Study of the Digital Geological Compass in Increasing the Effectiveness and Efficiency of Measuring Geological Structure Data in the Field

Authors

  • Rezki Naufan Hendrawan Geological Engineering Study Program, Institut Teknologi Sumatera, 35365
  • Muhammad Irsyad Geological Engineering Study Program, Institut Teknologi Sumatera, 35365
  • Aditya Gunawan Geological Engineering Study Program, Institut Teknologi Sumatera, 35365
  • Ahmad Dennil Zainuddin Geological Engineering Study Program, Institut Teknologi Sumatera, 35365
  • Angga Jati Widiatama Geological Engineering Study Program, Institut Teknologi Sumatera, 35365

DOI:

https://doi.org/10.70561/geocelebes.v8i2.36276

Keywords:

digital geological compass, RockD, Rocklogger, Smartphone

Abstract

This study compares the use of analog geological compasses and digital geological compasses in measuring fracture planes on crystalline rocks at the Lampung region. The measurement results demonstrate that using digital compasses yields higher time efficiency than analog compasses, with a reduction in measurement duration of over 50%. Although the dominant directions of the fracture planes were similar between the two methods, the inclination values and accuracies of each plane were not always consistent. Data processing using rose diagrams and stereonets indicates that the RockD application provides comparable results to measurements obtained using analog compasses. Therefore, the use of digital compass applications such as RockD can serve as an efficient alternative for geologists in collecting field data related to rock fractures, particularly in the context of quantitative data. However, analog geological compass is still recommended for measuring planes with on single-plane characteristics, such as rock bedding and fault mirrors. This study demonstrates the potential for development and transformation from analog geological compasses to digital geological compasses, and further research is needed to investigate the minimum number of fractures that can be measured with a digital geological compass to be considered statistically valid.

References

Allmendinger, R. W., Siron, C. R., & Scott, C. P. (2017). Structural data collection with mobile devices: Accuracy, redundancy, and best practices. Journal of Structural Geology, 102, 98–112. https://doi.org/10.1016/j.jsg.2017.07.011

Amin, T. C., Sidarto, Santosa, S., & Gunawan, W. (1993). Peta Geologi Lembar Kota Agung, Sumatera (N. Ratman (ed.)). Geological Research and Development Centre. https://geologi.esdm.go.id/geomap/pages/preview/peta-geologi-lembar-kotaagung-sumatera

Assali, P., Grussenmeyer, P., Villemin, T., Pollet, N., & Viguier, F. (2014). Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. Journal of Structural Geology, 66, 102–114. https://doi.org/10.1016/j.jsg.2014.05.014

Hendrawan, R. N., Widiatama, A. J., Irsyad, M., Zainuddin, A. D., Gunawan, A., Sanjaya, I., Nahar, R. N. F. A., Natalia, H. C., & Ogara, E. R. (2024). Geological Structure Analysis Approach to Control the Distribution of Manganese in Gunungkasih Area, Tanggamus Regency, Lampung Province. IOP Conference Series: Earth and Environmental Science, 1378(012009), 1–7. https://doi.org/10.1088/1755-1315/1378/1/012009

Ibrahim, A. K., & Musa, A. I. (2020). Mapping geology and structural features of Kazaure SE, NW Nigeria: Justifying groundwater potential model. Zbornik Radova Departmana Za Geografiju, Turizam i Hotelijerstvo, 49(1), 1–21. https://doi.org/10.5937/ZbDght2001001K

Jaud, M., Geoffroy, L., Chauvet, F., Durand, E., & Civet, F. (2022). Potential of a virtual reality environment based on very-high-resolution satellite imagery for structural geology measurements of lava flows. Journal of Structural Geology, 158(104569). https://doi.org/10.1016/j.jsg.2022.104569

Koesmawardani, W. T., Sapiie, B., & Rudyawan, A. (2021). Fracture characterization with fieldwork data and its implication for basement fracture reservoir at Muaro Silokek Granitic Outcrops. IOP Conference Series: Materials Science and Engineering, 1098(6), 1–7. https://doi.org/10.1088/1757-899x/1098/6/062019

Kong, D., Wu, F., & Saroglou, C. (2020). Automatic identification and characterization of discontinuities in rock masses from 3D point clouds. Engineering Geology, 265(105442). https://doi.org/10.1016/j.enggeo.2019.105442

Lee, S., Suh, J., & Choi, Y. (2018). Review of smartphone applications for geoscience: current status, limitations, and future perspectives. Earth Science Informatics, 11, 463–486. https://doi.org/10.1007/s12145-018-0343-9

Li, X., Chen, Z., Chen, J., & Zhu, H. (2019). Automatic characterization of rock mass discontinuities using 3D point clouds. Engineering Geology, 259, 105131. https://doi.org/10.1016/j.enggeo.2019.05.008

Liu, Y., Chen, J., Tan, C., Zhan, J., Song, S., Xu, W., Yan, J., Zhang, Y., Zhao, M., & Wang, Q. (2022). Intelligent scanning for optimal rock discontinuity sets considering multiple parameters based on manifold learning combined with UAV photogrammetry. Engineering Geology, 309, 106851. https://doi.org/10.1016/j.enggeo.2022.106851

Novakova, L., & Pavlis, T. L. (2017). Assessment of the precision of smart phones and tablets for measurement of planar orientations: A case study. Journal of Structural Geology, 97, 93–103. https://doi.org/10.1016/j.jsg.2017.02.015

Novakova, L., & Pavlis, T. L. (2019). Modern methods in structural geology of twenty-first century: Digital mapping and digital devices for the field geology. In S. Mukherjee (Ed.), Teaching Methodologies in Structural Geology and Tectonics (pp. 43–54). Springer. https://doi.org/10.1007/978-981-13-2781-0_3

Samsung. (n.d.). User manual Samsung Galaxy A50. Retrieved May 25, 2023, from https://ss7.vzw.com/is/content/VerizonWireless/Catalog Assets/Devices/Samsung/samsung-galaxy-a50/samsung-galaxy-a50-ug.pdf

Senger, K., Betlem, P., Grundvåg, S. A., Horota, R. K., Buckley, S. J., Smyrak-Sikora, A., Jochmann, M. M., Birchall, T., Janocha, J., Ogata, K., Kuckero, L., Johannessen, R. M., Lecomte, I., Cohen, S. M., & Olaussen, S. (2021). Teaching with digital geology in the high Arctic: opportunities and challenges. Geoscience Community, 4, 399–420. https://doi.org/10.5194/gc-4-399-2021

Singh, S. K., Raval, S., & Banerjee, B. P. (2021). Automated structural discontinuity mapping in a rock face occluded by vegetation using mobile laser scanning. Engineering Geology, 285, 106040. https://doi.org/10.1016/j.enggeo.2021.106040

Vöge, M., Lato, M. J., & Diederichs, M. S. (2013). Automated rockmass discontinuity mapping from 3-dimensional surface data. Engineering Geology, 164, 155–162. https://doi.org/10.1016/j.enggeo.2013.07.008

Watkins, H., Bond, C. E., Healy, D., & Butler, R. W. H. (2015). Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop. Journal of Structural Geology, 72, 67–82. https://doi.org/10.1016/j.jsg.2015.02.001

Whitmeyer, S. J., & De Paor, D. G. (2014). Crowdsourcing digital maps using citizen geologists. Eos, Transactions American Geophysical Union, 95, 397–399. https://doi.org/10.1002/2014EO440001

Whitmeyer, S. J., Pyle, E. J., Pavlis, T. L., Swanger, W., & Roberts, L. (2019). Modern approaches to field data collection and mapping: Digital methods, crowdsourcing, and the future of statistical analyses. Journal of Structural Geology, 125, 29–40. https://doi.org/10.1016/j.jsg.2018.06.023

Wong, D., Chan, K., & Millis, S. (2019). Digital Mapping of Discontinuities. The 39th HKIE Geotechnical Division Annual Seminar, pp.1–12. https://www.researchgate.net/profile/Stuart-Millis/publication/332413308_Digital_Mapping_of_Discontinuities/links/5cb41110299bf12097665a9f/Digital-Mapping-of-Discontinuities.pdf

Zewdie, M. M., & Asmare, D. (2023). Investigation and mapping of geological construction materials in parts of chemoga river sub basin, debre markos, Ethiopia. Heliyon, 9(3), e13784. https://doi.org/10.1016/j.heliyon.2023.e13784

Downloads

Published

2024-10-01

How to Cite

Hendrawan, R. N., Irsyad, M., Gunawan, A., Zainuddin, A. D., & Widiatama, A. J. (2024). Study of the Digital Geological Compass in Increasing the Effectiveness and Efficiency of Measuring Geological Structure Data in the Field. JURNAL GEOCELEBES, 8(2), 142–150. https://doi.org/10.70561/geocelebes.v8i2.36276

Issue

Section

Articles