Hubungan Faktor Kolestrol Terhadap Gula Darah Diabetes dengan Spline Kubik Terbobot

Authors

  • Zhazha Alifkhamulki Ramdhani Hasanuddin University
  • Anna Islamiyati Hasanuddin University
  • Raupong Raupong Hasanuddin University

DOI:

https://doi.org/10.20956/ejsa.v1i1.9252

Keywords:

Diabetes Mellitus, Heteroscedasticity, LDL, Cubic Spline, Weighted.

Abstract

Diabetes Mellitus (DM) is often recognized through an increase in a person's blood sugar level. Factors that can affect the increase in blood sugar levels of DM patients one of which is cholesterol. It usually contains the bookkeeping of several types of cholesterol, including LDL and total cholesterol. DM data are assumed to experience heterokedasticity so that in this study analyzed using regression of weighted cubic spline nonparametric. The estimation method used is weighted least square (WLS). This study aims to obtain a weighted cubic spline model on cholesterol based DM data. The selection of the best model can be seen based on the criteria for the value of generalized cross validation (GCV) minimum. Based on the analysis obtained weighted cubic spline models for cholesterol factors for blood sugar as follows:

Author Biographies

Zhazha Alifkhamulki Ramdhani, Hasanuddin University

Department of Statistics

Anna Islamiyati, Hasanuddin University

Department of Statistics

Raupong Raupong, Hasanuddin University

Department of Statistics

References

Islamiyati, A. Taksiran Kurva Regresi Spline pada Data Longitudinal dengan Kuadrat Terkecil. Jurnal Matematika, Statistika & Komputasi, 11 (1) : 77-83, 2014.

Islamiyati, A. Spline Polynomial Truncated dalam Regresi Nonparametrik. Jurnal Matematika, Statistika & Komputasi, 14 (1) : 54-60, 2017.

Lestari, B., Budiantara, I.N. & Chamidah, N. Estimation of Regression Function in Multi Response Nonparametric Regression Model Using Smoothing Spline and Kernel Estimators. Journal of Physics: Conference Series, 1097 (1), 012091, 2018.

Islamiyati, A., Fatmawati & Chamidah, N. Fungsi Goodness of Fit dalam Kriteria Penalized Spline pada Estimasi Regresi Nonparametrik Birespon untuk Data Longitudinal. Proseding Seminar Nasional Matematika dan Aplikasinya. UNAIR Surabaya. 2017.

Islamiyati, A., Fatmawati & Chamidah, I.N. Penalized Spline Estimator with Multi Smoothing Parameters in Biresponse Multipredictor Regression Model for Longitudinal Data. Songklanakarin Journal of Science and Technology, In Press SJST-2018-0423.R2, 2019.

Chamidah, N. & Lestari, B. Spline Estimator in Homoscedastic Multirespon Nonparametric Regression Model in Case of Unbalance Number of Observations. Far East Journal of Mathematical Sciences, 100 (9) : 1433, 2016.

Maziyya. P.A. Mengatasi Heterokedastisitas pada Regresi dengan Menggunakan Weighted Least Square. Skripsi, Universitas Udayana, Bali, 2015.

Hendayanti, N.P.N. Estimasi Kurva Regresi Nonparametrik Heterokedastisitas Spline, Tesis, Institut Teknologi Sepuluh November, Surabaya, 2015.

Islamiyati, A., Fatmawati & Chamidah, N. Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression. Journal of Physics: Conf. Series. 979 pp 012093, 2018.

Islamiyati, A., Fatmawati & Chamidah, N. Ability of Covariance Matrix in Bi-Response Multi-Prredictor Penalized Spline Model through Longitudinal Data Simulation. Int. J. Acad. Appl. Res. 3 Issue 3 : 8-11, 2019.

Islamiyati, A. Regresi Spline Polynomial Truncated Biprediktor untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue. Al khwarizmi, 7 (2): 97-110, 2019.

Porcellati, F., Lucidi, P., Bolii, G.B. & Fanelli, C.G. Thirty Years of Research on The Dawn Phenomenon: Lessons to Optimize Blood Glucose Control in Diabetes. Diabetes Care, 36 : 3860-3862, 2013.

Islamiyati, A., Fatmawati & Chamidah, I.N. Changes in Blood Glucosa 2 Hours After Meals in Type 2 Diabetes Patients based on Length of Treatment at Hasanuddin University Hospital, Indonesia. Rawal Medical Journal, 45 (1) : 31-34, 2020.

Islamiyati, A., Raupong & Anisa. Use of Penalized Spline Linear to Identify Change in Pattern of Blood Sugar based on The Weight of Diabetes Patients. Int. J. Acad. Appl. Res., 3 Issue 12 : 75-78, 2019.

Searle, S. R., Casella, G. & McCulloch, C. E. Variance Components. New Jersey : John Wiley and Sons, Inc., Hoboken, 2006.

Downloads

Published

2020-01-31