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BEST PROXIMITY POINT THEOREMS FOR α+F, (θ − ϕ)-PROXIMAL

CONTRACTION

ABDELKARIM KARI1 AND MOHAMED ROSSAFI2∗

Abstract. In this paper, inspired by the idea of Suzuki type α+F -proximal contrac-

tion in metric spaces, we prove a new existence of best proximity point for Suzuki type

α+F -proximal contraction and α+(θ − ϕ)-proximal contraction defined on a closed

subset of a complete metric space. Our theorems extend, generalize, and improve

many existing results.

Keywords: proximity point, α+F -proximal contraction, α+(θ− ϕ)-proximal contrac-

tion.

1. Introduction and preliminaries

Best proximity point theorem analyses the condition under which the optimisation

problem, namely, infx∈A d(x, Tx), has a solution. The point x is called the best prox-

imity (BPP (T ) of T : A → B, if d(x, Tx) = d(A,B), where {d(A,B) = inf d(x, y) :

x ∈ A, y ∈ B}. Note that the best proximity point reduces to a fixed point if T is a

self-mapping.

Sankar Raj [4] and Zhang et al. [5] defined the notion of P -property and weak P -

property respectively. Hussain et al. [2] defined the concept of α+-proximal admissible

for non self mapping and introduced Suzuki typeα+ψ- proximal contraction to gener-

alize several best proximity results and obtained some best proximity point theorems

for self-mappings.

Definition 1.1. [1]. Let (A,B) be a pair of non empty subsets of a metric space (X,d).

We adopt the following notations:

d(A,B) = {inf d (a, b) : a ∈ A, b ∈ B};

A0 = { a ∈ A there exists b ∈ A such that d (a, b) = d (A,B)};
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2 ABDELKARIM KARI1 AND MOHAMED ROSSAFI2∗

B0 = { b ∈ B there exists a ∈ A such that d (a, b) = d (A,B)}.

Definition 1.2. [1]. Let T : A→ B be a mapping. An element x∗ is said to be a best

proximity point of T if

d (x∗, Tx∗) = d (A,B) .

Definition 1.3. [2]. Let α : A × A → ]−∞,+∞[. We say that T is said to be α+

proximal admissible if 
α(x1, x2) ≥ 0

d (u1, Tx1) = d (A,B)

d (u2, Tx2) = d (A,B)

⇒ α(u1, u2) ≥ 0

for all x1, x2, u1, u2 ∈ A.

Definition 1.4. [4]. Let (A,B) be a pair of non empty subsets of a metric space (X, d)

such that A0 is non empty. Then the pair (A,B) is to have P-property if and onlyd (x1, y1) = d (A,B)

d (x2, y2) = d (A,B)
⇒ d(x1, x2) = d(y1, y2)

for all x1, x2 ∈ A0 and y1, y2 ∈ B0.

Definition 1.5. [7]. Let 𭟋 be the family of all functions F : R+ → R such that

(F1) F is strictly increasing;

(F2) For each sequence (xn)n∈N of positive numbers

lim
n→∞

xn = 0, if and only if lim
n→∞

F (xn) = −∞;

(F3) There exists k ∈ ]0, 1[ such that limx→0 x
kF (x) = 0.

Definition 1.6. [3] Let Θ be the family of all functions θ : ]0,+∞[ → ]1,+∞[ such

that

(θ1) θ is strictly increasing;

(θ2) For each sequence xn ∈ ]0,+∞[;

lim
n→0

xn = 0, if and only if lim
n→∞

θ (xn) = 1;

(θ3) θ is continuous.
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BEST PROXIMITY POINT THEOREMS FOR α+F, (θ − ϕ)-PROXIMAL CONTRACTION 3

Definition 1.7. [6] Let Φ be the family of all functions ϕ: [1,+∞[ → [1,+∞[, such

that

(ϕ1) ϕ is increasing;

(ϕ2) For each t ∈ ]1,+∞[, limn→∞ϕ
n(t) = 1;

(ϕ3) ϕ is continuous.

Lemma 1.8. If ϕ ∈ Φ Then ϕ(1)=1, and ϕ(t) < t.

Definition 1.9. [6]. Let (X, d) be a metric space and T : X → X be a mapping. T

is said to be a (θ, ϕ)−contraction if there exist θ ∈ Θ and ϕ ∈ Φ such that for any

x, y ∈ X,

d (Tx, Ty) > 0 ⇒ θ [d (Tx, Ty)] ≤ ϕ [θ (d (x, y))] ,

2. Main result

Now, we introduce the following concept which is a α+F -proximal contraction and

α+(θ, ϕ)-proximal contraction.

2.1. α+F -proximal mapping.

Definition 2.1. The mapping T : A → B is called a Suzuki type α+F -proximal

contraction, if there exists F ∈ F and τ > 0 such that

(2.1)
1

2
d∗(x, Tx) ≤ d(x, y) ⇒ α(x, y) + F (d(Tx, Ty)) + τ ≤ F (M(x, y))

for all x, y ∈ A, where d∗(x, Tx) = d(x, Tx)− d(A,B), α : A×A→ ]−∞,+∞[ and

M(x, y) =

{
d(x, y),

d(x, Tx) + d(y, Ty)

2
− d(A,B),

d(x, Ty) + d(y, Tx)

2
− d(A,B)

}
for all x1, x2, u1, u2 ∈ A.

Theorem 2.2. Suppose A and B are nonempty closed subset of a complete metric space

X with A0 ̸= ∅. Let T : A→ B satisfy (2.1) together with the following assertions:

(i) T (A0) ∈ B0 and the pair (A,B) satisfies the weak P -property;

(ii) T is α+-proximal admissible;

(iii) there exist elements x0, x1 ∈ A such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥

0;

(iv) T is continuous or

  ABDELKARIM KARI, MOHAMED ROSSAFI

183

2. Main Results



4 ABDELKARIM KARI1 AND MOHAMED ROSSAFI2∗

(v) F is continuous and A is α-regular, that {xn} is a sequence in A such that

α(xn, x) ≥ 0 for all n ∈ N.

Then T has a best proximity point z∗ ∈ A such that d (z∗, T z∗)=d (A,B).

Proof. From condition (iii), there exist elements x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 0.

Since T (A0) ∈ B0, there exists x2 ∈ A0 such that d(x2, Tx1) = d(A,B).

Now, we have

d(x2, Tx1) = d(A,B), α(x1, x2) ≥ 0

Again, since T (A0) ∈ B0, there exists x3 ∈ A0 such that

d(x3, Tx2) = d(A,B).

Again since T is α+-proximal admissible, this implies that α(x2, x3) ≥ 0. Thus, we

have

d(x3, Tx2) = d(A,B) and α(x2, x3) ≥ 0.

Continuing this process, by induction, we construct a sequence xn ∈ A0 such that

d (xn+1, Txn) = d(A,B) and α(xn, xn+1) ≥ 0,∀n ∈ N.

Since (A,B) satisfies the weak P property, we conclude from (2.1) that

(2.2) d(xn, xn+1) ≤ d(Txn, Txn+1), ∀n ∈ N.

We shall prove that the sequence xn is a Cauchy sequence. Let us first prove that

lim
n→∞

d (xn, xn+1) = 0.

By using the observations we can write

1

2
d∗(xn−1, Txn) =

1

2
d(xn−1, Txn)− d(A,B)

≤ 1

2
[d(xn−1, xn) + d(xn, Txn)]− d(A,B)

=
1

2
d(xn−1, xn)

≤ d(xn−1, xn)
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and

M(xn−1, xn) = max

{
d(xn−1, xn),

d(xn−1, Txn−1) + d(xn, Txn)

2
− d(A,B),

d(xn−1, Txn) + d(xn, Txn−1)

2
− d(A,B)

}
≤ max

{
d(xn−1, xn),

d(xn−1, xn) + d(xn, Txn−1) + d(xn, xn+1) + d(xn+1, Txn)

2
− d(A,B)

}
,{

d(xn−1, xn+1) + d(xn+1, Txn) + d(xn, Txn−1)

2
− d(A,B)

}
≤ max

{
d(xn−1, xn),

d(xn−1, xn) + d(xn, Txn−1) + d(xn, xn+1) + d(xn+1, Txn)

2
− d(A,B)

}
,{

d(xn−1, xn) + d(xn, xn+1) + d(xn+1, Txn) + d(xn, Txn−1)

2
− d(A,B)

}
= max

{
d(xn−1, xn),

d(xn−1, xn) + d(A,B) + d(xn, xn+1) + d(A,B)

2
− d(A,B)

}
,{

d(xn−1, xn) + d(xn, xn+1) + d(A,B) + d(A,B)

2
− d(A,B)

}
=max

{
d(xn−1, xn)d(xn, xn+1)

2
,
d(xn−1, xn)d(xn, xn+1)

2

}
,{

d(xn−1, xn) + d(xn, xn+1) + d(A,B) + d(A,B)

2
− d(A,B)

}
≤ max {d(xn−1, xn), d(xn, xn+1)} .

As T is α+F -proximal contraction. Then

F (d (xn, xn+1)) ≤ τ + F (d (Txn−1, Txn))

≤ τ + F (d (Txn−1, Txn)) + α(xn−1, xn)

≤ F (M (xn−1, xn))

≤ F (max {d(xn−1, xn), d(xn, xn+1)})

Now if max {d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then

F (d (Txn−1, Txn)) ≤ F (d(xn, xn+1) + τ

< F (d(xn, xn+1) .

which is a contradiction. Hence

F (d (Txn−1, Txn)) ≤ F (d(xn−1, xn)− τ

≤ F (d(xn−2, xn−1)− 2τ

≤ ... ≤ F (d(x0, x1)− nτ.
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6 ABDELKARIM KARI1 AND MOHAMED ROSSAFI2∗

Taking the limit as n→ ∞, we have

lim
n→∞

F (d (xn, xn+1)) = −∞.

By (F2), we obtain

(2.3) lim
n→∞

d (xn, xn+1) = 0.

By condition (F3) there exists k ∈ (0, 1) such that

(2.4) lim
n→∞

d (xn, xn+1)
k d (xn, xn+1) = 0.

Since

F (d (xn, xn+1)) ≤ F (d (x0, x1))− nτ,

we have

(2.5)

d (xn, xn+1)
k F (d (xn, xn+1)) ≤ F (d (xn, xn+1))

kF (d (x0, x1))−nτF (d (xn, xn+1))
k ≤ 0.

Letting n −→ +∞ in (2.5), we obtain

lim
n→∞

nτd (xn, xn+1)
k = 0.

From the definition of the limit, there exists n0 ∈ N such that

d (xn, xn+1) ≤
1

nk
, ∀n ≤ n0.

Next we show that {xn} is a Cauchy sequence, i.e,

lim
n→∞

d (xn, xm) = 0 ∀m ∈ N∗.

By triangular inequality, we have

d (xn, xm) ≤ d (xn, xn+1) + d (xn+1, x+2) + ...+ d (xn+m−1, xn+m)

≤ 1

nk
+

1

(n+ 1)k
+ ...+

1

(n+m)k

=

n+m−1∑
r=n

1

(r)k

≤
∞∑
r=1

1

(r)k
.

ABDELKARIM KARI, MOHAMED ROSSAFI

186



BEST PROXIMITY POINT THEOREMS FOR α+F, (θ − ϕ)-PROXIMAL CONTRACTION 7

Since 0 < k < 1,
∞∑
r=1

1
(r)k

is A convergent. Thus d (xn, xm) → 0 as n→ ∞, which shows

that {xn} is a Cauchy sequence. Then there exists z ∈ X such that

lim
n→∞

d (xn, z) = 0.

If (iv) holds, then

lim
n→∞

d (Txn, T z) = 0.

and

d(A,B) = lim
n→∞

d (xn+1, Txn) = d(z, Tz),

as required. Next, assume that (v) holds. Thus α(xn, z) ≥ 0. If the flowing inequalities

holds:

1

2
d∗ (xn, Txn) > d (xn, z) and

1

2
d∗ (xn+1, Txn+1) > d (xn+1, z) .

for some n ∈ N, then by using ( h) and definition of d∗ , we obtain the following

contraction:

d (xn, Txn+1) ≤ d (xn, z) + d (z, Txn+1)

<
1

2
[d∗ (xn, Txn) + d∗ (xn+1, Txn+1)]

=
1

2
[d (xn, Txn) + d (xn+1, Txn+1)− 2d(A,B)]

≤ 1

2
[(xn, xn+1) + (xn+1, Txn) + d (xn+1, Txn) + d (Txn, Txn+1)− 2d(A,B)]

=
1

2
[(xn, xn+1) + d (Txn, Txn+1)]

≤ (xn, xn+1) .

Consequently, for any n ∈ N, either

1

2
d∗ (xn, Txn) ≤ d (xn, z) or

1

2
d∗ (xn+1, Txn+1) ≤ d (xn+1, z) ,

holds. Thus, we may pick a subsequence {xnk
} of {xn} such that

1

2
d∗ (xnk

, Txnk
) ≤ d (xnk

, z) and α(xnk
, z) ≥ 0

for all k ∈ N. By (2.1) we get

F (d (Txnk
, T z)) + τ ≤ F (d (Txnk

, T z)) + τ + α(xnk
, z)

≤ F [M (xnk
, z)]
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8 ABDELKARIM KARI1 AND MOHAMED ROSSAFI2∗

F is increasing, continuous function, we get

d (Txnk
, T z) ≤M (xnk

, z)

Notice that

M(xnk
z) = max

{
d(xnk

, z),
d(xnk

, Txnk
) + d(z, Tz)

2
− d(A,B),

d(xnk
, T z) + d(z, Txnk

)

2
− d(A,B)

}
≤ max

{
d(xnk

, z),
d(xnk

, xnk+1
) + d(xnk+1

, Txnk
) + d(z, Tz)

2
− d(A,B)

}
,{

d(xnk
, z) + d(z, Tz) + d(z, xnk+1

) + d(xnk+1
, Txnk

)

2
− d(A,B)

}
= max

{
d(xnk

, z),
d(xnk

, xnk+1
) + d(A,B) + d(z, Tz)

2
− d(A,B)

}
,{

d(xnk
, z) + d(z, Tz) + d(z, xnk+1

) + d(A,B)

2
− d(A,B)

}
.

which implies

lim
k→∞

M(xnk
z) ≤

d(z, xnk+1
) + d(A,B)

2
.

Further

d(z, Tz) ≤ d(z, xnk+1
) + d(xnk+1

, Txnk
) + d(Txnk

, T z)

≤ d(z, xnk+1
) + d(A,B) + d(Txnk

, T z).

which gives

d(z, Tz)− d(z, xnk+1
)− d(A,B) ≤ d(Txnk

, T z)(2.6)

As k → ∞ in (2.6) we deduce

(2.7) d(z, Tz)− d(A,B) ≤ lim
k→∞

d(Txnk
, T z)

Therefore from (2.1), (2.6), and (2.7)

d(z, Tz)− d(A,B) ≤ lim
k→∞

d(Txnk
, T z)(2.8)

≤ lim
k→∞

M(xnk
z)(2.9)

≤
d(z, xnk+1

) + d(A,B)

2
.(2.10)

Now, if d(z, Tz)–d(A,B) > 0, then we get

d(z, Tz)− d(A,B) <
d(z, Tz)− d(A,B)

2
,

a contradiction. Hence, d(z, Tz) = d(A,B) as desired.
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Example 2.3. Suppose X = R2 is equipped with the metric d((x1, x2), (y1, y2)) =

|x1 − y1|+ |x2 − y2| , for all (x1, x2), (y1, y2) ∈ X. Let

A1 = {(x, y) | x = 1, 0 ≤ y ≤ 1

3
};

A2 = {(x, y) | x = 3, y ≥ 4};

A3 = {(x, y) | x = 4, 0 ≤ y ≥ 3}.

A = A1 ∪A2 ∪A3 Further define

B1 = {(x, y) | x =
1

3
,
1

3
≤ y ≤ 1};

B2 = {(x, y) | x = 0, y ≤ 3};

B3 = {(x, y) | x = 3, y ≥ 0}

and B = B1 ∪B2 ∪B3

Note that d(A,B) = 1, A0 = {(x, y) | x = 1, 0 ≤ y ≤ 1
3} and B0 = {(x, y) | x = 1

3 ,
1
3 ≤

y ≤ 1}. Let, for x1 = (1, u1), x2 = (1, u2) ∈ A0 and y1 = (13 , v1), y2 = (1, v2) ∈ B0, us

have d(x1, y1) = d(A,B) = 1 and d(x2, y2) = d(A,B) = 1. Then

1

3
+ |u1 − v1| = 1

and

1

3
+ |u2 − v2| = 1

and so |u1 − v1| = 2
3 and |u2 − v2| = 2

3 Since v1, v2 ≥ u1, u2, we have v1 = u1 + 2
3

and v2 = u2 +
2
3 . This shows that d(x1, y1) ≤ d(x2, y2). So (A,B) satisfy the weak

P -property.

Let T : A→ B be defined by

T (x1, x2) =


(
1

3
,
1

3
) if x1 = x2

(x1, 0) if x1 < x2

(0, x2) if x1 > x2

Notice that T (A0) ⊆ B0.

Define the functions F : ]0,+∞[ → R and α : A×A→ R by

F (t) = ln(t).

ABDELKARIM KARI, MOHAMED ROSSAFI
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10 ABDELKARIM KARI1 AND MOHAMED ROSSAFI2∗

Then, F ∈ F and τ ∈ ]0,+∞[ and

α(x, y) =

 0 if x, y ∈ (1, 0), (3, 4), (4, 3)

−∞ otherwise.

Let τ = 1
2 . Assume that 1

2d
∗(x, Tx) ≤ d(x, y) and α(x, y) ≥ 0 forx, y ∈ A. then

x =(1, 0), x = (3, 4) or

x =(1, 0), x = (4, 3) or

y =(1, 0), x = (3, 4) or

y =(1, 0), x = (4, 3)

Since d(Tx, Ty) = d(Ty, Tx) and M(x, y) = M(y, x) for all x, y ∈ A, we can suppose

that

(x, y) = ((1, 0), (3, 4)) or (x, y) = ((1, 0), (4, 3)).

Now, we discuss the following cases:

(i) if (x, y) = ((1, 0), (3, 4)), then

F [d(Tx, Ty)] + τ = ln [d (T (1), T (0), (T (3), T (4))] + τ

= ln(4) +
1

2

≤ ln(8) = ln [d (1, 0, (3, 4)]

= F [d(x, y)]

≤ F [M(x, y)] .

(ii) if (x, y) = ((1, 0), (4, 3)), then

F [d(Tx, Ty)] + τ = ln [d (T (1), T (0), (T (4), T (3))] + τ

= ln(4) +
1

2

≤ ln(8) = ln [d (1, 0, (4, 3)]

= F [d(x, y)]

≤ F [M(x, y)] .

Consequently, we have 1
2d

∗(x, Tx) ≤ d(x, y) ⇒ F [d(Tx, Ty)] + τ ≤ F [M(x, y)] . Thus

all the assumptions of Theorem 2.2. are satisfied and Bpp(T ) = (1, 0).

ABDELKARIM KARI, MOHAMED ROSSAFI

190



BEST PROXIMITY POINT THEOREMS FOR α+F, (θ − ϕ)-PROXIMAL CONTRACTION 11

If α = 0 on A, in Theorem 2.2, we obtain the following new result.

Corollary 2.4. Suppose A and B are nonempty closed subset of a complete metric

space X with A0 ̸= ∅. Let T : A→ B satisfy the following assertions:

(i) T (A0) ∈ B0 and the pair (A,B) satisfies the weak P -property;

(i) 1
2d

∗(x, Tx) ≤ d(x, y) ⇒ F [d(Tx, Ty)] + τ ≤ F [M(x, y)]

Then T has a best proximity point z∗ ∈ A such that d (z∗, T z∗)=d (A,B).

2.2. α+(θ, ϕ)-proximal contraction.

Definition 2.5. The mapping T : A → B is called a Suzuki type α+(θ, ϕ)-proximal

contraction, if there exists θ ∈ Θ and ϕ ∈ Φ such that

(2.11)
1

2
d∗(x, Tx) ≤ d(x, y) ⇒ α(x, y) + θ(d(Tx, Ty)) ≤ ϕ [θ(M(x, y))]

for all x, y ∈ A, where d∗(x, Tx) = d(x, Tx)− d(A,B), α : A×A→ ]−∞,+∞[ and

M(x, y) =

{
d(x, y),

d(x, Tx) + d(y, Ty)

2
− d(A,B),

d(x, Ty) + d(y, Tx)

2
− d(A,B)

}
for all x1, x2, u1, u2 ∈ A.

Theorem 2.6. Suppose A and B are nonempty closed subset of a complete metric space

X with A0 ̸= ∅. Let T : A→ B satisfy (2.11) together with the following assertions:

(i) T (A0) ∈ B0 and the pair (A,B) satisfies the weak P -property;

(ii) T is α+-proximal admissible;

(iii) there exist elements x0, x1 ∈ A such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥

0;

(iv) T is continuous or

(v) A is α-regular, that {xn} is a sequence in A such that α(xn, x) ≥ 0 for all

n ∈ N.

Then T has a unique best proximity point x∗ ∈ A such that d (x∗, Tx∗)=d (A,B).

Proof. As in the proof of Theorem 2.2, we can construct a sequence xn+1 satisfying

(2.12) d (xn+1, Txn) = d(A,B) and α(xn, xn+1) ≥ 0,∀n ∈ N.

and

(2.13)
1

2
d∗ (xn−1, Txn−1) ≤ d (xn, xn−1) and d(xn, xn+1) > 0, ∀n ∈ N.
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We shall prove that the sequence xn is a Cauchy sequence. Let us first prove that

lim
n→∞

d (xn, xn+1) = 0.

By using the observations we can write

1

2
d∗(xn−1, Txn) =

1

2
d(xn−1, Txn)− d(A,B)

≤ 1

2
[d(xn−1, xn) + d(xn, Txn)]− d(A,B)

=
1

2
d(xn−1, xn)

≤ d(xn−1, xn)

As in the proof of Theorem 2.2, we obtain

M(xn−1, xn) < max {d(xn−1, xn), d(xn, xn+1)} .

As T is α+(θ, ϕ)-proximal contraction. Then

θ (d (xn, xn+1)) ≤ θ (d (Txn−1, Txn))

≤ θ (d (Txn−1, Txn)) + α(xn−1, xn)

≤ ϕ [θ (M (xn−1, xn))]

≤ ϕ [θ (max {d(xn−1, xn), d(xn, xn+1)})]

Now if max {d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then

θ (d (xn, xn+1)) ≤ ϕ [θ (d(xn, xn+1)]

< θ (d(xn, xn+1) .

which is a contradiction. Hence

θ (d (xn, xn+1)) ≤ ϕ [θ (d(xn−1, xn)]

≤ ϕ2 [θ (d(xn−2, xn−1)]

≤ ... ≤ ϕn [θ (d(x0, x1)] .

Taking the limit as n→ ∞, we have

1 ≤ θ(d (xn, xn+1)) ≤ lim
n→∞

ϕn [θ(d (x0, x1))] = 1.

Since θ ∈ Θ, we obtain

(2.14) lim
n→∞

d (xn, xn+1) = 0.
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Next, we shall prove that {xn}n∈N is a Cauchy sequence, i.e, limn→∞ d (xn,xm) = 0,

for all n ∈ N. Suppose to the contrary that exists ε > 0 and sequences n(k) and m(k)

of natural numbers such that

(2.15) m(k) > n(k) > k, d
(
xm(k)

, xn(k)

)
≥ ε, D

(
xm(k)−1

, xn(k)

)
< ε.

Using the triangular inequality, we find that,

ε ≤ d
(
xm(k)

, xn(k)

)
≤ d

(
xm(k)

, xn(k)−1

)
+ d

(
xn(k)−1, xn(k)

)
(2.16)

< ε+ d
(
xn(k)−1, xn(k)

)
.(2.17)

Then, by 2.15 and 2.16, it follows that

(2.18) lim
k→∞

d
(
m(k), n(k)

)
= ε.

Using the triangular inequality, we find that,

ε ≤ d
(
xm(k)

, xn(k)

)
≤ d

(
xm(k)

, xn(k)+1

)
+ d

(
xn(k)+1, xn(k)

)
(2.19)

and

ε ≤ d
(
xm(k)

, xn(k)+1

)
≤ d

(
xm(k)

, xn(k)

)
+ d

(
xn(k), xn(k)+1

)
(2.20)

Then, by (2.19) and (2.20), it follows that

(2.21) lim
k→∞

d
(
m(k), n(k)+1

)
= ε.

Similarly method, we conclude that

(2.22) lim
k→∞

d
(
m(k)+1, n(k)

)
= ε.

Using again the triangular inequality,

(2.23) d
(
xm(k)+1

, xn(k)+1

)
≤ d

(
xm(k)+1

, xm(k)

)
+ d

(
xm(k), xn(k)

)
+ d

(
xn(k)

, xn(k)+1

)
.

On the other hand, using triangular inequality, we have

(2.24) d
(
xm(k)

, xn(k)

)
≤ d

(
xm(k)

, xm(k)+1

)
+ d

(
xm(k)+1

, xn(k)+1

)
+ d

(
xn(k)+1

, xn(k)

)
.

Letting k → ∞ in inequality (2.23) and (2.24), we obtain

(2.25) lim
k→∞

d
(
xm(k)+1

, xn(k)+1

)
= ε.

Substituting x = xm(k)
and y = xn(k)

in assumption of the theorem, we get,

(2.26) θ
(
d
(
xm(k)+1

, xn(k)+1

))
≤ θ

(
d
(
Txm(k)

, Txn(k)

))
≤ ϕ

[
θ
(
M

(
xm(k)

, xn(k)

))]
.
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and

M
(
xm(k)

, xn(k)

)
= max

{
d(xm(k)

, xn(k)
),
d(xm(k)

, Txm(k)
) + d(xn(k)

, Txn(k)
)

2
− d(A,B)

}
,{

d(xm(k)
, Txn(k)

) + d(xn(k)
, Txm(k)

)

2
− d(A,B)

}
≤ max

{
d(xm(k)

, xn(k)
)
}
,{

d(xm(k)
, xm(k)+1) + d(xm(k)+1, Txm(k)

) + d(xn(k)
, xn(k)+1

) + d(xn(k)+1, Txn)

2
− d(A,B)

}
,{

d(xm(k)
, xn(k)+1) + d(xn(k)+1, Txn(k)

) + d(xn(k)
, xm(k)+1

) + d(xm(k)+1, Txm)

2
− d(A,B)

}

= max

{
d(xm(k)

, xn(k)
),
d(xm(k)

, xm(k)+1) + d(xn(k)
, xn(k)+1

)

2
,
d(xm(k)

, xn(k)+1) + d(xn(k)
, xm(k)+1

)

2

}
.

Passing the limit as n→ +∞, we get

lim
k→∞

M
(
xm(k)

, xn(k)

)
= ε

Letting Letting k → ∞ in (2.26), and using (θ1), (θ3) , (ϕ3) and Lemma (1.8) we obtain

θ

(
lim
k→∞

d
(
xm(k)+1

, xn(k)+1

))
≤ ϕ

[
θ lim
k→∞

(
M

(
xm(k)

, xn(k)

))]
.

We derive

ε < ε.

Which is a contradiction. Thus limn,m→∞ d (xn, xm) = 0, which shows that {xn} is a

Cauchy sequence. Then there exists z ∈ X such that

lim
n→∞

d (xn, z) = 0.

If (iv) holds, then

lim
n→∞

d (Txn, T z) = 0.

and

d(A,B) = lim
n→∞

d (xn+1, Txn) = d(z, Tz),

Then T has a best proximity point.

Uniqueness. Now, suppose that z∗, u∗ ∈ A are two distinct best proximity points for T

such that z∗ = u∗. Since d(x∗, T z∗) = d(u∗, Tu∗) = d(A,B), using the P property, we
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conclude that

d(z∗, u∗) = d(Tz∗, Tu∗).

Since T is an α− proximal (θ − ϕ)−mapping, we obtain

θ (d(Tz∗, Tu∗)) ≤ ϕ [θ (d(z∗, u∗))] .

Therefore

θ (d(A,B)) ≤ ϕ [θ (d(A,B))] .

Then d(A,B) < d(A,B), which is a contradiction. as required. Next, assume that (v)

holds. Thus α(xn, z) ≥ 0. As in the proof of Theorem ( 2.2 ), we can deduce there is a

subsequence a subsequence {xnk
} of {xn} such that

1

2
d∗ (xnk

, Txnk
) ≤ d (xnk

, z) and α(xnk
, z) ≥ 0

for all k ∈ N. By (2.11) we get

θ(d (Txnk
, T z)) ≤ θ(d (Txnk

, T z)) + α(xnk
, z)

≤ ϕ [θ (M (xnk
, z))]

< θ (M (xnk
, z)) .

θ is increasing, we get

d (Txnk
, T z) ≤M (xnk

, z) ,

which implies

(2.27) lim
k→∞

M(xnk
z) ≤

d(z, xnk+1
) + d(A,B)

2
.

Further

d(z, Tz) ≤ d(z, xnk+1
) + d(xnk+1

, Txnk
) + d(Txnk

, T z)

≤ d(z, xnk+1
) + d(A,B) + d(Txnk

, T z).

which gives

d(z, Tz)− d(z, xnk+1
)− d(A,B) ≤ d(Txnk

, T z)(2.28)

As k → ∞ in (2.28) we deduce

(2.29) d(z, Tz)− d(A,B) ≤ lim
k→∞

d(Txnk
, T z)
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Therefore from (2.27), (2.28), and (2.29)

d(z, Tz)− d(A,B) ≤ lim
k→∞

d(Txnk
, T z)(2.30)

≤ lim
k→∞

M(xnk
z)(2.31)

≤
d(z, xnk+1

) + d(A,B)

2
.(2.32)

Now, if d(z, Tz)–d(A,B) > 0, then we get

d(z, Tz)− d(A,B) <
d(z, Tz)− d(A,B)

2
,

a contradiction. Hence, d(z, Tz) = d(A,B) as desired. □

□

Definition 2.7. [2] The mapping T : A → B is called a Suzuki type α+(θ)-proximal

contraction, if where α : A× A → ]−∞,+∞[ , if there exists θ ∈ Θ and k ∈ ]0, 1[ such

that

(2.33)
1

2
d∗(x, Tx) ≤ d(x, y) ⇒ α(x, y) + θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k

for all x, y ∈ A, where d∗(x, Tx) = d(x, Tx)− d(A,B), α : A×A→ ]−∞,+∞[ and

M(x, y) =

{
d(x, y),

d(x, Tx) + d(y, Ty)

2
− d(A,B),

d(x, Ty) + d(y, Tx)

2
− d(A,B)

}
for all x1, x2, u1, u2 ∈ A.

If ϕ(t) = tk, in Theorem 2.6, we obtain the following new result.

Corollary 2.8. [2] Suppose A and B are nonempty closed subset of a complete metric

space X with A0 ̸= ∅. Let T : A → B satisfy (2.11) together with the following

assertions:

(i) T (A0) ∈ B0 and the pair (A,B) satisfies the weak P -property;

(ii) T is α+-proximal admissible;

(iii) there exist elements x0, x1 ∈ A such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥

0;

(iv) T is continuous or

(v) A is α-regular, that {xn} is a sequence in A such that α(xn, x) ≥ 0 for all

n ∈ N.

Then T has a unique best proximity point x∗ ∈ A such that d (x∗, Tx∗)=d (A,B).
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If α = 0 on A, in Theorem 2.6, we obtain the following new result.

Corollary 2.9. Suppose A and B are nonempty closed subset of a complete metric

space X with A0 ̸= ∅. Let T : A→ B satisfy the following assertions:

(i) T (A0) ∈ B0 and the pair (A,B) satisfies the weak P -property;

(ii) 1
2d

∗(x, Tx) ≤ d(x, y) ⇒ θ [d(Tx, Ty)] ≤ ϕ [θ(M(x, y))]

Then T has a best proximity point z∗ ∈ A such that d (z∗, T z∗)=d (A,B).
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