#### REDOX DEPOSITION OF MnO2 NANOPARTICLES ON RICE HUSK BASED ACTIVATED CARBON AS HIGH-PERFORMANCE ELECTRODE MATERIAL FOR PSEUDO-CAPACITORS

Abdul Hayat Kasim<sup>1</sup>, M. Zakir<sup>*i*</sup>, Musa Ramang<sup>1</sup>, Bannu Abdussamad<sup>2</sup>

<sup>1</sup> Department of Chemistry, Faculty of Science, Hasanuddin, University, Indonesia <sup>2</sup>Department of Physics, Faculty of Science, Hasanuddin, University, Indonesia Corresponding author: muhammadzakir@gmail.com

Abstract. MnO<sub>2</sub>/rice husk activated carbon (KASP) nanocomposites have been synthesized by directly reducing KMnO<sub>4</sub> with KASP in an aqueous solution. XRD diffraction data showed a broad and typical peak MnO2 at 37 2theta as an indicator that the compound obtained are amorphous. Fluorescence data (XRF) also supports that after addition of KMnO4 to the rice husk based acticated carbon solution concurrently MnO2 nanoparticles deposition takes place on the surface of KASP. It is found that the morphologies of  $MnO_2$ grown on KASP can be tailored by varying the reaction ratio of KASP and KMnO<sub>4</sub>. A pseudo-capacitor with high energy density was fabricated by using MnO<sub>2</sub>/RHAC nanocomposite as positive electrode and activated carbon as negative electrode in 1 M Na<sub>2</sub>SO<sub>4</sub> aqueous electrolyte. The pseudocapacitor can be cycled reversibly in the cell voltage of 0.2 V, and delivers a specific capacitance of 25.4 mF  $g^{-1}$  (based on the total mass of active electrode materials of 9.4 mg), which is much higher than that of supercapacitor without MnO<sub>2</sub> deposition (8.6  $\mu F g^{-1}$ ), or there is significance increase in capacitance (± 3000 times). We obtained also that supercapacitor's electrode developed from rice husk based activated carbon has a better performance compared to one developed from commercially activated carbon material. Such a better electrochemical performance makes nanocomposite of MnO2/KASP as a promising electrode material for supercapacitors.

Key words: pseudo-capacitor, rice husk based activated carbon, MnO2 nanoparticles

### **INTRODUCTION**

Pseudo-capacitor, another varian of supercapacitors or electrochemical capacitors have attracted great attention as a promising energy storage device due to their higher power density, longer cycle life than batteries, and higher energy density than conventional dielectric capacitors [1-3]. Recently, extensive work has been focused on ways to enhance both the energy and power density of supercapacitors [4-6]. According to the following equation:

 $E = \frac{1}{2} CV^2 \qquad ($ 

. (1)

The enhancement in energy (E) can be achieved by increasing the capacitance specific (C) and/or broadening the cell voltage (V). The capacitance depends on the electrode material used, whereas the cell voltage is determined by the stability window of the electrolyte and also the electrode material characteristics. The latter can be achieved with organic electrolytes that are characterized by a wide electrochemical stability window (from 2 to 4 V) [7-10]. However, organic electrolytes are quite expensive, highly toxic, flammable, and require cell construction in air-free atmosphere. Aqueous electrolytes can work in a voltage window around 1 V (the thermodynamic window of water is 1.23 V) with a relatively low equivalent series resistance (ESR) [11,12]. However, the cell voltage is too low and should be improved in

view of practical applications. A promising way to increase the cell voltage in aqueous electrolytes is to develop asymmetric supercapacitors, which consist of a pseudocapacitive or battery-type positive electrode and a high surface-area carbon negative electrode [4]. The asymmetric design offers the advantages of both supercapacitors (rate, cycle life) and batteries (energy density) [13]. Recently, various asymmetric aqueous supercapacitors, such as activated [14]. carbon  $(AC)//LiMn_2O_4$ AC//Ni(OH)<sub>2</sub> [15], AC//V<sub>2</sub>O<sub>5</sub> [16], AC//MnO<sub>2</sub> [17e28], and Fe<sub>3</sub>O<sub>4</sub>//MnO<sub>2</sub> [29] have been explored.

MnO<sub>2</sub> is considered as one of the most promising electrode materials for supercapacitors owing to its low cost and environmental friendliness [30e36]. However, MnO<sub>2</sub> shows a low electrical conductivity (105 to 106 S cm1) [37]. High conductive materials activated carbon such as were combined with MnO<sub>2</sub> to improve the electrical conductivity of MnO<sub>2</sub>-based electrodes [38,39]. However, the electrochemical performances of MnO<sub>2</sub> composites were tested in a three-electrode system with a narrow voltage window (about 1 V) in most of previous works. Very recently, Gao et al. prepared MnO<sub>2</sub>/AC composite by physical mixing and fabricated an asymmetric supercapacitor with the two electrodes of MnO<sub>2</sub>/AC composite and AC. An energy density of 18.7 Wh kg1 was obtained for such supercapacitor [40].

Herein, we reported on the synthesis of MnO<sub>2</sub>/KASP (Rice Husk Based Activated Carbon) nanocomposites solution in a containing KMnO4 and KASP through the heterogeneous nucleation of MnO<sub>2</sub> onto the surface of KASP. The morphologies of MnO<sub>2</sub> grown on KASP were changed from nanorods to nanoparticles while decreasing the reaction ratio of RHAC/KASP. Such hierarchical structures can improve the electrochemical performance relative conventional powder-composite to MnO<sub>2</sub>/KASP electrodes. A pseudocapacitor manufactured with MnO<sub>2</sub>/KASP nanocomposite as the positive electrode and RHAC as the negative electrode can be reversibly charged/discharged at a maximum cell voltage of 2 V in aqueous electrolyte, delivering a higher energy density in comparison with a MnO<sub>2</sub>/KASP pseudo-capacitor.

### MATERIAL AND METHODS

All chemicals used in this study are of analytical grade, and used without further purification. Capacitorgrade activated carbon with a specific surface area of about 2500 m2 g1 measured by the BET method was purchased from Intraco Co., Ltd (Makassar, Indonesia).

Manganese oxide/KASP nanocomposites were synthesized by chemical precipitation in an aqueous

solution containing KMnO<sub>4</sub> and KASP. In a typical process, 0.6 g of KASP was added into 100 mL of 0.05 M KMnO<sub>4</sub> solution. Subsequently, the mixture was stirred under thermostatic bath at 95 C and refluxed until completely colorless. The products were filtered and washed several times with deionized water, then dried at 60 C in the air for 12 h. The products were denoted as S1, S2, and S3 for the addition of 0.6, 0.4, and 0.2 g of RHAC, respectively.

X-ray diffraction (XRD) measurement was performed on a Shimadzu XRD-6000 diffractometer with Cu Ka radiation. The particle morphology of the sample was investigated by means of field emission scanning electron microscopy (FESEM) with a JEOL JSM-6700F microscope. C, H and N microanalysis was recorded on an Elementar Vario El elemental analyzer. Thermogravimetry (TG) analysis was carried out on a Perkin Elmer Diamond analyzer with N2 gas. Samples were heated from 50 to 800 C at a rate of 10 C min<sup>-1</sup>.

The working electrode was prepared by mixing 70 wt% active material, 20 wt% acetylene black and 10 wt% poly(vinylidene fluoride) (PVDF) in N-methyl-2-pyrrolidone (NMP) and the slurry was spread onto a nickel net with 1 cm2 geometry area. The electrode was heated at 100 C for 2 h to evaporate the solvent. Both twoelectrode and three-electrode configurations were used to evaluate the capacitive performances of the electrode materials. In the threeelectrode system, a platinum sheet and a standard calomel electrode (SCE) were applied as the counter and reference electrodes, respectively. The mass of active material on the working electrode was about 0.3 mg for the three-electrode system. The accuracy of electronic balance is 0.01 mg (Mettler Toledo AB135-S). The electrolyte was 1 M Na2SO4 aqueous solution. Cyclic voltammetry and electrochemical impedance measurements spectroscopy (EIS) were carried out by a CHI 660C electrochemical workstation. The EIS was measured in the frequency range of 10 mHze100 kHz at an open-circuit potential with an AC amplitude of 5 mV. The obtained datawas fitted to an equivalent circuit model using ZWiew software. Galvanostatic charge discharge test was performed by an Arbin MSTAT4 multichannel galvanostat/potentiostat.

### RESULTS AND DISCUSSIONS Preparation of Rice Husk Based–Carbon and Activated Carbon

Preparation rice husk based-carbon and activated carbon was carried out by burning rice husk up to temperature of 300°C and 400°C. Characterization was including ash content determination. Surface characteristics were determined by X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD). The results of the characterization of rice husk based activated carbon (KASP) provide information about changes in the carbon and rice husk based activated carbon.

### Ash content

The percentage of mineral content of rice husk as raw material for the production of activated carbon can be determined by measuring the ash content. Ash content is closely related to the mineral content. The higher the mineral content, the higher the ash content. The results of ash assay from rice husk which was burnt at a temperature of 750 °C for 4 hours is shown in Table 1.

|     | 750 C  | 101 <del>4</del> 110ui | 3          |              |         |         |
|-----|--------|------------------------|------------|--------------|---------|---------|
| No. | Cup    | Rice                   | Weight     | Total weight | Weight  | % ash   |
|     | weight | husk                   | before     | after        | balance | content |
|     | (g)    | weight                 | combustion | combustion   | (g)     |         |
|     |        | (g)                    | (g)        | (g)          |         |         |
| 1   | 31,812 | 8,068                  | 39,880     | 33,382       | 1,570   | 19,460  |
| 2   | 27,473 | 8,080                  | 35,553     | 29,266       | 1,793   | 22,191  |
| 3   | 34,012 | 8,093                  | 42,105     | 35,603       | 1,591   | 19,659  |

| Tabel 1 : The results of rice husk as | sh measurements a | after burning a | at a temperature of |
|---------------------------------------|-------------------|-----------------|---------------------|
| 750 °C for 4 hours                    |                   | -               | -                   |

The measurement results show that the ash content or the average mineral content of rice husk is 20.436%. The mineral content of 20.436% indicates that many minerals are contained in rice husks.

Activated carbon of combustion products at temperature of 750 °C for 4 hours is shown in Figure 1. Color indicates that the carbon content in the activated carbon is smaller than the content of silica.



Figure 1. Rice husk combustion products at a temperature of 750  $^{\circ}$  C for 4 hours

# MnO2 nanoparticle synthesis through redox deposition

In this research, synthesis of nanocomposite MnO2/KASP in a solution containing KMnO4 and

KASP through heterogenic nucleation of MnO2 on the surface of rice husk activated based carbon. The preliminary proof that we have is on the changing of diffraction pattern before and after deposition MnO2 on the surface of rice husk based activated carbon. This will be discussed further in the following section. Morphology MnO2 which is grown on the surface of KASP was also changing from nanorod into nanoparticles when the ratio of KASP/KMnO4 is lowered.

# Surface characterization by X-Ray Fluoresence

XRF, or X-Ray Flouresence is a method of surface analysis to determine the surface characteristics of a material, which in this study is the carbon generated by carbonization of rice husk at a temperature of 400 C. The result of XRF analysis for rice husk based carbon before and after the addition of KMnO4 is given in Table 2 and Table 3.

| C+) 110+4) |         | - 1V) TOP) | TOP 121 |   |    |       |        |
|------------|---------|------------|---------|---|----|-------|--------|
| Sample i   | dent =  | KASP#1C    | 505.131 |   |    |       |        |
|            | Compour | nd m/m%    | StdErr  |   | El | m/m8  | StdErr |
|            | Si02    | 97.10      | 0.15    |   | Si | 45.39 | 0.07   |
|            | CaO     | 0.843      | 0.042   | 1 | Ca | 0.603 | 0.030  |
|            | ZnO     | 0.807      | 0.040   | 1 | Zn | 0.648 | 0.032  |
|            | P205    | 0.46       | 0.14    |   | Px | 0.199 | 0.062  |
|            | Fe203   | 0.314      | 0.023   |   | Fe | 0.219 | 0.016  |
|            |         | 0.248      | 0.023   |   | к  | 0.206 | 0.019  |
|            | R20     | 0.125      | 0.015   |   | Mn | 0.097 | 0.011  |

Table 2. XRF data of rice husk based activated carbon (KASP) before MnO2 deposition.

| Table | 3. | XRF   | data   | of | rice | husk | based | activated | carbon | (KASP) | after | MnO2 |
|-------|----|-------|--------|----|------|------|-------|-----------|--------|--------|-------|------|
|       |    | depos | ition. |    |      |      |       |           |        |        |       |      |

| ThermoFis<br>SAMPLE AN<br>ARL QUANT | her-XRF<br>ALYSIS<br>'X EDXR      | /UniQuant<br>REPORT<br>F ANALYZEI       | Analysis                              | Report | 2016-10-07 17:20<br>THERMO FISHER SCIENTIFIC<br>UNIQUANT(TM) STANDARDLESS METHOD |                                        |                                       |  |
|-------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------|--------|----------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|--|
| C:\UQed\U                           | SER\Qua                           | nt'X\JOB\.                              | JOB.134                               |        |                                                                                  |                                        |                                       |  |
| Sample id                           | ent =                             | KASPsetDe                               | apss                                  |        |                                                                                  |                                        |                                       |  |
|                                     | Compou                            | nd m/m%                                 | StdErr                                | E      | El                                                                               | m/m%                                   | StdErr                                |  |
|                                     | MnO<br>MgO<br>SiO2<br>K2O<br>TiO2 | 68.07<br>11.77<br>9.89<br>9.22<br>0.677 | 1.60<br>2.04<br>0.48<br>0.22<br>0.100 |        | Mn<br>Mg<br>Si<br>K<br>Ti                                                        | 52.72<br>7.10<br>4.63<br>7.66<br>0.406 | 1.24<br>1.23<br>0.22<br>0.18<br>0.060 |  |
|                                     | ZnO<br>CuO<br>Nb2O5               | 0.325<br>0.0175<br>0.0117               | 0.0069                                |        | Cu<br>Nb                                                                         | 0.0140                                 | 0.0055                                |  |
| KnownConc                           | = 0<br>s befor                    | e normali                               | RE<br>sation t                        | SI     | 0 = 0<br>100% :                                                                  | 75.5 %                                 | D/S= 0                                |  |

Table 2 provides information on surface composition of rice husk activated carbon before the addition of KMnO4. From the table it can be known that silica is the most dominant species on the surface of the carbon that is also influential in the reaction with KMnO4 when compared to commercial activated carbon. It can be seen that the main composition is SiO2 (97%) m/m). Table 3 provides information on the surface composition of rice husk based activated carbon (KASP) after the addition of KMnO4. It can be seen that the presence of manganese (in the form of MnO) is the major component after KMnO4 addition to KASP. This is a proof that the reduction of  $MnO_4^-$  ( $Mn^{+7}$ ) to the lower oxidation state takes place according to the following reaction. Verification whether the final oxidation state of manganese is +4 ( $MnO_2$ ) or +2 (MnO) will be shown in the result of XRD analysis.

# $4 \text{ KMnO}_4 + 3\text{C} + \text{H}_2\text{O} \rightarrow 4\text{MnO}_2 + \text{K}_2\text{CO}_3 + 2 \text{ KHCO}_3$

It should be noted that XRF gives the same response to a metal regardless of its oxidation state in compounds, e.g XRF provides the same information to the manganese compound the following oxidation state: MnO2 (oxidation number +4)

Kasim, et.al.

and MnO (+2 oxidation number) as shown in Figure 2. Information on oxidation numbers can be detected using spectroscopic techniques XPS (X-Ray Photoelectron Spectroscopy) or see manganese diffraction data (XRD) as contained in the reference.

#### **X-Ray Diffraction Analysis**

The burning of rice husk at a controlled and high temperature

produced activated carbon as a source of amorphous silica in the form of  $(Na_2O)_m(SiO_2)_n$ . This can be seen in the presence of strong diffraction peak between  $2\theta = 20-30^\circ$  as shown in the diffraction pattern of KASP in Figure 3. This peak is specific for SiO2 peak as also confirmed in the previous literature. Peak data are given in Table 4.



Figure 3. XRD data of rice husk based activated carbon (KASP) before and after the addition of KMnO4

|        |             | Banic Data       | Process | ***  |         |           |                |
|--------|-------------|------------------|---------|------|---------|-----------|----------------|
| ata a  | 0 3<br>2 M  | tandard<br>ASP#1 |         |      |         |           |                |
| a Stre |             |                  |         |      |         |           |                |
| no.    | peak<br>no. | 2Theta<br>(deg)  | d       | 1/11 | EWHM    | Intensity | Integrated Int |
| 1      |             | 21.6000          | 4.11087 | 100  | [deg]   | (Counts)  | Councas        |
| 2      | 13          | 22.5200          | 3,94497 | 99   | 0.00000 | 396       | 0              |
| 3      | 14          | 23.2000          | 3.83085 | 94   | 0.00000 | 376       | 0              |
| Peal   | k Data I    | ist              |         |      |         |           |                |
|        | peak        | 2Theta           | d       | 1/11 | FININ   | Intensity | Integrated In  |
|        | no.         | (deg).           | (A)     |      | (deg)   | (Counts)  | (Counts)       |
|        | 1           | 10.4725          | 8.44047 | 5    | 0.44500 | 19        | 461            |
|        | 2           | 12.1400          | 7.28461 | 11   | 1.12000 | 42        | 2784           |
|        | 3           | 13.3600          | 6.62202 | 8    | 0.88000 | 32        |                |
|        | -4          | 14.4400          | 6.12908 | 7    | 0.64000 | 27        |                |
|        | 5           | 15.7000          | 5.63991 |      | 0.00000 | 37        | 0              |
|        | 6           | 16.3800          | 5.40728 | 14   | 0.00000 | 57        | 0.000          |
|        | 7           | 17.8400          | 4.96791 | 30   | 1.65340 | 118       | 9709           |
|        | 8           | 18.4400          | 4.80759 | 38   | 0.00000 | 153       | 0              |
|        | 9           | 19.2000          | 4.61897 | 56   | 0.00000 | 224       | 0              |
|        | 10          | 20.0400          | 4.42722 | 2.4  | 0.00000 | 293       | 0              |
|        | 11          | 20.8600          | 4.25500 | 88   | 0.00000 | 352       | 0              |
|        | 12          | 21.6000          | 4.11087 | 100  | 0.00000 | 398       | 0              |
|        | 13          | 22.5200          | 3.94497 | 99   | 0.00000 | 390       | 0              |
|        | 14          | 23.2000          | 3.83085 | 94   | 0.00000 | 310       | 0              |
|        | 15          | 25.0400          | 3.55337 | .62  | 0.00000 | 298       | 205.62         |
|        | 1.6         | 26.6400          | 3.34347 | 36   | 1.97340 | 143       | 0668           |
|        | 17          | 28.1800          | 3.16415 | 15   | 0.84000 | 00        | 053            |
|        | 1.8         | 29.1800          | 3.05795 | 5    | 0.75200 | 20        | 266            |
|        | 19          | 30.1850          | 2,95839 | 3    | 0.45000 | 13        | 375            |
|        | 20          | 39.4340          | 2.28322 | - 3  | 0.25200 | 13        | 40.0           |
|        | 21          | 42.7400          | 2.11395 | 3    | 0.48000 | 10        | 6.61           |
|        | 22          | 43.5183          | 2.07793 |      | 0.62330 | 10        | 641            |
|        | 23          | 45.0800          | 2.00950 | 4    | 0,56000 |           | 0.9.5          |
|        | 24          | 46.2100          | 1.96296 | 3    | 0.18000 | 1.3       | 6.40           |
|        | 25          | 53,0083          | 1.72611 | 3    | 0.40330 | 12        | 540            |
|        | 26          | 61,2450          | 1.51223 | 3    | 0.69000 |           | 010            |
|        |             | 62,4150          | 1.48667 | 3    | 0,49000 | 12        | 393            |
|        | 28          | 63,5900          | 1.46200 | - 4  | 0.58000 | 16        | 478            |
|        | 20          | 64.3833          | 1,44589 | 5    | 0.64670 | 2.1       | 535            |
|        | 20          | FE 0500          | 1 43247 | 4    | 0.96000 |           | 805            |

#### Tabel 4. XRD data profile of KASP before KMnO<sub>4</sub> addition

The results of measurements of activated carbon shown in Figure 3 has a widened peak with a peak value of silica is the strongest at the  $2\theta = 20$ -300 (d = 3.71) with a degree of crystallinity of 52.4165%. The peak value is only one on KASP indicates that the active carbon is more amorphous.

The highlight of silica decreased dramatically after the addition of KMnO<sub>4</sub> is likely a reaction other than the alleged previous reaction.

$$4 \text{ KMnO}_4 + 3\text{C} + \text{H}_2\text{O} \rightarrow 4\text{MnO}_2 + \text{K}_2\text{CO}_3 + 2 \text{ KHCO}_3 \qquad (2)$$

New peak in the area of 2theta = 37° indicate the formation of MnO2 compounds on the surface of KASP as shown in Figure 3 or peak information as given in Table 5.

| **          | *            |          |      |            |           |                |
|-------------|--------------|----------|------|------------|-----------|----------------|
|             | Basic Data   | Process  |      |            |           |                |
| Group .     | C            | -rocess  |      |            |           |                |
| Data :      | Standard     |          |      |            |           |                |
|             | CASPSetDepss |          |      |            |           |                |
| # Strongest | 2            |          |      |            |           |                |
| no. peak    | o peaks      |          |      |            |           |                |
| no.         | ZTheta       | d        | T/T1 | PERMA      | ******    | Tobarashad Tat |
| 1 27        | (deg)        | (A)      | 1111 | EWHM (dog) | Intensity | Integrated Int |
| 2 13        | 37.0200      | 2.42637  | 100  | 1 55000    | 124       | 10735          |
| 3 28        | 24.2200      | 3.67178  | 81   | 0.00000    |           | 0              |
|             | 38.3000      | 2.34817  | 68   | 0,00000    | 84        | 0              |
| # Peak Data | Tint         |          |      |            |           |                |
| peak        | 2Thete       |          |      |            |           |                |
| no.         | (deg)        | d        | 1/11 | FWHM       | Intensity | Integrated Int |
| 1           | 11 4100      | (A)      |      | (deg)      | (Counts)  | (Counts)       |
| 2           | 12 7200      | 6.05272  | 10   | 0.50000    | 12        | 476            |
| 3           | 13 7100      | 6 45374  | 14   | 0.40000    | 17        | 156            |
| 4           | 14,7070      | 6 01840  | 6    | 0.32600    | 8         | 132            |
| 5           | 15,4350      | 5 73614  | 6    | 0 29000    | 8         | 179            |
| 6           | 18,2600      | 4.85458  | 6    | 0.04000    | 7         | 36             |
| 7           | 19,1500      | 4.63092  | 8    | 0.38000    | 10        | 237            |
| 8           | 19,7600      | 4,48931  | 10   | 0.44000    | 13        | 361            |
| 9           | 20.8000      | 4.26714  | 36   | 0.86660    | 45        | 2878           |
| 10          | 21.7000      | 4.09215  | 45   | 0.00000    | 56        | 0              |
| 11          | 22.6600      | 3.92091  | 54   | 0.00000    | 67        | 0              |
| 12          | 23.2800      | 3.81787  | 63   | 0.00000    | 78        | 0              |
| 13          | 24.2200      | 3.67178  | 81   | 0.00000    | 100       | 0              |
| 14          | 25.6800      | 3.46624  | 60   | 0.00000    | 75        | 0              |
| 15          | 26.4600      | 3.36580  | 57   | 0.00000    | 11        | 0              |
| 16          | 27.4400      | 3.24778  | 52   | 0.00000    | 51        | 0              |
| 17          | 28.3800      | 3.14231  | 91   | 0.00000    | 40        | 0              |
| 18          | 29.4200      | 3.03355  | 32   | 0.00000    | 52        | 3460           |
| 19          | 30.0200      | 2.9/42/  | 92   | 0.98280    | 30        | 0              |
| 20          | 31.4200      | 2.84487  | 29   | 0.00000    | 33        | 0              |
| 21          | 32.3000      | 2.76934  | 22   | 0.00000    | 29        | 0              |
| 22          | 32.5800      | 2.60046  | 36   | 0.00000    | 45        | 0              |
| 23          | 33.1600      | 2.63340  | 31   | 0.00000    | 39        | 0              |
| 24          | 33.5000      | 2.01203  | 33   | 0 92000    | 41        | 1760           |
| 25          | 33.9200      | 2 54234  | 36   | 1,20000    | 45        | 2895           |
| 26          | 35.2600      | 2.01001  |      | 1.55000    | 124       | 10735          |
| 27          | 37.0200      | 2 34917  | 68   | 0.00000    | 84        | 0              |
| 28          | 38.3000      | 2 20422  | 66   | 0.00000    | 82        | 0              |
| 29          | 39.0600      | 2.30422  | 53   | 1.59000    | 66        | 8180           |
| 30          | 40.7000      | 2 12438  | 39   | 0.76000    | 48        | 1682           |
| 31          | 42.5200      | 2.08606  | 34   | 1,32000    | 42        | 2195           |
| 32          | 43.3400      | 2.000000 | 35   | 0.56330    | 43        | 1209           |
| 33          | 44.6683      | 1 09920  | 30   | 0.54000    | 37        | 1060           |
| 34          | 45.5900      | 1.30020  | 28   | 0.51000    | 35        | 1124           |
| 35          | 46.4450      | 1.95357  | 22   | 0.51000    | 27        | 943            |
| 36          | 47.5350      | 1.91125  | 22   | 0.26000    | 21        | 415            |
| 37          | 48.4800      | 1.8/622  | 22   | 0.96000    | 31        | 9 1118         |
| 38          | 49.0700      | 1.85503  | 31   | 0.76660    | 2         | 7 899          |
| 39          | 49.7400      | 1.83160  | 22   | 0.10000    | 2         | 551            |
| 40          | 50.8486      | 1.79424  | 18   | 0.16730    | 1         | 5 159          |
| 41          | 51.5546      | 1.77132  | 12   | 0.15/30    | 1         | 9 603          |
| 42          | 52.6000      | 1.73855  | 15   | 0.36000    | 2         | 1 774          |
| 43          | 54,1650      | 1.69195  | 17   | 0.55000    | 1         | 0 0            |
| 44          | 54,5800      | 1.68006  | 15   | 0.00000    | 1         | 1 528          |
| 44          | 54.8864      | 1.67141  | 17   | 0.24710    | 4         | 320            |
| 45          | 56.0866      | 1.63845  | 16   | 0.18670    |           | 2 202          |
| 40          | 57 6750      | 1.59705  | 14   | 0.21000    | ) 1       | 1 303          |
| 47          | 57.8750      | 1.58987  | 8    | 0.12000    | ) 1       | 114            |
| 48          | 51.3000      |          |      |            |           |                |

Table 5. XRD data profile of KASP after KMnO4 addition

XRD data to synthesized MnO2 showed that the sample was amorphous which was explained by the presence of wide peak in the area 2theta=  $30-40^{\circ}$  (Tomko et al, 2011). Other supporting data can be seen in Figure 5 (Wang et al. 2011).

As seen in Figure 5, the XRD patterns of MnO2 nanoparticles showed a clear peak and width at  $37^{\circ}$  and  $65^{\circ}$ , which therefore indicates that

the sample is less crystalline (JCPDS No. 44-0141). Wide reflection shows that the particle size of the sample was small.

From this explanation, it can be concluded that manganese has been reduced from oxidation state +7 (MnO4-) to +4 (MnO2), not to +2 (MnO) as shown in the previous XRF results.

52



Figure 5. Diffraction data of MnO2 compound indicated by peak at 2theta = 3737° ( (Wang, et al. 2011).

Figure6showsthevoltammogramprofileofcommercially activated carbon(KAK)and rice husk based activated carbon

(KASP) before and after MnO2 deposition. The most symmetric voltammogram is shown by electrode which is constructed from KASP material.



Figure 6. Cyclic voltammogram profile of KASP and KAK before and after deposition of MnO2. KASP-Mn = Rice husk based activated carbon after MnO2 deposition, KAK = commercial activated carbon, KAK-Mn = KAK after MnO2 deposition.

Tabel 6 Spesific capacitance of KAK and KASP based pseudo-capacitor electrode (before and after MnO2 deposition).

| No | Sample                          | Specific Capacitance |
|----|---------------------------------|----------------------|
| 1  | KAK (Commercially AC)           | 33 µF/g              |
| 2  | KAK-MnO2 (composite CAC-MnO2)   | 29,6 mF/g            |
| 3  | KASP (Rice Husk Based AC)       | 8,6 µF/g             |
| 4  | KASP-MnO2 (composite KASP-MnO2) | 25,4 mF/g            |

From that table, it can be seen that there is a significance increase in Cs after MnO2 deposition, either in electrode constructed from KAK or KASP. For electrode developed using KAK, there is an increase  $\pm$  1000 times after the presence of MnO2 on the surface of commercially activated carbon. For electrode developed using KASP, there is an increase  $\pm$  3000 times after the presence of MnO2 on the surface of rice husk based activated carbon. This suggests that agricultural waste based activated carbon has a better performance than commercially activated carbon. KAK is more expensive in price than KASP. However, it should be confessed that the order of capacitance obtained in this study is low, in the order of mikro- to milli- Farad compared to the previous research. This results adaptate with the facility in our lab, for example in the of construction pseudo-capacitor electrode.

The increase in the capacitance can be explained by the pseudocapacitive effect of MnO2 on the surface of both carbons. This also suggests that there is a verv significant improvement on functional properties of carbon material which is obtained from biomass based agricultural waste. The improvement in the functional properties of electrode material will also increase the performance of pseudo-capacitor as shown in Table 6. This will be an valueadded of this research since we employ an agricultural waste which is in a huge amount around us, and sometimes causes environmental pollution.

### CONCLUSIONS

Nanocomposite MnO2/Rice Husk based Activated Carbon (KASP) has been synthesized by means of one-step synthesis solution chemical in a and KASP via containing KMnO4 heterogenic nucleation of MnO2 nanoparticles on the surface of activated. If the reaction ratio KASP/KMnO4 is changing, morphology of MnO2 that grows on the surface of KASP also changed from nanorod to nanoparticles.

A pseudo-capacitor with high energy density was fabricated by using MnO<sub>2</sub>/KASP nanocomposite as positive electrode and activated carbon as negative electrode in 1 M Na<sub>2</sub>SO<sub>4</sub> aqueous electrolyte. The pseudocapacitor can be cycled reversibly in the cell voltage of 0.2 V, and delivers a specific capacitance of 25.4 mF  $g^{-1}$  (based on the total mass of active electrode materials of 9.4 mg), which is much higher than that of supercapacitor without MnO<sub>2</sub> deposition  $(8.6 \ \mu F \ g^{-1})$ , or there is significance increase in capacitance ( $\pm$  3000 times). We obtained also that rice husk based activated carbon has a better performance compared to commercially activated carbon material.

Such good electrochemical performance makes nanocomposite MnO2/KASP as a promising electrode material for supercapacitors.

### ACKNOWLEDGEMENTS

Acknowledgments for financial assistance through the Fund of BOPTN Hasanuddin University in 2016 in accordance with the Agreement of Implementation No: 1454 / UN4.20 / P / L.09 / 2016.

### REFERENCES

- V.S. Skundin, A.M. Bagotsky, Volfkovich, Y.M. 2015. "Electrochemical power sources: fuel and batteries. cells. supercapacitors", John Wiley & Sons, Inc.
- Beguin, F. Frackowiak, E. (Eds.). 2010. Carbons for Electrochemical Energy Storage and Conversion Systems, CRC Press, Taylor & Francis Group, Boca Raton, FL. ISBN 978-1-4200-5307-4.
- Beguin, F. Presser, V. Balducci, A. Frackowiak, E. 2014. "Carbon and Electrolytes for Advanced Supercapacitors (Review)", Adv. Mater.. 1-33. DOI: 10.1002/adma.201304137. Wiley-VCH Verlag GmbH&Co. KgaA. Weinheim.
- Chen, M.D. Wumale, T. Li, W.L. Song, H.H., Song, R.R. 2015, "Electrochemical performance of cotton stalk based activated carbon electrodes modified by MnO<sub>2</sub> for supercapacitor", *Mat. Tech.*, Vol 30, pp. A2-A7.
- Caballero, A. Hernan, L. Morales, J. 2011. Limitations of Disordered Carbons Obtained from Biomass as Anodes for Real Lithium-Ion Batteries, *Chem. Sus. Chem.*, 4, 658-663.
- Chen, H. Zeng, S. Chen M. Zhang, Y. Zheng L. Li, Q. **2016**, "Oxygen evolution assisted fabrication of

highly loaded carbon nanotube/MnO<sub>2</sub> hybrid films for high performance flexible pseudosupercapacitors", *Small Nano Micro*, 12(15) pp. 2035-2045.

- Chen, Y. Zhu, Y. Wang, Z. Li, Y. Wang, L. Ding, L. Gao, X. Ma, Y. Guo, Y. 2011. "Application studies of activated carbon derived from rice husks produced by chemical-thermal process – <u>a review</u>", *Adv. Coll. Inter. Sci.*, 163, 39-52.
- Daubert, J.S. Lewis, N.P. Gotsch, H.N. Mundy, J.Z. Monroe, D.N. Dickey, E.C. Losego, M.D. Parsons, G.N. 2015, "Effect of meso- and microporosity in carbon electrodes on atomic deposition layer of pseudocapacitive  $V_2O_5$ for high performance supercapacitors, Chem. Mater., 27(19), pp. 6524-6534, DOI:10.1021/acs.chemmater.5b01602
- Dutta, S. Bhaumik, A. Wu, K.C.W. 2014,"Hierarchichally porous carbon derived from polymers and biomass: effect of interconnected pores on energy application (<u>review</u>)", *Energy Environ. Sci.*, 7, 3574-3592.
- Frackowiak, E. Beguin, F. 2001. "Carbon materials for the electrochemical storage of energy in capacitors (review)". *Carbon*. 39(937-950).
- Frackowiak, E. Beguin, F. 2002. "Electrochemical storage of energy in carbon nanotubes and nanostructured carbons". *Carbon*. 40(1775-1787).
- He, X. Ling, P. Qiu, J. Yu, M. Zhang, X. Yu, C. Zheng, M. **2013**. "Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density", *J. Power Sources*, 240, 109-113.
- Ioannidou, O. Zabaniotou, A. 2007."Agricultural residues as

precursor for activated carbon production-a review". *Renewable & Sustainable Energy Reviews*. 11(1966-2005).

- Kalyani, P. Anitha, A. 2013. "Biomass Carbon and Its Prospects in Electrochemical Energy Systems (<u>Review</u>)", Int. J. Hydrogen Energy, 38, 4034-45.
- Lai, F. Miao, Y. Huang, Y. Chung, T.S. Liu, T. 2015, "Flexible hybridmembranes of NiCo2O4-doped carbon nanofiber-MnO2 core-sheath nanostructures for high performance supercapacitors", J. Phys. Chem. C, 119(24), pp. 13442-13450.
- Li, D. Yang, D. Quan, F. Wang, B. Zhang, L. Zhu, S. Wang, L. 2015, "Carbon fibers coated with metal oxides nanostructures as electrode materials for energy storage devices", *Nano Reports*, 2015, 1, 29-41.
- Li, X. Xing, W. Zuo, S. Zhou, J. Li, F. Qiao, S. Z. Lu, G.Q. 2011.
  "Preparation of capacitor's electrode from sunflower sheed shell". *Bioresour. Technol.* 102 (1118–1123).
- Ma, G. Yang, Q. Sun, K. Peng, H. Ran, F. 2015, "Nitrogen-doped porous carbon derived from biomass waste for high performance supercapacitor", *Bioresource Tech.* 2015, 197, 137-142.
- Manik, S.T. Taer, E. Iwantono, **2013**, *"Impedansi Spektroskopi Sel Superkapasitor menggunakan Elektroda karbon bentuk monolit dari ampas tebu"*, Jurnal On Line Mahasiswa MIPA Universitas Riau.
- Nabais, J.V. Carrott, P. Ribeiro Carrott, M.M.L. Luz, V. Ortiz, A.L. 2008. "Influence of preparation conditions in the textural and chemical properties of activated carbons from a novel biomass precursor: the coffee

endocarp". *Bioresour. Technol.* 99 (7224–7231).

- Pandolfo, A.G. Hollenkamp, A.F. 2006. "Carbon properties and their role in supercapacitors". *J. Power Sources*. 157(11-27).
- Raymundo-Piñero, E. Leroux, F. Béguin, F. 2006. "A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer". *Adv. Mater.* 18 (1877– 1882).
- Rosi, M. Ekaputra, M.P. Iskandar, M. Abdullah, M. Khairurrijal, 2012, "Superkapasitor Menggunakan Polimer Hidrogel Elektrolit dan Elektroda Nanopori Karbon", Prosiding SEMNAS Material, Fisika, ITB.
- Rufford, T.E. Hulicova-Jurcakova, D. G.Q. 2008. Zhu, Z.H. Lu, "Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors". Electrochem. Commun. 10(1594 -1597).
- Rufford, T.E. Hulicova-Jurcakova, D. Khosla, K. Zhu, Z., Lu, G.Q. **2010**. "Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse". *J. Power Sources* 195 (912–918).
- Salunkhe, R.R. Ahn, H. Kim, J.H. Yamauchi, Y. 2015, "Rational design of coaxial structured carbon nanotube–manganese oxide (CNT– MnO2) for energy storage application", *Nanotechnology*, 26, 7pp, doi:10.1088/0957-4484/26/20/204004
- Sekine, T. dan Zakir, M. 2008. "Oxidative Dissolution of Tc(IV)O2 •nH2O Colloids by Sonolysis".

*Radiochim. Acta.* 96 (9-11, 625-629).

- Simon, P. Gogotsi, Y. 2008. "Materials for electrochemical capacitors (<u>review</u>)". *Nature Mat.* 7 (845-855).
- Syarif, N. **2014**. "Pengembangan kapasitor lapis ganda elektrokimia dari karbon aktif kayu gelam", Disertasi, Universitas Indonesia
- Taer, E. Sugianto, Sumantre, M.A. Tsalim, R, Iwantono, Dahlan, D.
  2013, "Pengaruh Ukuran Serat dan Ketebalan Membran Kulit Telur Sebagai Separator Alami pada Pengukuran Cas dan Discas dengan rapat arus yang berbeda terhadap rapat rapat energi dan daya sel superkapasitor", Prosiding SEMNAS Fisika Univ. Andalas (SNFUA), ISBN 978-879-25-1954-9
- Wang, J. Xin, H.L. Wang, D. 2013.
  "Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage (<u>Review</u>)", *Part. Part. Syst. Charact.*, 1-25. DOI: 10.1002/ppsc.201300315.
  Wiley-VCH Verlag GmbH&Co. KgaA, Weinheim.
- Wang, Y. T. Lu, A.H. Zhang, H.L. Li, W.C. 2011, "Synthesis of Nanostructured Mesoporous Manganese Oxide with Three-Dimensional Frameworks and Their Application in Supercapacitors", J. Phys. Chem. C 2011, 115, 5413-5421.
- Wei, L. Yushin, G. **2012**."Nanostructured activated carbon from natural precursors for electrical double layer capacitors (<u>review</u>)", *Nano Energy*, 1, 552-565.
- Winter, M. Brodd, R.J. 2004. "What are batteries, fuel cells, and supercapacitors? (<u>review</u>)" *Chem. Rev.* 104(4245-4269).

- Wu, F.C. Tseng, R.L. Hu, C.C. Wang, C.C. 2004. "Physical and electrochemical characterization of activated carbons prepared from firewood for supercapacitors". J. *Power Sources* 138(351–359).
- Xie, J. Sun, X. Zhang, N. Xu, K. Zhou, M. Xie, Y. **2013**."Layer by layer beta-Ni(OH)2/grapheme nanohybrids for ultraflexible all solid state thin film supercapacitors with high electrochemical performance". *Nano Energy*, 2, 65-74.
- Xing, W. Qiao, S.Z. Ding, R.G. Li, F. Lu,
  G.Q. Yan, Z.F. Cheng, H.M. 2006.
  "Superior electric double layer capacitors using OMC". *Carbon*. 44(216-224).
- Xu, P. Wei, B. Cao, Z. Zheng, J. Gong, K. Li, F. Yu, J. Li, Q. Lu, W. Byun, J.H. Kim, B.S. Yan, Y. Chou, T.W.
  2015, "Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated carbon Nanotube Fibers", ACS Nano, 9 (6), pp. 6088-6096. DOI:10.1021/acsnano.5b01244
- Yang, J. Liu, Y. Chen, X. Hu, Z. Zhao, G. 2008. "Carbon electrode material with high densities of energy and power". Acta Physica-Chimica Sinica. 24(13–19).
- Yu, A. Chabot, V. Zhang, J. **2013**, *"Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications"*, Taylor & Francis Group, LLC.
- Zakir, M. dan Sekine, T. 2009. "Oxidation Reaction of Tc(IV)O<sub>2</sub>.nH<sub>2</sub>O Nanocolloid Induced by Ultrasonic Wave". *Indo. Chim. Acta*. 2 (1, 46-47).
- Zakir, M. dan Sekine, T. 2010. "Sonolytic Oxidation of Tc(IV)O<sub>2</sub>.nH<sub>2</sub>O Nanoparticles to Tc(VII)O<sub>4</sub>- in

Aqueous Solution". *Atom Indonesia*. 36 (1, 17-22).

- Zakir, M. Maming, and Achmad, A. 2011. "Adsorption of Methylene Blue and Eosin on Rice Husk Based Activated Carbon". *Indo. Chim. Acta.* 4 (2, 1-6).
- Zakir, M. Maming, Raya, I. Karim, A. Santi. **2012**. "Pemanfaatan Energi Gelombang Ultrasonik Dalam Adsorpsi Ion Logam Berat Cu(II) pada Bioadsorben Karbon Aktif dari Sekam Padi". *Indo. Chim. Acta*. 5 (2, 1-9).
- Zakir, M. **2013**. "Ultrasound-assisted adsorption of lead(II) and copper(II) ions on rice husk activated carbon". Proceeding of The International Conference on Quality in Research, Yogyakarta, 25-28 June 2013, pp.
- Zakir, M. Botahala, L. Ramang, M. St. Fauziah, Abdussamad, B. 2013.
  "Electro-deposition of Mn on the Surface of Rice Husk Based Active Carbon under Sonication". *Indo. Chim. Acta.* 6 (2, 9-18).
- Zhang, F. Ma, H. Chen, J. Li, G.D. Zhang, Y. Chen. J.S. 2008. "Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks". Bioresour. Technol. 99(4803-4808).
- Zhang, Y. Xing, H. Wu, X. Wang, L. Zhang, A. Xia, T.C. Dong, H.C. Li, X.F. Zhong, L.S. 2009. "Progress of electrochemical capacitor electrode materials: <u>a review</u>". *Int. J. Hydrogen Tech.* 34 (4889–4899).
- Zhang, X. Sun, X. Zhang, H. Zhang, D. Ma, Y. **2012**, "Development of redox deposition of birnessite-type MnO<sub>2</sub> on activated carbon as highperformance electrode for hybrid

capacitors", Mat. Chem. Phys., 137, 290-296.

- Zhou, J. Ji, Y. He, J. Zhang, C. Zhao, G. 2008. "Enhanced mesoporosity and capacitance property of spherical carbon aerogel prepared by associating Mg(OH)<sub>2</sub> with non-ionic surfactant". *Micropor. Mesopor. Mater.* 114(424–430).
- Zhong, C. Deng, Y. Hu, W. Qiao, J. Zhang, L. Zhang, J. 2015. "<u>A review</u> of electrolyte materials and compositions for electrochemical supercapacitors". *Chem. Soc. Rev.*, 2015, 44, 7484-7539.