BEST PROXIMITY POINT THEOREMS FOR $\alpha^{+} F,(\theta-\phi)$-PROXIMAL CONTRACTION

Mohamed Rossafi ${ }^{1}$ and Abdelkarim Kari ${ }^{2}$

Abstract

In this paper, inspired by the idea of Suzuki type $\alpha^{+} F$-proximal contraction in metric spaces, we prove a new existence of best proximity point for Suzuki type $\alpha^{+} F$ proximal contraction and $\alpha^{+}(\theta-\phi)$-proximal contraction defined on a closed subset of a complete metric space. Our theorems extend, generalize, and improve many existing results.

Keywords: proximity point, $\alpha^{+} F$-proximal contraction, $\alpha^{+}(\theta-\phi)-$ proximal contraction.

1. Introduction and preliminaries

Best proximity point theorem analyses the condition under which the optimisation problem, namely, $\inf _{x \in A} d(x, T x)$, has a solution. The point x is called the best proximity $(B P P(T)$ of $T: A \rightarrow B$, if $d(x, T x)=d(A, B)$, where $\{d(A, B)=\inf d(x, y)$: $x \in A, y \in B\}$. Note that the best proximity point reduces to a fixed point if T is a self-mapping.

Sankar Raj [4] and Zhang et al. [5] defined the notion of P-property and weak P property respectively. Hussain et al. [2] defined the concept of α^{+}-proximal admissible for non self mapping and introduced Suzuki type $\alpha^{+} \psi$ - proximal contraction to generalize several best proximity results and obtained some best proximity point theorems for self-mappings.

Definition 1.1. [1]. Let (A,B) be a pair of non empty subsets of a metric space (X, d). We adopt the following notations:
$d(A, B)=\{\inf d(a, b): a \in A, b \in B\} ;$
$A_{0}=\{a \in A$ there exists $b \in A$ such that $d(a, b)=d(A, B)\} ;$

[^0]Email address: ${ }^{1}$ mohamed.rossafi@usmba.ac.ma; ${ }^{2}$ abdkrimkariprofes@gmail.com

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Intemational License
$B_{0}=\{b \in B$ there exists $a \in A$ such that $d(a, b)=d(A, B)\}$.

Definition 1.2. [1]. Let $T: A \rightarrow B$ be a mapping. An element x^{*} is said to be a best proximity point of T if

$$
d\left(x^{*}, T x^{*}\right)=d(A, B) .
$$

Definition 1.3. [2]. Let $\alpha: A \times A \rightarrow]-\infty,+\infty\left[\right.$. We say that T is said to be α^{+} proximal admissible if

$$
\left\{\begin{aligned}
\alpha\left(x_{1}, x_{2}\right) & \geq 0 \\
d\left(u_{1}, T x_{1}\right) & =d(A, B) \Rightarrow \alpha\left(u_{1}, u_{2}\right) \geq 0 \\
d\left(u_{2}, T x_{2}\right) & =d(A, B)
\end{aligned}\right.
$$

for all $x_{1}, x_{2}, u_{1}, u_{2} \in A$.

Definition 1.4. [4]. Let (A, B) be a pair of non empty subsets of a metric space (X, d) such that A_{0} is non empty. Then the pair (A, B) is to have P -property if and only

$$
\left\{\begin{array}{l}
d\left(x_{1}, y_{1}\right)=d(A, B) \\
d\left(x_{2}, y_{2}\right)=d(A, B)
\end{array} \Rightarrow d\left(x_{1}, x_{2}\right)=d\left(y_{1}, y_{2}\right)\right.
$$

for all $x_{1}, x_{2} \in A_{0}$ and $y_{1}, y_{2} \in B_{0}$.
Definition 1.5. [7]. Let \digamma be the family of all functions $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that
$\left(F_{1}\right) F$ is strictly increasing;
$\left(F_{2}\right)$ For each sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of positive numbers

$$
\lim _{n \rightarrow \infty} x_{n}=0, \quad \text { if and only if } \lim _{n \rightarrow \infty} F\left(x_{n}\right)=-\infty ;
$$

$\left(F_{3}\right)$ There exists $\left.k \in\right] 0,1\left[\right.$ such that $\lim _{x \rightarrow 0} x^{k} F(x)=0$.
Definition 1.6. [3] Let Θ be the family of all functions $\theta:] 0,+\infty[\rightarrow] 1,+\infty[$ such that
$\left(\theta_{1}\right) \theta$ is strictly increasing;
$\left(\theta_{2}\right)$ For each sequence $\left.x_{n} \in\right] 0,+\infty[$;

$$
\lim _{n \rightarrow 0} x_{n}=0, \quad \text { if and only if } \lim _{n \rightarrow \infty} \theta\left(x_{n}\right)=1 ;
$$

$\left(\theta_{3}\right) \theta$ is continuous.

ABDELKARIM KARI, MOHAMED ROSSAFI

Definition 1.7. [6] Let Φ be the family of all functions ϕ : $[1,+\infty[\rightarrow[1,+\infty[$, such that
$\left(\phi_{1}\right) \phi$ is increasing;
$\left(\phi_{2}\right)$ For each $\left.t \in\right] 1,+\infty\left[, \lim _{n \rightarrow \infty} \phi^{n}(t)=1\right.$;
$\left(\phi_{3}\right) \phi$ is continuous.

Lemma 1.8. If $\phi \in \Phi$ Then $\phi(1)=1$, and $\phi(t)<t$.

Definition 1.9. [6]. Let (X, d) be a metric space and $T: X \rightarrow X$ be a mapping. T is said to be a (θ, ϕ)-contraction if there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for any $x, y \in X$,

$$
d(T x, T y)>0 \Rightarrow \theta[d(T x, T y)] \leq \phi[\theta(d(x, y))]
$$

2. Main Results

Now, we introduce the following concept which is a $\alpha^{+} F$-proximal contraction and $\alpha^{+}(\theta, \phi)$-proximal contraction.

2.1. $\alpha^{+} F$-proximal mapping.

Definition 2.1. The mapping $T: A \rightarrow B$ is called a Suzuki type $\alpha^{+} F$-proximal contraction, if there exists $F \in \mathbb{F}$ and $\tau>0$ such that

$$
\begin{equation*}
\frac{1}{2} d^{*}(x, T x) \leq d(x, y) \Rightarrow \alpha(x, y)+F(d(T x, T y))+\tau \leq F(M(x, y)) \tag{2.1}
\end{equation*}
$$

for all $x, y \in A$, where $\left.d^{*}(x, T x)=d(x, T x)-d(A, B), \alpha: A \times A \rightarrow\right]-\infty,+\infty[$ and

$$
M(x, y)=\left\{d(x, y), \frac{d(x, T x)+d(y, T y)}{2}-d(A, B), \frac{d(x, T y)+d(y, T x)}{2}-d(A, B)\right\}
$$

for all $x_{1}, x_{2}, u_{1}, u_{2} \in A$.

Theorem 2.2. Suppose A and B are nonempty closed subset of a complete metric space X with $A_{0} \neq \varnothing$. Let $T: A \rightarrow B$ satisfy (2.1) together with the following assertions:
(i) $T\left(A_{0}\right) \in B_{0}$ and the pair (A, B) satisfies the weak P-property;
(ii) T is α^{+}-proximal admissible;
(iii) there exist elements $x_{0}, x_{1} \in A$ such that $d\left(x_{1}, T x_{0}\right)=d(A, B)$ and $\alpha\left(x_{0}, x_{1}\right) \geq$ $0 ;$
(iv) T is continuous or
(v) F is continuous and A is α-regular, that $\left\{x_{n}\right\}$ is a sequence in A such that $\alpha\left(x_{n}, x\right) \geq 0$ for all $n \in \mathbb{N}$.

Then T has a best proximity point $z^{*} \in A$ such that $d\left(z^{*}, T z^{*}\right)=d(A, B)$.

Proof. From condition (iii), there exist elements $x_{0}, x_{1} \in A_{0}$ such that

$$
d\left(x_{1}, T x_{0}\right)=d(A, B) \text { and } \alpha\left(x_{0}, x_{1}\right) \geq 0 .
$$

Since $T\left(A_{0}\right) \in B_{0}$, there exists $x_{2} \in A_{0}$ such that $d\left(x_{2}, T x_{1}\right)=d(A, B)$.
Now, we have

$$
d\left(x_{2}, T x_{1}\right)=d(A, B), \alpha\left(x_{1}, x_{2}\right) \geq 0
$$

Again, since $T\left(A_{0}\right) \in B_{0}$, there exists $x_{3} \in A_{0}$ such that

$$
d\left(x_{3}, T x_{2}\right)=d(A, B) .
$$

Again since T is α^{+}-proximal admissible, this implies that $\alpha\left(x_{2}, x_{3}\right) \geq 0$. Thus, we have

$$
d\left(x_{3}, T x_{2}\right)=d(A, B) \text { and } \alpha\left(x_{2}, x_{3}\right) \geq 0 .
$$

Continuing this process, by induction, we construct a sequence $x_{n} \in A_{0}$ such that

$$
d\left(x_{n+1}, T x_{n}\right)=d(A, B) \quad \text { and } \quad \alpha\left(x_{n}, x_{n+1}\right) \geq 0, \forall n \in \mathbb{N} .
$$

Since (A, B) satisfies the weak P property, we conclude from (2.1) that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq d\left(T x_{n}, T x_{n+1}\right), \forall n \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

We shall prove that the sequence x_{n} is a Cauchy sequence. Let us first prove that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 .
$$

By using the observations we can write

$$
\begin{aligned}
\frac{1}{2} d^{*}\left(x_{n-1}, T x_{n}\right) & =\frac{1}{2} d\left(x_{n-1}, T x_{n}\right)-d(A, B) \\
& \leq \frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, T x_{n}\right)\right]-d(A, B) \\
& =\frac{1}{2} d\left(x_{n-1}, x_{n}\right) \\
& \leq d\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

Jurual Matematika, Statistika \& Komputasi

 ABDELKARIM KARI, MOHAMED ROSSAFI

 ABDELKARIM KARI, MOHAMED ROSSAFI}
and

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{d\left(x_{n-1}, x_{n}\right), \frac{d\left(x_{n-1}, T x_{n-1}\right)+d\left(x_{n}, T x_{n}\right)}{2}-d(A, B), \frac{d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)}{2}-d\right. \\
& \leq \max \left\{d\left(x_{n-1}, x_{n}\right), \frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)}{2}-d(A, B)\right\} \\
& \left\{\frac{d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)}{2}-d(A, B)\right\} \\
& \leq \max \left\{d\left(x_{n-1}, x_{n}\right), \frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)}{2}-d(A, B)\right\}, \\
& \left\{\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)}{2}-d(A, B)\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), \frac{d\left(x_{n-1}, x_{n}\right)+d(A, B)+d\left(x_{n}, x_{n+1}\right)+d(A, B)}{2}-d(A, B)\right\} \\
& \left\{\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d(A, B)+d(A, B)}{2}-d(A, B)\right\} \\
& \left\{\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d(A, B)+d(A, B)}{2}-d(A, B)\right\} \\
& \leq \max \left\{\frac{d\left(x_{n-1}, x_{n}\right) d\left(x_{n}, x_{n+1}\right)}{2}, \frac{d\left(x_{n-1}, x_{n}\right) d\left(x_{n}, x_{n+1}\right)}{2}\right\}, \\
& \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} .
\end{aligned}
$$

As T is $\alpha^{+} F$-proximal contraction. Then

$$
\begin{aligned}
F\left(d\left(x_{n}, x_{n+1}\right)\right) & \leq \tau+F\left(d\left(T x_{n-1}, T x_{n}\right)\right) \\
& \leq \tau+F\left(d\left(T x_{n-1}, T x_{n}\right)\right)+\alpha\left(x_{n-1}, x_{n}\right) \\
& \leq F\left(M\left(x_{n-1}, x_{n}\right)\right) \\
& \leq F\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}\right)
\end{aligned}
$$

Now if $\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}=d\left(x_{n}, x_{n+1}\right)$, then

$$
\begin{aligned}
F\left(d\left(T x_{n-1}, T x_{n}\right)\right) & \leq F\left(d\left(x_{n}, x_{n+1}\right)+\tau\right. \\
& <F\left(d\left(x_{n}, x_{n+1}\right)\right.
\end{aligned}
$$

which is a contradiction. Hence

$$
\begin{aligned}
F\left(d\left(T x_{n-1}, T x_{n}\right)\right) & \leq F\left(d\left(x_{n-1}, x_{n}\right)-\tau\right. \\
& \leq F\left(d\left(x_{n-2}, x_{n-1}\right)-2 \tau\right. \\
& \leq \ldots \leq F\left(d\left(x_{0}, x_{1}\right)-n \tau\right.
\end{aligned}
$$

Jurual Matematika, Statistika \& Komputasi
 ABDELKARIM KARI, MOHAMED ROSSAFI

Taking the limit as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} F\left(d\left(x_{n}, x_{n+1}\right)\right)=-\infty .
$$

By $\left(F_{2}\right)$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 . \tag{2.3}
\end{equation*}
$$

By condition $\left(F_{3}\right)$ there exists $k \in(0,1)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)^{k} d\left(x_{n}, x_{n+1}\right)=0 . \tag{2.4}
\end{equation*}
$$

Since

$$
F\left(d\left(x_{n}, x_{n+1}\right)\right) \leq F\left(d\left(x_{0}, x_{1}\right)\right)-n \tau,
$$

we have
$d\left(x_{n}, x_{n+1}\right)^{k} F\left(d\left(x_{n}, x_{n+1}\right)\right) \leq F\left(d\left(x_{n}, x_{n+1}\right)\right)^{k} F\left(d\left(x_{0}, x_{1}\right)\right)-n \tau F\left(d\left(x_{n}, x_{n+1}\right)\right)^{k} \leq 0$.
Letting $n \longrightarrow+\infty$ in (2.5), we obtain

$$
\lim _{n \rightarrow \infty} n \tau d\left(x_{n}, x_{n+1}\right)^{k}=0 .
$$

From the definition of the limit, there exists $n_{0} \in \mathbb{N}$ such that

$$
d\left(x_{n}, x_{n+1}\right) \leq \frac{1}{n^{k}}, \forall n \leq n_{0} .
$$

Next we show that $\left\{x_{n}\right\}$ is a Cauchy sequence, i.e,

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0 \forall m \in \mathbb{N}^{*} .
$$

By triangular inequality, we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{+2}\right)+\ldots+d\left(x_{n+m-1}, x_{n+m}\right) \\
& \leq \frac{1}{n^{k}}+\frac{1}{(n+1)^{k}}+\ldots+\frac{1}{(n+m)^{k}} \\
& =\sum_{r=n}^{n+m-1} \frac{1}{(r)^{k}} \\
& \leq \sum_{r=1}^{\infty} \frac{1}{(r)^{k}} .
\end{aligned}
$$

ABDELKARIM KARI, MOHAMED ROSSAFI

Since $0<k<1, \sum_{r=1}^{\infty} \frac{1}{(r)^{k}}$ is A convergent. Thus $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n \rightarrow \infty$, which shows that $\left\{x_{n}\right\}$ is a Cauchy sequence. Then there exists $z \in X$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0
$$

If (iv) holds, then

$$
\lim _{n \rightarrow \infty} d\left(T x_{n}, T z\right)=0
$$

and

$$
d(A, B)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, T x_{n}\right)=d(z, T z),
$$

as required. Next, assume that (v) holds. Thus $\alpha\left(x_{n}, z\right) \geq 0$. If the flowing inequalities holds:

$$
\frac{1}{2} d^{*}\left(x_{n}, T x_{n}\right)>d\left(x_{n}, z\right) \text { and } \frac{1}{2} d^{*}\left(x_{n+1}, T x_{n+1}\right)>d\left(x_{n+1}, z\right) .
$$

for some $n \in \mathbb{N}$, then by using (h) and definition of d^{*}, we obtain the following contraction:

$$
\begin{aligned}
d\left(x_{n}, T x_{n+1}\right) & \leq d\left(x_{n}, z\right)+d\left(z, T x_{n+1}\right) \\
& <\frac{1}{2}\left[d^{*}\left(x_{n}, T x_{n}\right)+d^{*}\left(x_{n+1}, T x_{n+1}\right)\right] \\
& =\frac{1}{2}\left[d\left(x_{n}, T x_{n}\right)+d\left(x_{n+1}, T x_{n+1}\right)-2 d(A, B)\right] \\
& \leq \frac{1}{2}\left[\left(x_{n}, x_{n+1}\right)+\left(x_{n+1}, T x_{n}\right)+d\left(x_{n+1}, T x_{n}\right)+d\left(T x_{n}, T x_{n+1}\right)-2 d(A, B)\right] \\
& =\frac{1}{2}\left[\left(x_{n}, x_{n+1}\right)+d\left(T x_{n}, T x_{n+1}\right)\right] \\
& \leq\left(x_{n}, x_{n+1}\right) .
\end{aligned}
$$

Consequently, for any $n \in \mathbb{N}$, either

$$
\frac{1}{2} d^{*}\left(x_{n}, T x_{n}\right) \leq d\left(x_{n}, z\right) \text { or } \frac{1}{2} d^{*}\left(x_{n+1}, T x_{n+1}\right) \leq d\left(x_{n+1}, z\right)
$$

holds. Thus, we may pick a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\frac{1}{2} d^{*}\left(x_{n_{k}}, T x_{n_{k}}\right) \leq d\left(x_{n_{k}}, z\right) \text { and } \alpha\left(x_{n_{k}}, z\right) \geq 0
$$

for all $k \in \mathbb{N}$. By (2.1) we get

$$
\begin{aligned}
F\left(d\left(T x_{n_{k}}, T z\right)\right)+\tau & \leq F\left(d\left(T x_{n_{k}}, T z\right)\right)+\tau+\alpha\left(x_{n_{k}}, z\right) \\
& \leq F\left[M\left(x_{n_{k}}, z\right)\right]
\end{aligned}
$$

ABDELKARIM KARI, MOHAMED ROSSAFI

F is increasing, continuous function, we get

$$
d\left(T x_{n_{k}}, T z\right) \leq M\left(x_{n_{k}}, z\right)
$$

Notice that

$$
\begin{aligned}
M\left(x_{n_{k}} z\right) & =\max \left\{d\left(x_{n_{k}}, z\right), \frac{d\left(x_{n_{k}}, T x_{n_{k}}\right)+d(z, T z)}{2}-d(A, B), \frac{d\left(x_{n_{k}}, T z\right)+d\left(z, T x_{n_{k}}\right)}{2}-d(A, B)\right\} \\
& \leq \max \left\{d\left(x_{n_{k}}, z\right), \frac{d\left(x_{n_{k}}, x_{n_{k+1}}\right)+d\left(x_{n_{k+1}}, T x_{n_{k}}\right)+d(z, T z)}{2}-d(A, B)\right\} \\
& \left\{\frac{d\left(x_{n_{k}}, z\right)+d(z, T z)+d\left(z, x_{n_{k+1}}\right)+d\left(x_{n_{k+1}}, T x_{n_{k}}\right)}{2}-d(A, B)\right\} \\
& =\max \left\{d\left(x_{n_{k}}, z\right), \frac{d\left(x_{n_{k}}, x_{n_{k+1}}\right)+d(A, B)+d(z, T z)}{2}-d(A, B)\right\}, \\
& \left\{\frac{d\left(x_{n_{k}}, z\right)+d(z, T z)+d\left(z, x_{n_{k+1}}\right)+d(A, B)}{2}-d(A, B)\right\} .
\end{aligned}
$$

which implies

$$
\lim _{k \rightarrow \infty} M\left(x_{n_{k}} z\right) \leq \frac{d\left(z, x_{n_{k+1}}\right)+d(A, B)}{2} .
$$

Further

$$
\begin{aligned}
d(z, T z) & \leq d\left(z, x_{n_{k+1}}\right)+d\left(x_{n_{k+1}}, T x_{n_{k}}\right)+d\left(T x_{n_{k}}, T z\right) \\
& \leq d\left(z, x_{n_{k+1}}\right)+d(A, B)+d\left(T x_{n_{k}}, T z\right) .
\end{aligned}
$$

which gives

$$
\begin{equation*}
d(z, T z)-d\left(z, x_{n_{k+1}}\right)-d(A, B) \leq d\left(T x_{n_{k}}, T z\right) \tag{2.6}
\end{equation*}
$$

As $k \rightarrow \infty$ in (2.6) we deduce

$$
\begin{equation*}
d(z, T z)-d(A, B) \leq \lim _{k \rightarrow \infty} d\left(T x_{n_{k}}, T z\right) \tag{2.7}
\end{equation*}
$$

Therefore from (2.1), (2.6), and (2.7)

$$
\begin{align*}
d(z, T z)-d(A, B) & \leq \lim _{k \rightarrow \infty} d\left(T x_{n_{k}}, T z\right) \tag{2.8}\\
& \leq \lim _{k \rightarrow \infty} M\left(x_{n_{k}} z\right) \tag{2.9}\\
& \leq \frac{d\left(z, x_{n_{k+1}}\right)+d(A, B)}{2} . \tag{2.10}
\end{align*}
$$

Now, if $d(z, T z)-d(A, B)>0$, then we get

$$
d(z, T z)-d(A, B)<\frac{d(z, T z)-d(A, B)}{2}
$$

a contradiction. Hence, $d(z, T z)=d(A, B)$ as desired.

Example 2.3. Suppose $X=\mathbb{R}^{2}$ is equipped with the metric $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=$ $\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$, for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in X$. Let

$$
\begin{gathered}
A_{1}=\left\{(x, y) \mid x=1,0 \leq y \leq \frac{1}{3}\right\} \\
A_{2}=\{(x, y) \mid x=3, y \geq 4\} ; \\
A_{3}=\{(x, y) \mid x=4,0 \leq y \geq 3\} .
\end{gathered}
$$

$A=A_{1} \cup A_{2} \cup A_{3}$ Further define

$$
\begin{gathered}
B_{1}=\left\{(x, y) \left\lvert\, x=\frac{1}{3}\right., \frac{1}{3} \leq y \leq 1\right\} ; \\
B_{2}=\{(x, y) \mid x=0, y \leq 3\} ; \\
B_{3}=\{(x, y) \mid x=3, y \geq 0\}
\end{gathered}
$$

and $B=B_{1} \cup B_{2} \cup B_{3}$
Note that $d(A, B)=1, A_{0}=\left\{(x, y) \mid x=1,0 \leq y \leq \frac{1}{3}\right\}$ and $B_{0}=\left\{(x, y) \left\lvert\, x=\frac{1}{3}\right., \frac{1}{3} \leq\right.$ $y \leq 1\}$. Let, for $x_{1}=\left(1, u_{1}\right), x_{2}=\left(1, u_{2}\right) \in A_{0}$ and $y_{1}=\left(\frac{1}{3}, v_{1}\right), y_{2}=\left(1, v_{2}\right) \in B_{0}$, us have $d\left(x_{1}, y_{1}\right)=d(A, B)=1$ and $d\left(x_{2}, y_{2}\right)=d(A, B)=1$. Then

$$
\frac{1}{3}+\left|u_{1}-v_{1}\right|=1
$$

and

$$
\frac{1}{3}+\left|u_{2}-v_{2}\right|=1
$$

and so $\left|u_{1}-v_{1}\right|=\frac{2}{3}$ and $\left|u_{2}-v_{2}\right|=\frac{2}{3}$ Since $v_{1}, v_{2} \geq u_{1}, u_{2}$, we have $v_{1}=u_{1}+\frac{2}{3}$ and $v_{2}=u_{2}+\frac{2}{3}$. This shows that $d\left(x_{1}, y_{1}\right) \leq d\left(x_{2}, y_{2}\right)$. So (A, B) satisfy the weak P-property.
Let $T: A \rightarrow B$ be defined by

$$
T\left(x_{1}, x_{2}\right)=\left\{\begin{array}{c}
\left(\frac{1}{3}, \frac{1}{3}\right) \text { if } x_{1}=x_{2} \\
\left(x_{1}, 0\right) \text { if } x_{1}<x_{2} \\
\left(0, x_{2}\right) \text { if } x_{1}>x_{2}
\end{array}\right.
$$

Notice that $T\left(A_{0}\right) \subseteq B_{0}$.
Define the functions $F:] 0,+\infty[\rightarrow \mathbb{R}$ and $\alpha: A \times A \rightarrow \mathbb{R}$ by

$$
F(t)=\ln (t)
$$

ABDELKARIM KARI, MOHAMED ROSSAFI

Then, $F \in \mathbb{F}$ and $\tau \in] 0,+\infty[$ and

$$
\alpha(x, y)=\left\{\begin{array}{c}
0 \text { if } x, y \in(1,0),(3,4),(4,3) \\
-\infty \text { otherwise } .
\end{array}\right.
$$

Let $\tau=\frac{1}{2}$. Assume that $\frac{1}{2} d^{*}(x, T x) \leq d(x, y)$ and $\alpha(x, y) \geq 0$ for $x, y \in A$. then

$$
\left\{\begin{array}{l}
x=(1,0), x=(3,4) \text { or } \\
x=(1,0), x=(4,3) \text { or } \\
y=(1,0), x=(3,4) \text { or } \\
y=(1,0), x=(4,3)
\end{array}\right.
$$

Since $d(T x, T y)=d(T y, T x)$ and $M(x, y)=M(y, x)$ for all $x, y \in A$, we can suppose that

$$
(x, y)=((1,0),(3,4)) \text { or }(x, y)=((1,0),(4,3))
$$

Now, we discuss the following cases:
(i) if $(x, y)=((1,0),(3,4))$, then

$$
\begin{aligned}
F[d(T x, T y)]+\tau & =\ln [d(T(1), T(0),(T(3), T(4))]+\tau \\
& =\ln (4)+\frac{1}{2} \\
& \leq \ln (8)=\ln [d(1,0,(3,4)] \\
& =F[d(x, y)] \\
& \leq F[M(x, y)] .
\end{aligned}
$$

(ii) if $(x, y)=((1,0),(4,3))$, then

$$
\begin{aligned}
F[d(T x, T y)]+\tau & =\ln [d(T(1), T(0),(T(4), T(3))]+\tau \\
& =\ln (4)+\frac{1}{2} \\
& \leq \ln (8)=\ln [d(1,0,(4,3)] \\
& =F[d(x, y)] \\
& \leq F[M(x, y)]
\end{aligned}
$$

Consequently, we have $\frac{1}{2} d^{*}(x, T x) \leq d(x, y) \Rightarrow F[d(T x, T y)]+\tau \leq F[M(x, y)]$. Thus all the assumptions of Theorem 2.2. are satisfied and $\operatorname{Bpp}(T)=(1,0)$.

ABDELKARIM KARI, MOHAMED ROSSAFI

If $\alpha=0$ on A , in Theorem 2.2, we obtain the following new result.

Corollary 2.4. Suppose A and B are nonempty closed subset of a complete metric space X with $A_{0} \neq \varnothing$. Let $T: A \rightarrow B$ satisfy the following assertions:
(i) $T\left(A_{0}\right) \in B_{0}$ and the pair (A, B) satisfies the weak P-property;
(i) $\frac{1}{2} d^{*}(x, T x) \leq d(x, y) \Rightarrow F[d(T x, T y)]+\tau \leq F[M(x, y)]$

Then T has a best proximity point $z^{*} \in A$ such that $d\left(z^{*}, T z^{*}\right)=d(A, B)$.

2.2. $\alpha^{+}(\theta, \phi)$-proximal contraction.

Definition 2.5. The mapping $T: A \rightarrow B$ is called a Suzuki type $\alpha^{+}(\theta, \phi)$-proximal contraction, if there exists $\theta \in \Theta$ and $\phi \in \Phi$ such that

$$
\begin{equation*}
\frac{1}{2} d^{*}(x, T x) \leq d(x, y) \Rightarrow \alpha(x, y)+\theta(d(T x, T y)) \leq \phi[\theta(M(x, y))] \tag{2.11}
\end{equation*}
$$

for all $x, y \in A$, where $\left.d^{*}(x, T x)=d(x, T x)-d(A, B), \alpha: A \times A \rightarrow\right]-\infty,+\infty[$ and

$$
M(x, y)=\left\{d(x, y), \frac{d(x, T x)+d(y, T y)}{2}-d(A, B), \frac{d(x, T y)+d(y, T x)}{2}-d(A, B)\right\}
$$

for all $x_{1}, x_{2}, u_{1}, u_{2} \in A$.
Theorem 2.6. Suppose A and B are nonempty closed subset of a complete metric space X with $A_{0} \neq \varnothing$. Let $T: A \rightarrow B$ satisfy (2.11) together with the following assertions:
(i) $T\left(A_{0}\right) \in B_{0}$ and the pair (A, B) satisfies the weak P-property;
(ii) T is α^{+}-proximal admissible;
(iii) there exist elements $x_{0}, x_{1} \in A$ such that $d\left(x_{1}, T x_{0}\right)=d(A, B)$ and $\alpha\left(x_{0}, x_{1}\right) \geq$ 0 ;
(iv) T is continuous or
(v) A is α-regular, that $\left\{x_{n}\right\}$ is a sequence in A such that $\alpha\left(x_{n}, x\right) \geq 0$ for all $n \in \mathbb{N}$.

Then T has a unique best proximity point $x^{*} \in A$ such that $d\left(x^{*}, T x^{*}\right)=d(A, B)$.
Proof. As in the proof of Theorem 2.2, we can construct a sequence x_{n+1} satisfying

$$
\begin{equation*}
d\left(x_{n+1}, T x_{n}\right)=d(A, B) \quad \text { and } \quad \alpha\left(x_{n}, x_{n+1}\right) \geq 0, \forall n \in \mathbb{N} . \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} d^{*}\left(x_{n-1}, T x_{n-1}\right) \leq d\left(x_{n}, x_{n-1}\right) \quad \text { and } \quad d\left(x_{n}, x_{n+1}\right)>0, \forall n \in \mathbb{N} \tag{2.13}
\end{equation*}
$$

ABDELKARIM KARI, MOHAMED ROSSAFI

We shall prove that the sequence x_{n} is a Cauchy sequence. Let us first prove that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0
$$

By using the observations we can write

$$
\begin{aligned}
\frac{1}{2} d^{*}\left(x_{n-1}, T x_{n}\right) & =\frac{1}{2} d\left(x_{n-1}, T x_{n}\right)-d(A, B) \\
& \leq \frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, T x_{n}\right)\right]-d(A, B) \\
& =\frac{1}{2} d\left(x_{n-1}, x_{n}\right) \\
& \leq d\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

As in the proof of Theorem 2.2, we obtain

$$
M\left(x_{n-1}, x_{n}\right)<\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} .
$$

As T is $\alpha^{+}(\theta, \phi)$-proximal contraction. Then

$$
\begin{aligned}
\theta\left(d\left(x_{n}, x_{n+1}\right)\right) & \leq \theta\left(d\left(T x_{n-1}, T x_{n}\right)\right) \\
& \leq \theta\left(d\left(T x_{n-1}, T x_{n}\right)\right)+\alpha\left(x_{n-1}, x_{n}\right) \\
& \leq \phi\left[\theta\left(M\left(x_{n-1}, x_{n}\right)\right)\right] \\
& \leq \phi\left[\theta\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}\right)\right]
\end{aligned}
$$

Now if $\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}=d\left(x_{n}, x_{n+1}\right)$, then

$$
\begin{aligned}
\theta\left(d\left(x_{n}, x_{n+1}\right)\right) & \leq \phi\left[\theta\left(d\left(x_{n}, x_{n+1}\right)\right]\right. \\
& <\theta\left(d\left(x_{n}, x_{n+1}\right) .\right.
\end{aligned}
$$

which is a contradiction. Hence

$$
\begin{aligned}
\theta\left(d\left(x_{n}, x_{n+1}\right)\right) & \leq \phi\left[\theta\left(d\left(x_{n-1}, x_{n}\right)\right]\right. \\
& \leq \phi^{2}\left[\theta\left(d\left(x_{n-2}, x_{n-1}\right)\right]\right. \\
& \leq \ldots \leq \phi^{n}\left[\theta\left(d\left(x_{0}, x_{1}\right)\right] .\right.
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$, we have

$$
1 \leq \theta\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \lim _{n \rightarrow \infty} \phi^{n}\left[\theta\left(d\left(x_{0}, x_{1}\right)\right)\right]=1 .
$$

Since $\theta \in \Theta$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{2.14}
\end{equation*}
$$

ABDELKARIM KARI, MOHAMED ROSSAFI

Next, we shall prove that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence, i.e, $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$, for all $n \in \mathbb{N}$. Suppose to the contrary that exists $\varepsilon>0$ and sequences $n_{(k)}$ and $m_{(k)}$ of natural numbers such that

$$
\begin{equation*}
m_{(k)}>n_{(k)}>k, \quad d\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \geq \varepsilon, \quad D\left(x_{m_{(k)-1}}, x_{n_{(k)}}\right)<\varepsilon . \tag{2.15}
\end{equation*}
$$

Using the triangular inequality, we find that,

$$
\begin{align*}
\varepsilon \leq d\left(x_{m_{(k)}}, x_{n_{(k)}}\right) & \leq d\left(x_{m_{(k)}}, x_{n(k)-1}\right)+d\left(x_{n(k)-1}, x_{n_{(k)}}\right) \tag{2.16}\\
& <\varepsilon+d\left(x_{n(k)-1}, x_{n_{(k)}}\right) . \tag{2.17}
\end{align*}
$$

Then, by 2.15 and 2.16, it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(m_{(k)}, n_{(k)}\right)=\varepsilon . \tag{2.18}
\end{equation*}
$$

Using the triangular inequality, we find that,

$$
\begin{equation*}
\varepsilon \leq d\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leq d\left(x_{m_{(k)}}, x_{n(k)+1}\right)+d\left(x_{n(k)+1}, x_{n_{(k)}}\right) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon \leq d\left(x_{m_{(k)}}, x_{n_{(k)+1}}\right) \leq d\left(x_{m_{(k)}}, x_{n(k)}\right)+d\left(x_{n(k)}, x_{n_{(k)+1}}\right) \tag{2.20}
\end{equation*}
$$

Then, by (2.19) and (2.20), it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(m_{(k)}, n_{(k)+1}\right)=\varepsilon . \tag{2.21}
\end{equation*}
$$

Similarly method, we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(m_{(k)+1}, n_{(k)}\right)=\varepsilon . \tag{2.22}
\end{equation*}
$$

Using again the triangular inequality,
(2.23) $d\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right) \leq d\left(x_{m_{(k)+1}}, x_{m_{(k)}}\right)+d\left(x_{m(k)}, x_{n_{(k)}}\right)+d\left(x_{n_{(k)}}, x_{n_{(k)+1}}\right)$.

On the other hand, using triangular inequality, we have

$$
\begin{equation*}
d\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leq d\left(x_{m_{(k)}}, x_{m_{(k)+1}}\right)+d\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right)+d\left(x_{n_{(k)+1}}, x_{n_{(k)}}\right) . \tag{2.24}
\end{equation*}
$$

Letting $k \rightarrow \infty$ in inequality (2.23) and (2.24), we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right)=\varepsilon . \tag{2.25}
\end{equation*}
$$

Substituting $x=x_{m_{(k)}}$ and $y=x_{n_{(k)}}$ in assumption of the theorem, we get,

$$
\begin{equation*}
\theta\left(d\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right)\right) \leq \theta\left(d\left(T x_{m_{(k)}}, T x_{n_{(k)}}\right)\right) \leq \phi\left[\theta\left(M\left(x_{m_{(k)}}, x_{n_{(k)}}\right)\right)\right] . \tag{2.26}
\end{equation*}
$$

ABDELKARIM KARI, MOHAMED ROSSAFI

and

$$
\begin{aligned}
M\left(x_{m_{(k)}}, x_{n_{(k)}}\right) & =\max \left\{d\left(x_{m_{(k)}}, x_{n_{(k)}}\right), \frac{d\left(x_{m_{(k)}}, T x_{m_{(k)}}\right)+d\left(x_{n_{(k)}}, T x_{n_{(k)}}\right)}{2}-d(A, B)\right\} \\
& \left\{\frac{d\left(x_{m_{(k)}}, T x_{n_{(k)}}\right)+d\left(x_{n_{(k)}}, T x_{m_{(k)}}\right)}{2}-d(A, B)\right\} \\
& \leq \max \left\{d\left(x_{m_{(k)}}, x_{n_{(k)}}\right)\right\}, \\
& \left\{\frac{d\left(x_{m_{(k)}}, x_{m_{(k)}+1}\right)+d\left(x_{m_{(k)}+1}, T x_{m_{(k)}}\right)+d\left(x_{n_{(k)},}, x_{n_{(k)+1}}\right)+d\left(x_{n_{(k)}+1}, T x_{n}\right)}{2}-d(A, B)\right\}, \\
& \left\{\frac{d\left(x_{m_{(k)}}, x_{n_{(k)}+1}\right)+d\left(x_{n_{(k)}+1}, T x_{\left.n_{(k)}\right)}+d\left(x_{n_{(k)},}, x_{\left.m_{(k)+1}\right)}+d\left(x_{m_{(k)}+1}, T x_{m}\right)\right.\right.}{2}-d(A, B)\right\} \\
& =\max \left\{d\left(x_{m_{(k)},}, x_{n_{(k)}}\right), \frac{d\left(x_{m_{(k)}}, x_{m_{(k)}+1}\right)+d\left(x_{n_{(k)},}, x_{n_{(k)+1}}\right)}{2}, \frac{d\left(x_{m_{(k)},}, x_{n_{(k)}+1}\right)+d\left(x_{n_{(k)}}, x_{m_{(k}}\right.}{2}\right.
\end{aligned}
$$

Passing the limit as $n \rightarrow+\infty$, we get

$$
\lim _{k \rightarrow \infty} M\left(x_{m_{(k)}}, x_{n_{(k)}}\right)=\varepsilon
$$

Letting Letting $k \rightarrow \infty$ in (2.26), and using $\left(\theta_{1}\right),\left(\theta_{3}\right),\left(\phi_{3}\right)$ and Lemma (1.8) we obtain

$$
\theta\left(\lim _{k \rightarrow \infty} d\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right)\right) \leq \phi\left[\theta \lim _{k \rightarrow \infty}\left(M\left(x_{m_{(k)}}, x_{n_{(k)}}\right)\right)\right] .
$$

We derive

$$
\varepsilon<\varepsilon .
$$

Which is a contradiction. Thus $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$, which shows that $\left\{x_{n}\right\}$ is a Cauchy sequence. Then there exists $z \in X$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0
$$

If (iv) holds, then

$$
\lim _{n \rightarrow \infty} d\left(T x_{n}, T z\right)=0 .
$$

and

$$
d(A, B)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, T x_{n}\right)=d(z, T z),
$$

Then T has a best proximity point.
Uniqueness. Now, suppose that $z^{*}, u^{*} \in A$ are two distinct best proximity points for T such that $z^{*}=u^{*}$. Since $d\left(x^{*}, T z^{*}\right)=d\left(u^{*}, T u^{*}\right)=d(A, B)$, using the P property, we

ABDELKARIM KARI, MOHAMED ROSSAFI

conclude that

$$
d\left(z^{*}, u^{*}\right)=d\left(T z^{*}, T u^{*}\right)
$$

Since T is an α - proximal $(\theta-\phi)$-mapping, we obtain

$$
\theta\left(d\left(T z^{*}, T u^{*}\right)\right) \leq \phi\left[\theta\left(d\left(z^{*}, u^{*}\right)\right)\right]
$$

Therefore

$$
\theta(d(A, B)) \leq \phi[\theta(d(A, B))]
$$

Then $d(A, B)<d(A, B)$, which is a contradiction. as required. Next, assume that (v) holds. Thus $\alpha\left(x_{n}, z\right) \geq 0$. As in the proof of Theorem (2.2), we can deduce there is a subsequence a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\frac{1}{2} d^{*}\left(x_{n_{k}}, T x_{n_{k}}\right) \leq d\left(x_{n_{k}}, z\right) \text { and } \alpha\left(x_{n_{k}}, z\right) \geq 0
$$

for all $k \in \mathbb{N}$. By (2.11) we get

$$
\begin{aligned}
\theta\left(d\left(T x_{n_{k}}, T z\right)\right) & \leq \theta\left(d\left(T x_{n_{k}}, T z\right)\right)+\alpha\left(x_{n_{k}}, z\right) \\
& \leq \phi\left[\theta\left(M\left(x_{n_{k}}, z\right)\right)\right] \\
& <\theta\left(M\left(x_{n_{k}}, z\right)\right)
\end{aligned}
$$

θ is increasing, we get

$$
d\left(T x_{n_{k}}, T z\right) \leq M\left(x_{n_{k}}, z\right)
$$

which implies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} M\left(x_{n_{k}} z\right) \leq \frac{d\left(z, x_{n_{k+1}}\right)+d(A, B)}{2} \tag{2.27}
\end{equation*}
$$

Further

$$
\begin{aligned}
d(z, T z) & \leq d\left(z, x_{n_{k+1}}\right)+d\left(x_{n_{k+1}}, T x_{n_{k}}\right)+d\left(T x_{n_{k}}, T z\right) \\
& \leq d\left(z, x_{n_{k+1}}\right)+d(A, B)+d\left(T x_{n_{k}}, T z\right)
\end{aligned}
$$

which gives

$$
\begin{equation*}
d(z, T z)-d\left(z, x_{n_{k+1}}\right)-d(A, B) \leq d\left(T x_{n_{k}}, T z\right) \tag{2.28}
\end{equation*}
$$

As $k \rightarrow \infty$ in (2.28) we deduce

$$
\begin{equation*}
d(z, T z)-d(A, B) \leq \lim _{k \rightarrow \infty} d\left(T x_{n_{k}}, T z\right) \tag{2.29}
\end{equation*}
$$

ABDELKARIM KARI, MOHAMED ROSSAFI

Therefore from (2.27), (2.28), and (2.29)

$$
\begin{align*}
d(z, T z)-d(A, B) & \leq \lim _{k \rightarrow \infty} d\left(T x_{n_{k}}, T z\right) \tag{2.30}\\
& \leq \lim _{k \rightarrow \infty} M\left(x_{n_{k}} z\right) \tag{2.31}\\
& \leq \frac{d\left(z, x_{n_{k+1}}\right)+d(A, B)}{2} . \tag{2.32}
\end{align*}
$$

Now, if $d(z, T z)-d(A, B)>0$, then we get

$$
d(z, T z)-d(A, B)<\frac{d(z, T z)-d(A, B)}{2}
$$

a contradiction. Hence, $d(z, T z)=d(A, B)$ as desired.

Definition 2.7. [2] The mapping $T: A \rightarrow B$ is called a Suzuki type $\alpha^{+}(\theta)$-proximal contraction, if where $\alpha: A \times A \rightarrow]-\infty,+\infty[$, if there exists $\theta \in \Theta$ and $k \in] 0,1[$ such that

$$
\begin{equation*}
\frac{1}{2} d^{*}(x, T x) \leq d(x, y) \Rightarrow \alpha(x, y)+\theta(d(T x, T y)) \leq[\theta(M(x, y))]^{k} \tag{2.33}
\end{equation*}
$$

for all $x, y \in A$, where $\left.d^{*}(x, T x)=d(x, T x)-d(A, B), \alpha: A \times A \rightarrow\right]-\infty,+\infty[$ and

$$
M(x, y)=\left\{d(x, y), \frac{d(x, T x)+d(y, T y)}{2}-d(A, B), \frac{d(x, T y)+d(y, T x)}{2}-d(A, B)\right\}
$$

for all $x_{1}, x_{2}, u_{1}, u_{2} \in A$.
If $\phi(t)=t^{k}$, in Theorem 2.6, we obtain the following new result.
Corollary 2.8. [2] Suppose A and B are nonempty closed subset of a complete metric space X with $A_{0} \neq \varnothing$. Let $T: A \rightarrow B$ satisfy (2.11) together with the following assertions:
(i) $T\left(A_{0}\right) \in B_{0}$ and the pair (A, B) satisfies the weak P-property;
(ii) T is α^{+}-proximal admissible;
(iii) there exist elements $x_{0}, x_{1} \in A$ such that $d\left(x_{1}, T x_{0}\right)=d(A, B)$ and $\alpha\left(x_{0}, x_{1}\right) \geq$ 0 ;
(iv) T is continuous or
(v) A is α-regular, that $\left\{x_{n}\right\}$ is a sequence in A such that $\alpha\left(x_{n}, x\right) \geq 0$ for all $n \in \mathbb{N}$.

Then T has a unique best proximity point $x^{*} \in A$ such that $d\left(x^{*}, T x^{*}\right)=d(A, B)$.

ABDELKARIM KARI, MOHAMED ROSSAFI

If $\alpha=0$ on A, in Theorem 2.6, we obtain the following new result.
Corollary 2.9. Suppose A and B are nonempty closed subset of a complete metric space X with $A_{0} \neq \varnothing$. Let $T: A \rightarrow B$ satisfy the following assertions:
(i) $T\left(A_{0}\right) \in B_{0}$ and the pair (A, B) satisfies the weak P-property;
(ii) $\frac{1}{2} d^{*}(x, T x) \leq d(x, y) \Rightarrow \theta[d(T x, T y)] \leq \phi[\theta(M(x, y))]$

Then T has a best proximity point $z^{*} \in A$ such that $d\left(z^{*}, T z^{*}\right)=d(A, B)$.

REFERENCES

[1]. A. A. Eldred, W. A. Kirk, P. Veeramani, Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171, 283-293 (2005).
[2]: N. Hussain, M. Hezarjaribi, M. Kutbi, P. Salimi, Best proximity results for Suzuki and convex type contractions. Fixed Point Theory Appl 2016, 14 (2016). https://doi.org/10.1186/s13663-016-0499-2
[3]. M. Jleli, B. Samet : A new generalization of the Banach contraction principale. J. Inequal. Appl.2014. Article ID 38. Appl. Anal., 2014(2014), 11 pages.
[4]. V. S. Raj, A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804-4808 (2011).
[5]. J. Zhang, Y. Su, Q. Cheng, A note on 'A best proximity point theorem for Geraghty-contractions'. Fixed Point Theory Appl 2013, 99 (2013). https://doi.org/10.1186/1687-1812-2013-99
[6]. D. Zheng, Z. Cai, P. Wang, New fixed point theorems for $(\theta-\phi)$-contraction in complete metric spaces. J. Nonlinear Sci. Appl. (2017); 10(5):2662-2670.
[7]. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl 2012, 94 (2012).

[^0]: ${ }^{1}$ LaSMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco
 ${ }^{2}$ Laboratory of Algebra, Analysis and Applications Faculty of Sciences Ben M'Sik, Hassan II University, B.P. 7955 Casablanca, Morocco

