Analysis of Flavonoid Levels of Enhalus acoroides in Different Coastal Waters in Ambon Island, Indonesia

Authors

Abstract

Seagrass contains bioactive compounds or secondary metabolites which can be used as potential drugs. This research aims at analyzing the levels of flavonoids of the leaves of seagrass Enhalus acoroides in three different coastal waters. The sampling of seagrass leaves was carried out in three locations in the coastal waters of Ambon Island, namely the coastal waters of Galala, Rutong, and Waai. The levels of flavonoid were identified using microscopic-microchemical methods. The test results of the flavonoid levels were analyzed descriptively. The results of this research showed that samples of seagrass leaves from the coastal waters of Galala, Rutong, and Waai, after added with NaOH, AlCl3, and NH3reagents showed a color change. It means that the samples from the three coastal waters were positive to contain flavonoids. Therefore, the analysis was continued to determine the average levels of flavonoids of E. acoroides. The average levels of flavonoid in the three coastal waters of Galala, Rutong, and Waai were 0.0192%, 0.1475%, and 3.5697% respectively. The environmental conditions and substrate of seagrass E. acoroides in the coastal waters of Rutong and Waai caused higher levels of flavonoids than the levels of flavonoids in the coastal waters of Galala.

Author Biographies

Prelly MJ Tuapattinaya, Biology Education Study Program, Pattimura University

Biology Education Study Program, Pattimura University, Rank B Kemenristekdikti

Dominggus Rumahlatu, Biology Education Study Program, Pattimura University

Biology Education Study Program, Pattimura University, Rank B Kemenristekdikti

References

Amri, K., Setiadi, D., Qayim, I., & Djokosetiyanto, D. 2012. Nutrient Content of Seagrasss Enhalus acoroides Leaves in Barranglompo and Bonebatang Islands: Implication to Increased Antrhropogenic Pressure. Indonesian Journal of Marine Sciences, 16(4): 181-186. doi: 10.14710/ik.ijms.16.4.181-186.

Baby, L., Sankar, T.V., & Chandramohanakumar, N. 2017. Changes in phenolic compounds in seagrasses against changes in the ecosystem. Journal of Pharmacognosy and Phytochemistry, 6(3): 742-747.

Badria, S. 2007. Laju Pertumbuhan Daun Lamun Enhalus acoroides Pada Dua Substrat Berbeda Di Teluk Banten [The Growth Rate of Seagrass Leaf Enhalus Acoroides in Two Different Substrates in Banten Bay]. Thesis. Marine Science and Technology Study Program. Fishery and Marine Science Faculty. Institut Pertanian Bogor. (In Indonesian).

Borum, J., & Greve, T.M. 2004. The Four European Seagrass Species. In: Borum, J., Duarte, C.M., Krause-Jensen, D. and Greve, T.M., Eds., European Seagrasses: An Introduction to Monitoring and Management, EU Project Monitoring and Managing of European Seagrasses (M&MS): 88.

Corradini, E., Foglia, P., Giansanti, P., Gubbiotti, R., Samperi, R., & Lagana, A. 2011. Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Natural Product Research, 25(5): 469-495. doi: 10.1080/14786419.2010.482054.

Dewi. C.S.U., Soedharma, D., & Kawaroe, M. 2012. Komponen Fitokimia dan Toksisitas Senyawa Bioaktif dari Lamun Enhalus acoroides dan Thalassia hemprichii dari Pulau Pramuka, DKI Jakarta [Phytochemical Components and Vioactive Toxivity of Seagrass Enhalus acoroides and Thalassia hemprichii from Pramuka Island, DKI Jakarta]. Jurnal Teknologi Perikanan dan Kelautan, 3(1): 23-28. doi: 10.24319/jtpk.3.23-27. (In Indonesian).

Dewi, C.S.U., Kasitowati, R.D., & Siagian, J.A. 2018. Phytochemical compounds of Enhalus acoroides from Wanci Island (Wakatobi) and Talango Island (Madura) Indonesia. IOP Conf. Series: Earth and Environmental Science, 137(1): 1-5. doi: 10.1088/1755-1315/137/1/012045.

Effendi, H., 2003. Telaah Kualitas Air Bagi Pengolahan Sumberdaya Hayati Lingkungan Perairan [Analysis of Water Quality for the Processing of Biological Resources in the Aquatic Environment]. Kanisius: Yogyakarta. (In Indonesian).

Erftemeijer, P.L.A., & Middelburg, J. 1993. Sediment-nutrient interaction in tropical seagrass beds: a comparasion between a terigeneus and a carbonat sedimentary environmental in South Sulawesi. Marine Progress Series, 102:187-198.

Farnsworth, N.R. 1966. Biological and Phytochemical Screening of Plants. Journal of Pharmaceutical Sciences, 55(3): 263-26. doi: 10.1002/jps.2600550302.

Gustavina, N.L.G.W.B., Dharma, I.G.B.S., & Faiqoh, E. 2018. Identifikasi Kandungan Senyawa Fitokimia Pada Daun dan Akar Lamun di Pantai Samuh Bali [Identifying Phytochemical Compounds in Seagrass Leaves and Roots on Samuh Bali Beach]. Journal of Marine and Aquatic Sciences, 4(2): 271-277. doi: 10.24843/jmas.2018.v4.i02.271-277. (In Indonesian).

Hartati, R., Djunaedi, A., Hariyadi., & Mujiyanto. 2012. Struktur Komunitas Padang Lamun di Perairan Pulau Kumbang, Kepulauan Karimunjawa [Seagrass Padang Community Structure on the Waters of Kumbang Island, Karimunjawa Islands]. Indonesian Journal of Marine Sciences, 17(4): 217-225. doi: 10.14710/ik.ijms.17.4.217-225. (In Indonesian).

Hutomo, M. 1999. Proses Peningkatan Nutrient Mempengaruhi Kelangsungan Hidup Lamun [Nutrient Enhancement Process Affects Seagrass Survival]. LIPI: Jakarta. (In Indonesian).

Irawan, A. 2017. LIPI Ambon seagrass collection of 2008-2015. Lonawarta, 23(2): 1-21.

Immaculate, J.K., Lilly, T.T., & Patterson, J. 2018. Macro and micro nutrients of seagrass species from Gulf of Mannar, India. MOJ Food Process Technol, 6(4):391-398. doi: 10.15406/mojfpt.2018.06.00193.

Kannan, R.R.R., Arumugam, R., & Anantharaman, P. 2010a. Antibacterial potential of three seagrasses against human pathogens. Asian Pacific Journal of Tropical Medicine, 3(11): 890-893. doi: 10.1016/S1995-7645(10)60214-3.

Kannan, R.R.R., Arumugam, R., Meenakhshi, S., & Anantharaman, P. 2010b. Thin Layer Chromatography Analysis of Antioxidant Constituents from Seagrasses of Gulf of Mannar Biosphere Reserve, South India. International Journal of ChemTech Research, (2)3: 1526-1530.

Kilminster, K.L., Walker, D.I., Thompson, P.A., & Raven, J.A. 2006. Limited nutritional benefit of the seagrass Halophila ovalis, in culture, following sediment organic matter enrichment, Estuarine. Coastal and Shelf Science, 68: 675-685. doi: 10.1016/j.ecss.2006.03.016.

Mani, A.E., Aiyamperumal, V., & Patterson, J. 2012. Phytochemicals of The Seagrass SyringodiumI soetifolium and Its Antibacterial and Insecticidal Activities. European Journal of Biological Sciences, 4(3): 63-67. doi: 10.5829/idosi.ejbs.2012.4.3.6455.

Mansson, M., Gram, L., & Larsen, T.O. 2011. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae. Mar. Drugs, 9: 1440-1468. doi:10.3390/md9091440.

Mulyani, S., & Laksana, T. 2011. Analisis Flavonoid dan Tannin dengan Metoda Mikroskopi Mikrokimiawi [Flavonoid and Tannin Analysis by Microchemical Microscopy Methods ]. Jurnal Majalah Obat Tradisional, 16(3):109-114. (In Indonesian)

Nontji, A. 2005. Laut Nusantara [Nusantara Sea]. Fourth Print, Revised Edition. Djambatan: Jakarta. (In Indonesian).

Owolabi, I.O., Yupanqui, C.T., & Siripongvutikorn, S. 2018. Enhancing Secondary Metabolites (Emphasis on Phenolics and Antioxidants) in Plants through Elicitation and Metabolomics. Pakistan Journal of Nutrition, 17(9): 411-420. doi: 10.3923/pjn.2018.411.420.

Popova, M., Bankova, V., Butovska, D., Petkov, V., Damyanova, B.N., Sabatini, A.G., Marcazzan, G.L., & Bogdanov, S. 2004. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochemical Analysis, 15: 235-240. doi: 10.1002/pca.777.

Qi, S-H., Zhang, S., Qian, P-Y., & Wang, B-G. 2008. Antifeedant, antibacterial, and antilarval compounds from the South China Seagrass Enhalus acoroides. Botanica Marina, 51(5): 441-447. doi: 10.1515/BOT.2008.054.

Rahman, A.A., Nur, A.I., & Ramli, M. 2016. Studi Laju Pertumbuhan Lamun (Enhalus acoroides) di Perairan Pantai Desa Tanjung Tiram Kabupaten Konawe Selatan [The Study of Seagrass Growth (Enhalus acoroides) in Coastal Waters of Tanjung Tiram Village, South Konawe Regency]. Sapa Laut, 1(1): 10-16. (In Indonesian).

Redha, A. 2010. Flavonoid: Struktur, Sifat Anti Oksidatif dan Peranannya dalam Sistem Biologi [Flavonoids: Structure, Anti-Oxidative Properties and Their Role in Biological Systems]. Jurnal Belian, 9(2): 196-202. (In Indonesian).

Riniatsih, I., & Setyati, W.A. 2009. Bioaktivitas Ekstrak dan Serbuk Lamun Enhalus acoroides dan Thalassia hemprichii pada Vibrio alginolyticus dan Vibrio harveyii [Bioactivity Extracts of Seagrass Enhalus Acoroides and Thalassia hemprichii on Vibrio alginolyticus and Vibrio harveyii]. Indonesia Journal of Marine Science, 14 (3): 138 -141. doi: 10.14710/ik.ijms.14.3.138-141. (In Indonesian).

Rizal, M. 2010. Bioakumulasi Logam Berat Timbal (Pb) dan Cadmium (Cd) pada Lamun (Enhalus Acroides) Di Perairan Waai dan Galala Ambon Sebagai Sumber Belajar Ekologi Pencemaran Bioaccumulation of Heavy Metal Lead (Pb) and Cadmium (Cd) in Seagrass (Enhalus Acroides) in Waai and Galala Waters of Ambon as Learning Resources for Pollution Ecology. Thesis. Pascasarjana Universitas Negeri Malang. (In Indonesian).

Rijal, M., Rosmawati, T., Natsir, N.A., Amin, M., Rochman, F., Badwi, D., & Bahalwan, F. 2014. Bioakumulation Heavy Metals Lead (Pb) and Cadmium (Cd) Seagrass (Enhalus acroides) in Waai and Galala Island Ambon. International Journal of Sciences: Basic and Applied Research, 162): 349-356.

Robinson, T. 1995. Kandungan Organik Tumbuhan Tinggi [High Organic Content of Plants]. ITB Press: Bandung. (In Indonesian).

Rohaeti, E., Heryanto, R., Rafi, M., Wahyuningrum, A., & Darusman, L.K. 2011. Prediksi Kadar Flavonoid Total Tempuyung (Sonchus arvensis L.) Menggunakan Kombinasi Spektroskopi IR dengan Regresi Kuadrat Terkecil Parsial [Predicting the Total Flavonoid Levels of Tempuyung (Sonchus arvensis L.) Using a Combination of IR Spectroscopy with the Smallest Partial Regression]. Jurnal kimia, 5(2):101-108. (In Indonesian).

Rumahlatu, D., Huliselan, E.K., and Salmanu, I.A. 2018. Spatial and Seasonal Distribution of Cadmium and Lead in Sediment, Water and Its Response of Metal Transcription Factor-1 in Cardinal Fish Apogon beauforti. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 23 (1): 45-54. doi: 10.14710/ik.ijms.23.1.45-54.

Santoso, J., Anwariyah, S., Rumiantin, R.O., Putri, A.P., Ukhty, N., & Yoshie-Stark, Y. 2012. Phenol Content, Antioxidant Activity And Fibers Profile Of Four Tropical Seagrasses From Indonesia. Journal of Coastal Development, 15(2): 189-196.

Singh, B., Bhat, T.K., & Singh, B. 2003. Potential Therapeutic Applications of SomeAntinutritional Plant Secondary Metabolites. Journal Agric. Food Chem, 51(19): 5579-5597. doi: 10.1021/jf021150r.

Subhashini, P., Dilipan, E., Thangaradjou, T., & Papenbrock, J. 2013. Bioactive natural products from marine angiosperms: abundance and functions. Nat. Prod. Bioprospect, 3: 129-136. doi 10.1007/s13659-013-0043-6.

Soedradjad, R., & Syamsunihar, A. 2014. Phenolic and flavonoid contents of soybean seed that associated with Synechococcus sp. and organically fertilized. Agritrop Jurnal Ilmu-Ilmu Pertanian, 12(1): 5-8.

Tuahatu, J. W., Hulopy M., & Louhenapessy., D. G. 2016. Community structure of seagrass in Waai and Lateri waters, Ambon Island, Indonesia. AACL Bioflux, 9(6): 1380-1387.

Tuhumury, S. F. 2008. The community Status of seagrass in coastal water of inner Ambon Bay. Ichthyos, 7 (2): 85-88.

Zidorn, C. 2016. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. Phytochemistry, 124:5-28. doi: 10.1

Downloads

Published

2019-06-29