FINE STRUCTURE OF TRICHOBOTHRIA IN THE SALTICID SPIDER MARPISSA CALCUTTAENSIS

Authors

  • Abdul Khader Sultan Mohideen The New College (Autonomous) Affiliated to university of Madras 147 Peters Road Chennai-600014
  • Mohamed Habibullah

Abstract

The fine structure of trichobothria in the salticid spider Marpissa calcuttaensis (Tikader 1974) was investigated by scanning electron microscopy (SEM). The specimens were collected from the New College Campus, Chennai, India and kept in the laboratory before processing. The specimens were then fixed in Trump’s fixative followed by post fixation in 2% osmium tetraoxide at room temperature for 90 minutes. After that, the specimens were dehydrated in the graded ethanol series and hexamethyldisilazane dried. Lastly, the specimens were mounted on aluminum rods with araldite adhesive and coated with a thin layer of gold in a sputter coating unit and viewed under SEM. The SEM photomicrographs revealed the presence of trichobothria on the dorsal aspect of the first leg segments. The trichobothria were observed to be long and slender, embedded in special sockets. The articulation of the trichobothria in response to air deflections corresponds to that of other spider species. In addition, the slit-sensilla and lyriform organ were noticed on the tarsal area of the first leg may react to substrate vibrations which are in accordance to other arachnids. Thus, the structural characteristics features of the mechanoreceptors were compared with other arachnids to decipher their possible functional role and physiological significance.

Author Biographies

Abdul Khader Sultan Mohideen, The New College (Autonomous) Affiliated to university of Madras 147 Peters Road Chennai-600014

Assistant Professor (Senior Scale)

PG & Research Department of Zoology

Mohamed Habibullah

Professor (Retd)

Dept. of Zoology

The New College

References

Barth, F.G. 1993. Sensory guidance in spider pre-copulatory behaviour. Comp. Biochem. Physiol 104, 717–733. https://doi.org/10.1016/0300-9629(93)90148-W

Barth, F.G., Libera, W. 1970. Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys. Chelicerata (Araneae). Z Morphol Tiere 68, 343–369. Google Scholar

Barth, F.G. 1967. A single fissure organ on the spider tarsus: its excitation depending on the parameters of the airborne sound stimulus. Z. Vergl. Physiol 55, 407–449. https://doi.org/10.1007/BF00302624

Barth, F.G. 1982. Spiders and Vibratory Signals. Sensory Reception and Behavioural Significance. In: Witt PN, Rovner J (eds) Spider Communication. Mechanisms and Ecological Significance. Princeton Univ. Press, Princeton, 1982. p: 67-122.

Brownell, P.H. 1977. Compressional and surface waves in sand: Use by desert scorpions to locate prey. Science 197, 479-82.

Cracraft, J., Donoghue, M. (eds.). 2004. Assembling the Tree of Life. Oxford University Press, 2004. p: 297.

Davidova, V.J., Stys, P. 1993. Diversity and variation of trichobothrial patterns in adult Podopinae (Heteroptera : Pentatomidea). Acta Universitatis Carolinae Biologica 37, 33-72.

Dahl, F. 1883. Über die Hörhaare bei Arachnoideen . Zool. Anz 6, 276–270.

Den Otter, C.J. 1974. Setiform sensilla and prey detection in the bird-spider Sericopelma rubronitens Ausserer (Araneae, Theraphosidae). Neth. J. Zool 24, 219-35.

Foelix, R.F. 1982a. Biology of Spiders. Harvard University Press, Cambridge, Massachusetts, and London, England. 1982a.p: 75.

Foelix, R.F. 1982b. Biology of Spiders. Harvard University Press, Cambridge, Massachusetts, and London, England. 1982b. p: 10-12.

Görner, P., Andrews, P. 1969a. Trichobothrien, ein Ferntastsinnesorgan bei Webspinnen (Araneen). Z. vergl. Physiol 64, 301–317.

Görner, P., Andrews, P. 1969b. Trichobothrien, ein Ferntastsinnesorgan bei Webspinnen (Araneen) .Z. vergl. Physiol 64, 301–317. Google Scholar

Grozeva, S.M. 1995. Karyotypes, male reproductive system, and abdominal trichobothria of the Berytidae (Heteroptera) with phylogenetic considerations. Syst. Entomol 20, 207-216.

Harris, D.J., Mill, P.J. 1977. Observations on the leg receptors of Ciniflo (Araneida: Dictynidae). J. Comp. Physiol 119, 55–62. https://doi.org/10.1007/BF00655871

Humphrey, J.A.C., Barth, F.G. 2008. Medium flow-sensing hairs: biomechanics and models. In: Casas J, Simpson SJ (eds) Advances in insect physiology. Insect mechanics and control, Vol. 34, Elsevier Ltd, 2008. pp: 1–80. Google Scholar

Nation, J.L. 1983. A new method for using hexamethyldisilazane for preparation of soft insect tissue for scanning electron microscopy, Stain Technol. 58, 347-351. doi:10.3109/10520298309066811

Rathmayer, W., Koopmann, J. 1970. Die Verteilung der Fhpriorezptoren im Spinnenbein. Untersuchungen an der Vogelspinne Dugesiella hentzi Chamb. Morphol. Tiere 66: 212- 223. Google Scholar

Rathmayer, W. 1967. Elektrophysiologische Untersuchungen an F’ropriorezptoren im Bein einer Vogelspinne (Eurypelma hentzi Chamb.). Z. Vergl. Physiol 54: 438-454. Google Scholar

Rovner, J.S., Barth, F.G. 1981. Vibratory communication through living plants by a tropical wandering spider. Science 214, 464-66. doi:10.1126/science.214.4519.464

Schlegel, D., Bauer, T. 1994. Capture of prey by two pseudoscorpion species. Pedobiologia 38, 361-373.

Shear, W.A. 1986. Spiders: Webs, Behavior, and Evolution. Stanford University Press, Stanford, California. 1986. p: 428.

Tikader, B.K. 1974. Marpissa calcuttaensis. Proc. Indian Acad. Sci, 76, 210.

Walcott, C. 1969. A spider’s vibration receptor: Its anatomy and physiology. Am. Zool 9, 133-44. doi:10.1093/icb/9.1.133

World Spider Catalog. 2016. Natural History Museum Bern. Accessed on 20 March 2020.

https://wsc.nmbe.ch/

Downloads

Published

2021-07-06