Subsurface Interpretation of the Panjang Fault Area, Lampung, Based on Geomagnetic Method

Authors

  • Syamsurijal Rasimeng Department of Geophysical Engineering, Faculty of Engineering, Lampung University, Lampung 35141, Indonesia
  • Fahruddin Fahruddin Department of Physics, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarmasin 70123, Indonesia
  • Ferdio Valentin University of Lampung
  • Theressia Githa Aurora Department of Geophysical Engineering, Faculty of Engineering, Lampung University, Lampung 35141, Indonesia
  • Jesica Nurlaili Department of Geophysical Engineering, Faculty of Engineering, Lampung University, Lampung 35141, Indonesia

DOI:

https://doi.org/10.20956/geocelebes.v8i1.28303

Keywords:

local magnetic anomaly, magnetic susceptibility, Panjang Fault

Abstract

Research on the area along the Panjang Fault - Lampung, the area from the Teluk Betung to Tanjung Karang Barat area using the 19-T GSM PPM tool with base rover acquisition on 2 tracks 2 kilometers apart obtained 40 acquisition points with a spacing of 0.3 kilometers. This study aims to determine the type of lithology and subsurface rock structure by utilizing the susceptibility value of rocks from magnetic anomalies. In the process of processing magnetic anomaly data, upward continuation is carried out as high as 350 m which is intended to reduce the total anomaly with the upward anomaly results so that a residual anomaly is obtained. Next, make a 2D subsurface model on the incision A - B in the residual anomaly map. Based on the results of qualitative interpretation, the total magnetic anomaly of the research area illustrates positive to negative anomaly values with a tighter contour pattern that indicates the presence of a fault structure. While based on quantitative interpretation, the 2D modeling in incision A - B shows a susceptibility value of 0.100 cgs which can be identified as breccia tuff rock, a susceptibility value of 0.0391 cgs is thought to be rhyolitic tuff rock, pumice tuff rock, and sandstone tuff, and a susceptibility value of 0.150 cgs is a rock from the intrusion of Mount Betung in the form of andesite-basalt lava. In addition, rocks with a susceptibility value of 0.0024 cgs are metamorphic rocks. The correlation between 2D modeling and regional geology is seen in the research area, which is in the Tarahan Formation (Tpot), which is suspected to be a fault structure in the Bumi Waras area with a strike direction of NW - SE which is the course of geothermal manifestations or minerals.

References

Abdelrahman, K., Nguyen, D. V., Prasad, K. N. D., Vo, Q. T., Le, D. V., Pham, L. T., Gomez-Ortiz, D., Fnais, M. S., & Eldosouky, A. M. (2024). Structural mapping of the west central Arabian Shield (Saudi Arabia) using downward continued magnetic data. Journal of King Saud University-Science, 36(2), 103039. https://doi.org/10.1016/j.jksus.2023.103039

Abdullah, M. F., & Sunaryo, S. (2014). Pendugaan Jenis Batuan Bawah Permukaan Daerah Bendungan Karangkates Menggunakan Metode Geomagnetik. Physics Student Journal, 2(1), 741–744.

Agustina, L. K., Harbowo, D. G., & Al Farishi, B. (2020). Identifikasi Kawasan Rawan Longsor Berdasarkan Karakteristik Batuan Penyusun di Kota Bandar Lampung. Elipsoida: Jurnal Geodesi dan Geomatika, 3(01), 30–37. https://doi.org/10.14710/elipsoida.2020.7769

Aktaş, G., Hisarlı, Z. M., & Demirel, A. S. (2023). Interpretation of the tectonic structure of Gemlik Bay using magnetic data. Tectonophysics, 863, 230021. https://doi.org/10.1016/j.tecto.2023.230021

Amigun, J. O., Afolabi, O., & Ako, B. D. (2012). Application of airborne magnetic data to mineral exploration in the Okene Iron Ore Province of Nigeria. International Research Journal of Geology and Mining, 2(6), 132–140. https://www.interesjournals.org/articles/Application-of-airborne-magnetic-data-to-mineral-exploration-in-the-okene-iron-ore-province-of-nigeria.pdf

Aufia, Y. F., Karyanto. K., Rustadi, R. (2019). Pendugaan Patahan Daerah “Y” Berdasarkan Anomali Gayaberat Dengan Analisis Derivative. Jurnal Geofisika Eksplorasi, 5(1), 75–88.

Ben, U. C., Akpan, A. E., Mbonu, C. C., Ebong, E. D. (2021). Novel Methodology for Interpretation of Magnetic Anomalies Due to Two-Dimensional Dipping Dikes Using the Manta Ray Foraging Optimization. Journal of Applied Geophysics, 192, 104405. https://doi.org/10.1016/j.jappgeo.2021.104405

Blakely, R. J. (1996), Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge.

Bouligand, C., Glen, J. M. G., & Blakely, R. J. (2014). Distribution of buried hydrothermal alteration deduced from high‐resolution magnetic surveys in Yellowstone National Park. Journal of Geophysical Research: Solid Earth, 119(4), 2595–2630. https://doi.org/10.1002/2013JB010802

Tontini, F. C., Tivey, M. A., de Ronde, C. E. J., & Humphris, S. E. (2019). Heat flow and near‐seafloor magnetic anomalies highlight hydrothermal circulation at Brothers volcano caldera, southern Kermadec arc, New Zealand. Geophysical Research Letters, 46(14), 8252–8260. https://doi.org/10.1029/2019GL083517

Chiappini, M. (2021). Aeromagnetism. In Alberton, D., & Elias, A. S., Encyclopedia of Geology (Second Ed., 675–688). Elsevier. https://doi.org/10.1016/B978-0-08-102908-4.00131-4

De Ritis, R., & Chiappini, M. (2023). High resolution magnetic anomalies, volcanism and tectonics of the active “La Fossa” vulcanic system (Vulcano island) and Lipari Island (South Italy). Journal of Volcanology and Geothermal Research, 438, 107823. https://doi.org/10.1016/j.jvolgeores.2023.107823

Efendi, R., Lamangkona, F., & Sandra, S. (2016). Pemodelan 2D Reservoar Geotermal Menggunakan Metode Geomagnet di Desa Kasimbar Barat. Gravitasi, 15(1), 1–7. https://bestjournal.untad.ac.id/index.php/GravitasiFisika/article/view/7896/6235

Fashihullisan, A. L., Susilo, A., & Jam’an, A. F. (2014). Identifikasi Daerah Sesar dan Intrusi Berdasarkan Perbandingan Antara Filter (RTP, Upward, Downward, dan Aniltic Signal) Data Mapping Regional Magnetik Daerah Garut, Jawa Barat. Physics Student Journal, 2(1).

Fikar, M., Hamimu, L., Manan, A., & Suyanto, I. (2019). Pemodelan 2D Data Magnetik Menggunakan Transformasi RTP untuk Pendugaan Sesar di Daerah Kasihan, Pacitan, Jawa Timur. Jurnal Rekayasa Geofisika Indonesia, 01(02), 33–42. https://ojs.uho.ac.id/index.php/jrgi/article/view/8721/7850

Heningtyas, H., Wibowo, N. B., & Darmawan, D. (2020). Pemodelan 2D dan 3D Metode Geomagnet untuk Interpretasi Litologi dan Analisis Patahan di Jalur Sesar Oyo. Jurnal Lingkungan dan Bencana Geologi, 10(3), 115–126. http://dx.doi.org/10.34126/jlbg.v10i3.157

Heningtyas, H., Wibowo, N. B., & Darmawan, D. (2017). Interpretasi Struktur Bawah Permukaan dengan Metode Geomagnet di Jalur Sesar Oyo. Jurnal Ilmu Fisika dan Terapannya, 6(2), 138–148. https://journal.student.uny.ac.id/ojs/index.php/fisika/article/view/6909/6646

Hiden, H., Azhari, S., Alaa, S., & Yudianto, D. (2023). Identification of the distribution of golf mineral carrier rocks using the geomagnetic method in Pujut Lombok. Gravitasi, 22(1), 16–22. https://bestjournal.untad.ac.id/index.php/GravitasiFisika/article/view/16103/11875

Hiskiawan, P. (2016). Pengaruh Pola Kontur Hasil Kontinuasi Atas pada Data Geomagnetik Intepretasi Reduksi Kutub. Saintifika, 18(1), 18–26. https://jurnal.unej.ac.id/index.php/STF/article/view/2760

Hinze, W. J., von Frese, R. R. B., & Saad, A. H. (2013). Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511843129

Ilapadila. I, Harimei, B., Maria, M. (2019). Analysis of Regional Anomaly on Magnetic Data Using the Upward Continuation Method. IOP Conference Series: Earth and Environmental Science, 279(012037). https://doi.org/10.1088/1755-1315/279/1/012037

Mangga, S. A., Amirudin, A., Suwarti, T., Gafoer, S., & Sidarto, S. (1993). Peta Geologi Lembar Tanjungkarang, Sumatera. Pusat Penelitian dan Pengembangan Geologi.

Mulyasari, R., Haerudin, N., Karyanto, K., Darmawan, I. G. B., & Arifianti, Y. (2018). Zonasi Area Potensi Gerakan Massa di Sepanjang Sesar Lampung-Panjang Kota Bandar Lampung. Prosiding Semnas SINTA FT UNILA, 1, 190–197. http://repository.lppm.unila.ac.id/11569/3/CR-1-34.pdf

Nicolosi, I., D’Ajello Caracciolo, F., Branca, S., Ferlito, C., Chiappini, M. (2016). The earliest open conduit eruptive center of the Etnean region: evidence from aeromagnetic, geophysical, and geological data. Bulletin of Volcanology, 78(50), 1–11. https://doi.org/10.1007/s00445-016-1042-3

Nuha ABA., M. U., Yulianto, T., & Harmoko, U. (2014). Interpretasi Bawah Permukaan Daerah Sumber Air Panas Diwak-Derekan Berdasarkan Data Magnetik. Youngster Physics Journal, 3(2), 129–134. https://ejournal3.undip.ac.id/index.php/bfd/article/view/5285

Nurdin, N. H., Massinai, M. A., & Aswad, S. (2017). Identifikasi Pola Sebaran Intrusi Batuan Bawah Permukaan Menggunakan Metode Geomagnet di Sungai Jenelata Kabupaten Gowa. Jurnal Geocelebes, 1(1), 17–22. https://doi.org/10.20956/geocelebes.v1i1.1776

Rasimeng, S., Tarigan. J. L., Ferucha, I., & Robbani, M. A. (2020). Identification of geothermal reservoar based on 3D modeling of data anomaly magnetic residual reduction to pole in the region of geothermal prospect Villamasin East Oku. SEG Technical Program Expanded Abstracts 2020. https://doi.org/10.1190/segam2020-3412730.1

Regita, E., Arman, Y., & Zulfian, Z. (2022). Interpretasi Kualitatif Sebaran Batuan di Kabupaten Belu dan Sekitarnya Berdasarkan Data Anomali Magnetik. Prisma Fisika, 10(2), 151–154. https://dx.doi.org/10.26418/pf.v10i2.55586

Setiadi, I., Darmawan, A., & Marjiyono, M. (2016). Pendugaan Struktur Geologi Bawah Permukaan Daerah Terdampak Lumpur Sidoarjo (Lusi) Berdasarkan Analisis Data Geomagnet. Jurnal Lingkungan dan Bencana Geologi, 7(3), 125–134.

Sulandari, B., Suteja, A., Hadibroto, H., Nurmaliah, N., Setyanta, B., & Garniwa, A. (2023). Deliniasi Struktur Sesar Lampung-Panjang dan Identifikasi Potensi Sumberdaya Alam Berdasarkan Anomali Magnet Daerah Bandar Lampung. Jurnal Geologi dan Sumberdaya Mineral, 24(4), 195–203. https://doi.org/10.33332/jgsm.geologi.v24i4.721

Telford, W., Geldart, L., & Sheriff, R. (1990). Applied Geophysics. Cambridge University Press.

Titi, Y. L. A. (2016). Pemodelan 3-D Struktur Bawah Permukaan Pulau Flores dan Zona Sesar Belakang Busur Berdasarkan Analisis Data Gravitasi. Institut Teknologi Sepuluh Nopember Surabaya.

Tran, K. V., & Nguyen, T. N. (2020). A novel method for computing the vertical gradients of the potential field: application to downward continuation. Geophysical Journal International, 220(2), 1316–1329. https://doi.org/10.1093/gji/ggz524

Yang, Y., & Li, Y. (2023). Ore-controlling structures of the Qingchengzi Pb-Zn-Au-Ag orefield, northeastern China and significance for deep ore prospecting: Revealed from gravity and magnetic anomalies. Ore Geology Reviews, 156, 105376. https://doi.org/10.1016/j.oregeorev.2023.105376

Downloads

Published

2024-04-01

How to Cite

Rasimeng, S., Fahruddin, F., Valentin, F., Aurora, T. G., & Nurlaili, J. (2024). Subsurface Interpretation of the Panjang Fault Area, Lampung, Based on Geomagnetic Method. JURNAL GEOCELEBES, 8(1), 37 – 50. https://doi.org/10.20956/geocelebes.v8i1.28303

Issue

Section

Articles