Genesis of Bauxite Ore in Toba Area Sanggau District, West Kalimantan Province

Authors

  • Ricka Aprillia Department of Mining Engineering, Tanjungpura University, 78124, Indonesia
  • Wahdaniah Mukhtar Department of Mining Engineering, Tanjungpura University, 78124, Indonesia
  • Septami Setiawati Department of Mining Engineering, Tanjungpura University, 78124, Indonesia
  • Govira Christiadora Asbanu Department of Environmental Engineering, Tanjungpura University, 78124, Indonesia
  • Ibnu Munzir Institute of Geological Science, Jagiellonian University, 30387, Poland

DOI:

https://doi.org/10.20956/geocelebes.v8i1.26521

Keywords:

Al2O3, Bauxite, Fe2O3, Gibbsite, Si2O3, XRF methods

Abstract

Indonesia's largest bauxite reserves are in the province of West Kalimantan, which is 703 million tons Bauxite is formed from rocks with a high relative aluminum (Al) content, low iron (Fe) content, and small amount of quartz. The mineralogy and characteristics of lateritic bauxite deposits are closely related to several factors, one of which is the texture and composition of the bedrock such as color, mineral composition, and shape of the ore. This study discusses the genetic type of bauxite deposits based on mineralogy and geochemistry using mineragraphic, XRD, and XRF methods. The primary data from bauxite ore samples were collected from the stockpile of PT. Dinamika Sejahtera located in Toba area. The quantitative result of the geochemical analysis indicates a higher amount of alumina observed using the XRF method. Granodiorite bauxite, which is bauxite coming from granodiorite bedrock, generally has abundant geochemical elements, especially SiO2 and Al2O3. The lateritic bauxite type in the Toba area is a product of granodiorite weathering from the Sepauk Tonalite formation is embedded within a clay matrix which exhibits a brownish to red color with coarse to boulder-size of concretion texture without relict. Some important elements in bauxite laterite deposits are Al, Fe, Si (Silicon), and Ti (Titanium). The comparison between Al and Si values is a benchmark for the economics of bauxite mines. Gibbsite is the major mineral in the bauxite ore, while hematite, goethite, kaolinite, and quartz are the accessory minerals. The deposit is recognized as Low-Fe bauxite due to comparing Al2O3, Fe2O3, and Si2O3 concentrations. The weathering process has altered the primary texture, remaining resistant and secondary minerals. The petrographic analysis shows the replacement of Gibbsite as bauxite ore which presents as kaolinite replacement and fills the mineral cracks. The result of this study is expected to be useful in determining the exploration method for the bauxite deposits.

References

Anggrahini, A. H., Wibowo, A. P., & Rosyid, F. A. (2020). Peramalan Kebutuhan Bijih Bauksit Untuk Memenuhi Kebutuhan Aluminium Nasional Menggunakan Model ARDL dan VAR. Prosiding TPT XXIX PERHAPI 2020, 401–412. https://prosiding.perhapi.or.id/index.php/prosiding/article/view/170

Bárdossy, G. (1982). Bauxite Deposits on Carbonate Rocks, Developments in Economic Geology. Elsevier.

Boinauw, H. (2017). Pembelajaran Geologi: Kajian Pelapukan Geologi. Jurnal Ilmiah Jendela Pengetahuan, 10(22), 59–63. https://ejournal.unpatti.ac.id/ppr_iteminfo_lnk.php?id=1623

Delvigne, J. E. (1998). Atlas of Micromorphology of Mineral Alteration and Weathering. Mineralogical Association of Canada.

Dyussenova, S., Abdulvaliyev, R., Akcil, A., Gladyshev, S., & Ruzakhunova, G. (2022). Processing of Low-Quality Gibbsite-Kaolinite Bauxites. Metals, 12(6), 1030. https://doi.org/10.3390/met12061030

Economou-Eliopoulos, M., & Kanellopoulos, C. (2023). Abundance and Genetic Significance of Lithium in Bauxite Deposits: A Comparative Review. Minerals, 13(7), 962. https://doi.org/10.3390/min13070962

Gazhian, S. R., Nirmala, A., Aprillia, R., Sutrisno, H., & Meilasari, F. (2022). Tailing Pond Maintenance System PT. Dinamika Sejahtera Mandiri at The Teraju Site, Toba District, Sanggau Regency. Jurnal Teknik Sipil, 22(2), 122–126. https://dx.doi.org/10.26418/jtst.v22i2.59158

Gu, J., Huang, Z., Fan, H., Jin, Z., Yan, Z., & Zhang, J. (2013). Mineralogy, Geochemistry, and Genesis of Lateritic Bauxite Deposits in The Wuchuan-Zheng’an-Daozhenarea, Northern Guizhou Province, China. Journal of Geochemical Exploration, 130, 44–59. https://doi.org/10.1016/j.gexplo.2013.03.003

Haryadi, H. (2016). Analisis Lost Opportunity (LO) Bauksit Indonesia. Jurnal Teknologi Mineral dan Batubara, 12(1), 45–57. https://doi.org/10.30556/jtmb.Vol12.No1.2016.230

Hasria, H., Asfar, S., Ngkoimani, L. O., Okto, A., Jaya, R. I. M. C., & Sepdiansar, R. (2021). Pengaruh Geomorfologi Terhadap Pola Distribusi Unsur Nikel Dan Besi Pada Endapan Nikel Laterit di Kabupaten Buton Tengah-Sulawesi Tenggara. Jurnal Geosapta, 7(2), 103–114. http://dx.doi.org/10.20527/jg.v7i2.10716

Igbokwe, I. O., Igwenagu, E., & Igbokwe, N.A. (2019). Aluminum Toxicosis: A Review of Toxic Actions and Effects. Journal of Interdisciplinary Toxicology, 12(2), 45–70. https://doi.org/10.2478/intox-2019-0007

Jafar, N. (2017). Analisis Unsur Endapan Bauksit Menggunakan X-Ray Fluorescence (XRF) PT. Antam Tbk. Unit Geomin Daerah Kenco Kabupaten Landak Provinsi Kalimantan Barat. Journal of Chemical Process Engineering, 2(1), 46–49. https://doi.org/10.33536/jcpe.v2i1.115

Mamedov, V., Boeva, N., Makarova, M., Shipilova, E., & Melnikov, P. (2022). The Problem of the Formation of Boehmite and Gibbsite in Bauxite-Bearing Lateritic Profiles. Minerals, 12, 389. https://doi.org/10.3390/min12030389

Mildan, D., Subandrio, A. S., Bangun, P., & Sunjaya, D. (2021). Contrasting Genesis of Lateritic Bauxite on Granodioritic and Andesitic Rocks of Mempawah Area, West Kalimantan. IAGI Journal, 1(2), 81–88. https://doi.org/10.51835/iagij.2021.1.2.33

Nugraheni, R. D., Riyandhani, C. P., Apriniyadi, M., & Sunjaya, D. (2021). Critical Raw Materials Enrichment in Bauxite Laterite: A Case Study of Diverse Parent Rock Types. IOP Conference Series: Earth and Environmental Science, 882, 012024. https://doi.org/10.1088/1755-1315/882/1/012024

Nugraheni, R. D., Sunjaya, D., Sutopo, B., Apriniyadi, M., Riyandhani, C. P., & Ronoatmojo, I. S. (2022). Spatial Simulation Model of Bauxite Grades Using R Data Analysis: Its Implication for Exploration Activity. Indonesian Journal on Geoscience, 9(3), 337–353. https://doi.org/10.17014/ijog.9.3.

Purwanto, A., & Paiman. (2014). Inventarisasi Karakteristik Lahan Lokasi Sumber Air Panas Untuk Pengembangan Pariwisata di Kecamatan Jangkang Kabupaten Sanggau. Jurnal Edukasi, 12(2), 179–192. https://journal.ikippgriptk.ac.id/index.php/edukasi/article/view/154

Pusat Sumber Daya Mineral Batubara dan Panasbumi. (2022). Neraca Sumber Daya dan Cadangan Mineral Batubara dan Panas Bumi Tahun 2021. Kepala Bagian Umum Sub Koordinator Perencanaan dan Keuangan.

Putzolu, F., Papa, A. P., Mondillo, N., Boni, M., Balassone, G., & Mormone, A. (2018). Geochemical Characterization of Bauxite Deposits from The Abruzzi Mining District (Italy). Minerals, 8(7), 298. https://doi.org/10.3390/min8070298

Ramadhan, F. R., Aribowo, Y., Widiarso, D. A., & Betraz, A. (2014). Geologi, Karakteristik dan Genesa Endapan Laterit Bauksit P.T. ANTAM (Persero) Tbk. Unit Geomin, Daerah Kenco, Kabupaten Landak, Provinsi Kalimantan Barat. Geological Engineering E-Journal, 6(1), 80–95. https://ejournal3.undip.ac.id/index.php/geologi/article/view/6754

Sanyoto, P., & Pieters, P. E. (1993). Peta Geologi Lembar Pontianak/ Nangataman, Kalimantan Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi. Bandung.

Tjokrokardono, S., & Soetarno, D. (2004). Studi Geologi Regional dan Mineralisasi Uranium di Pegunungan Schwaner Kalimantan Barat dan Tengah. Prosiding Seminar Geologi Nuklir dan Sumberdaya Tambang Tahun 2004, 64–84. https://inis.iaea.org/collection/NCLCollectionStore/_Public/39/123/39123070.pdf

Toreno, E. Y., & Moe’tamar. (2012). Karakteristik Cebakan Bauksit Laterit di Daerah Sepiluk – Senaning, Kabupaten Sintang, Kalimantan Barat. Buletin Sumber Daya Geologi, 7(2), 45–56. https://doi.org/10.47599/bsdg.v7i2.102

Wang, W., Feng, J., & Qui, M. (2023). Mineral Weathering and Element Migration in Granite Weathering Pits (Gnammas): A Case Study in Eastern China. Minerals, 13(1), 70. https://doi.org/10.3390/min13010070

Wakila, M. H., Heriansyah, A. F., Firdaus, F., & Nurhawaisyah, S. R. (2019). Pengaruh Tingkat Pelapukan Terhadap Kadar Nikel Laterit Pada Daerah Ussu, Kec. Malili Kab. Luwu Timur Prov. Sulawesi Selatan. Jurnal Geomine, 7(1), 30–35.

Winarno, T., Sendjaja, P., & Wibowo, F. R. (2023a). The Relationship Between Geological and Environmental Aspects with the Anomalies of Track Elements and Heavy Metal Elements in the Volcanic Area of the Muria Peninsula. E3S Web of Conferences, 448, 03067. https://doi.org/10.1051/e3sconf/202344803067

Winarno, T., Ali, R. K., Simangunsong, H., & Almiftahurrizqi, (2023b). Characteristics and Genesis of Laterite Bauxite in Sompak District and Surrounding Areas, Landak Regency, West Kalimantan. Indonesian Journal on Geoscience, 10(1), 37–49. https://ijog.geologi.esdm.go.id/index.php/IJOG/article/view/857

Wulansari, D., Setijadji, L. D., & Warmada, I. W. (2016). Karakterisasi Kandungan Mineral Dalam Bauksit Dengan Metode Xrd Semi-Kuantitatif Di Kawasan Tambang Tayan, Kalimantan Barat. Proceeding, Seminar Nasional Kebumian Ke-9, 612–623.

Zamaniana, H., Ahmadnejad, F., & Zarasvandi, A. (2016). Mineralogical And Geochemical Investigations of The Mombi Bauxite Deposit, Zagros Mountains, Iran. Geochemistry, 76(1), 13–37. https://doi.org/10.1016/j.chemer.2015.10.001

Downloads

Published

2024-04-01

How to Cite

Aprillia, R., Mukhtar, W., Setiawati, S., Asbanu, G. C., & Munzir, I. (2024). Genesis of Bauxite Ore in Toba Area Sanggau District, West Kalimantan Province. JURNAL GEOCELEBES, 8(1), 26–36. https://doi.org/10.20956/geocelebes.v8i1.26521

Issue

Section

Articles