiyati, A., Fatmawati, & Chamidah, N. Penalized Spline Estimator With Multi Smoothing Parameters in Biresponse Multipredictor Regression Model for Longitudinal Data. Songklanakarin Journal of Science and Technology, 42(4),
897-909, 2020.
Aprilia, B., Islamiyati A., Anisa, & Ilyas N. Estimasi Model Regresi Kuantil Spline Kuadratik pada Data Trombosit dan Hematokrit Pasien DBD. Jurnal Estimasi. 1(2), 58-64, 2020.
Balami, A. M., & Matdoan M. Y. Estimasi Parameter Regresi Kuantil Dengan Fungsi Spline Truncated Pada Kasus Demam Berdarah Dengue di Kota Surabaya. Jurnal MSA, 7(1), 44-53, 2019.
Chen, Z., Chen, J. & Zhang, Q. Small Area Quantile Estimation Via Spline Regression and Empirical Likelihood. Survey Methodology, 45(1), 81-99, 2019.
Permathasari, P., Devianto, D., & Mayastri. Multivariate Adaptive Regression Spline dan Regresi Kuantil Pada Indeks Harga Saham Gabungan Periode 2013-2018. Jurnal Statistika, 6(2), 94-103, 2018.
Wicaksono, I. S. & Yasa, G. W. Pengaruh Fed Rate, Indeks Dow Jones, Nikkei 225, Hang Seng Terhadap Indeks Harga Saham Gabungan. E-Jurnal Akuntansi. 18(1), 358-385, 2017.
Downloads
Published
Issue
Section
License
Copyright
It is the author's responsibility to ensure that his or her submitted work does not infringe any existing copyright. Authors should obtain permission to reproduce or adapt copyrighted material and provide evidence of approval upon submitting the final version of a manuscript.