Pendekatan Zero-Inflated Poisson Inverse Gaussian dalam Pemodelan Kasus Malaria di Puskesmas Kota Makassar
DOI:
https://doi.org/10.70561/ejsa.v6i1.43164Keywords:
Excess Zero, Malaria, Maximum Likelihood Estimation, Overdispersi, Zero-Inflated PoissonAbstract
Poisson regression is one of the approaches used to model count data. However, this method has an assumption of equidispersion that is not always met in actual data. One problem that often arises is overdispersion, especially when there are excess zeros in the dependent variable. The Mixed Poisson method, namely Zero-Inflated Poisson Inverse Gaussian (ZIPIG) regression is one approach that can be used when there is overdispersion in the data. Parameter estimation in the ZIPIG model is done using the Maximum Likelihood Estimation (MLE) method through Fisher Scoring Algorithm iterations. This study discusses how ZIPIG modeling is used to identify factors that influence the number of malaria cases in Makassar City Health Center in 2021. The results of the analysis show that the independent variables that have a significant effect on the number of malaria cases are the number of family heads with access to proper sanitation facilities (X1) and the presence of public places that meet health requirements (X2).
References
Feng, C., Li, L., & Sadeghpour, A. A comparison of residual diagnosis tools for diagnosing regression models for count data. BMC Medical Research Methodology, 20(1), 2020.
Green, J. A. Too many zeros and/or highly skewed? A tutorial on modelling health behaviour as count data with Poisson and negative binomial regression. Health Psychology and Behavioral Medicine, 9(1), 436–455, 2021.
Ikhsani, N., Kalondeng, A., & Ilyas, N. Pemodelan Regresi Bivariate Poisson Inverse Gaussian pada Kasus Kematian Ibu dan Neonatal di Sulawesi Selatan. Estimasi: Journal of Statistics and Its Application, 4(1), 2721–379, 2023.
Rahayu, A. Model-Model Regresi Untuk Mengatasi Masalah Overdispersi Pada Regresi Poisson. Journal Peqguruang: Conference Series, 2(1), 1–5, 2020.
Chan, J. S. K., Choy, S. T. B., Makov, U., Shamir, A., & Shapovalov, V. Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data. Risks, 10(4), 2022.
Fávero, L. P., de Freitas Souza, R., Belfiore, P., Corrêa, H. L., & Haddad, M. F. C. Count Data Regression Analysis: Concepts, Overdispersion Detection, Zero-inflation Identification, and Applications with R. Practical Assessment, Research and Evaluation, 26, 1–22, 2021.
Saraiva, E. F., Vigas, V. P., Flesch, M. V., Gannon, M., & Pereira, C. A. de B. Modeling Overdispersed Dengue Data via Poisson Inverse Gaussian Regression Model: A Case Study in the City of Campo Grande, MS, Brazil. Entropy, 24(9), 1–16, 2022.
Sendow, Jeivy Mirechell. Analisis Pengaruh Cuaca Terhadap Persebaran Penyakit Malaria di Kabupaten Mimika Menggunakan Sistem Informasi Geografis. Diss, 2021.
Aprilia, A. D. Regresi Zero Inflated Poisson Untuk Pemodelan Angka Positif Penyakit Malaria Di Jawa Timur. Jurnal Ilmiah Matematika Volume 11 No 02 E-ISSN : 2716-506, 11(2), 139–146, 2023.
Kemenkes RI. Profil Kesehatan Indonesia 2021. Kementerian Kesehatan Republik Indonesia, 2021.
Dinkes Kota Makassar. Profil Dinas Kesehatan Kota Makassar Tahun 2021 (Dinas Kesehatan Kota Makassar, Ed.). Dinas Kesehatan Kota Makassar, 2022.
Handarzeni, S. A. Modeling of Tuberculosis Cases in Sumatra Region using Poisson Inverse Gaussian Regression. Journal of Statistics and Data Science, 1(2), 36–43, 2022.
Nariswari, R., Widhiyanthi, A. A., Arifin, S., & Yudistira, I. G. A. A. Zero Inflated Poisson Regression: A Solution of Overdispersion in Stunting Data. AIP Conference Proceedings, 2975(1), 1–8, 2023.
Darsyab, Muh. Y., & Ramadhan, M. N. Pemodelan Jumlah Kasus Penyakit Kusta di Provinsi Sulawesi Tenggara Menggunakan Metode Regresi Poisson Inverse Gaussian. Jurnal Litbang Edusaintech , 3(1), 11–24, 2022.
Kyriazos, T., & Poga, M. Dealing with Multicollinearity in Factor Analysis: The Problem, Detections, and Solutions. Open Journal of Statistics, 13(03), 404–424, 2023.
C.R., M. D., & Yanti, T. S. Regresi Poisson Invers Gaussian (PIG) untuk Pemodelan Jumlah Kasus Pneumonia pada Balita di Provinsi Jawa Tengah Tahun 2019. Jurnal Riset Statistika, 1(1), 143–151, 2021.
Wahyuni, S. T., Utami, T. W., & Darsyah, Moh. Y. Pemodelan Generalized Additive Model For Location, Scale, and Shape (Gamlss) Dengan Pemulusan Locally Estimated Scatterplot Smoothing (Loess) pada Kasus Hiv/Aids Di Jawa Timur. Jurnal Litbang Edusaintech, 2(1), 18–26, 2021
Wang, W., & Famoye, F. Modeling household fertility decisions with generalized Poisson regression. Journal of Population Economics, 10(3), 273–283, 1997
Anggreainy, M. S., Illyasu, A. M., Musyaffa, H., & Kansil, F. H. Analysis of Factors Influencing the COVID-19 Mortality Rate in Indonesia using Zero Inflated Negative Binomial Model. International Journal of Advanced Computer Science and Applications, 13(4), 728–734, 2022.
Downloads
Published
Issue
Section
License
Copyright
It is the author's responsibility to ensure that his or her submitted work does not infringe any existing copyright. Authors should obtain permission to reproduce or adapt copyrighted material and provide evidence of approval upon submitting the final version of a manuscript.