Perbandingan Analisis Komponen Utama Robust Minimum Covarian Determinant dengan Least Trimmed Square pada Data Produk Domestik Regional Bruto

Authors

  • Wa Ode Sitti Amni Amni
  • Andi Kresna Jaya
  • Nirwan Ilyas

Keywords:

Multicollinearity, Outlier, Principal Component Analysis, Minimum Covariance Determinant, Least Trimmed Square

Abstract

Regression analysis is a method to examine the relationship between variables and determine their influence. However, the problem of multicollinearity often arises in linear regression analysis and can cause interpretation problems. To handle multicollinearity, Principal Component Analysis (PCA) is used. However, this method has a weakness when the data contains outliers. Therefore, it was developed into robust PCA using the Minimum Covariance Determinant (MCD) method and the Least Trimmed Square (LTS) estimation method. This study uses Gross Regional Domestic Product data in Indonesia in 2020, which has problems with multicollinearity and outliers. This data is modeled using two robust PCA methods, namely MCD and LTS. The robust PCA model with MCD has an adjusted  value of 87.87% and an MSE value of 0.0700. However, in the robust PCA regression model with LTS, the adjusted  value is 98.93% and the MSE value is 0.0325. Thus, the effective method in handling multicollinearity and outliers is the LTS method because it shows better results.

References

Subandriyo, B. Buku Ajar Analisis Kolerasi dan Regresi. Diklat Statistisi Tingkat Ahli BPS Angkatan XXI, 31, 2020.

Padilah, T. N., & Adam, R. I. Analisis Regresi Linier Berganda Dalam Estimasi Produktivitas Tanaman Padi Di Kabupaten Karawang. FIBONACCI: Jurnal Pendidikan Matematika dan Matematika, 5(2), 117, 2019, doi: 10.24853/fbc.5.2.117-128.

Shodiqin, A. Perbandingan Metode Regresi Robust yakni Metode Least Trimmed Squares (LTS) dengan metode Estimator-MM (Estimasi-MM). 2018.

Larasati, S. D. A., Nisa, K., & Setiawan, E. Analisis Regresi Komponen Utama Robust dengan Metode Minimum Covariance Determinant – Least Trimmed Square (MCD-LTS). Jurnal Siger Matematika, 1(1), pp. 1–9, 2020, doi: 10.23960/jsm.v1i1.2472.

Pendi. Analisis Regresi dengan Metode Komponen Utama dalam Mengatasi Masalah Multikolinearitas Pendi Intisari. 2021.

Fabiana. Pemodelan Indeks Pembangunan Manusia di Jawa Tengah dengan Regresi Komponen Utama Robust. 8(1999), pp. 253–271, 2019.

Filzmoser, P. Robust principal component and factor analysis in the geostatistical treatment of environmental data. Environmetrics, 10(4), pp. 363–375, 1999, doi: 10.1002/(SICI)1099-095X(199907/08)10:4<363::AID- ENV362>3.0.CO;2-0.

Adiguno, S., Syahra, Y., & Yetri, M. Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 1(4), p. 275, 2022, doi: 10.53513/jursi.v1i4.5331.

Ningsih, S., & Dukalang, H. H. Penerapan Metode Suksesif Interval pada Analsis Regresi Linier Berganda. Jambura Journal of Mathematics, 1(1), pp. 43–53, 2019, doi: 10.34312/jjom.v1i1.1742.

Montgomery, E. A., & Peck, D. C. Introduction To Linier Regression Analysis. statistich, p. 872, 2012.

Maubanu, E. ANALISIS KOMPONEN UTAMA UNTUK MENGATASI MULTIKOLINEARITAS PADA FAKTOR-FAKTOR YANG MEMPENGARUHI, 3(1), pp. 21–30, 2018.

Neter, M. H., Wasserman, J., & Kutner, W. Applied Linier Regression Model. p. 561, 1988.

Kosasih, R. Pengenalan Wajah Menggunakan PCA dengan Memperhatikan Jumlah Data Latih dan Vektor Eigen. Jurnal Informatika Universitas Pamulang, 6(1), 1, 2021, doi: 10.32493/informatika.v6i1.7261.

Sriningsih, M., Hatidja, D., & Prang, J. D. Penanganan Multikolinearitas Dengan Menggunakan Analisis Regresi Komponen Utama Pada Kasus Impor Beras Di Provinsi Sulut. Jurnal Ilmiah Sains, 18(1), p. 18, 2018, doi: 10.35799/jis.18.1.2018.19396.

Hair, A. R. E. Multivariate Data Analysis. 2014.

Putri, F. K. Pemodelan Persentase Angka Kematian Bayi di Kalimantan Barat dengan Metode Geographically Weighted Regression Principal Component Analysis (GWRPCA). 2021.

Siburian, J. N. J. O., Rahmawati, R., & Hoyyi, A. Regresi Komponen Utama Robust S-Estimator Untuk Analisis Pengaruh Jumlah Pengangguran Di Jawa Tengah. Jurnal Gaussian, 8(4), 439–450, 2019, doi: 10.14710/j.gauss.v8i4.26724.

Astuti, L. Analisis Angka Kematian Bayi (AKB) Di Kalimantan Barat Dengan Robust Principal Component Analysis (ROBPCA). 10(1), 61–70, 2021.

Andriany, D., & Susanti, Y. Estimasi Parameter Regresi Robust dengan Metode Estimasi Least Trimmed Squares (LTS) pada Kematian Ibu di Indonesia, 2021.

Setyowati, E., Akbarita, R., & Robby, R. Perbandingan Regresi Robust Metode Least Trimmed Square (Lts) dan Metode Estimasi-S pada Produksi Padi di Kabupaten Blitar. Jurnal Matematika UNAND, 10(3), 329–341, 2021.

Downloads

Published

2024-07-27