The Primitive-Solutions of Diophantine Equation
$x^2 + pqy^2 = z^2$, for primes p, q

Solusi Primitif Persamaan Diophantine $x^2 + pqy^2 = z^2$ untuk bilangan-bilangan prima p dan q

Aswad Harirri Mangalaeng*

Abstract

In this paper, we determine the primitive-solutions of diophantine equations $x^2 + pqy^2 = z^2$, for positive integers x, y, z and primes p, q. Our work is based on the development of the previous results, namely using the solutions of the Diophantine equation $x^2 + y^2 = z^2$, and looking characteristics of the solutions of the Diophantine equation $x^2 + 3y^2 = z^2$ and $x^2 + 9y^2 = z^2$.

Keywords: composite number, diophantine equation, prime number, primitive solution.

1. INTRODUCTION

A Diophantine equation is an equation of the form
\[f(x_1, x_2, \ldots, x_n) = 0, \]
where f is an n-variable function with $n \geq 2$. The solution of Equation (1.1) is an n-uple x_1, x_2, \ldots, x_n satisfying the equation [3]. For example, $14,223$ is one solution of Diophantine equation $17x + 8y = 2021$, and $3,4,5$ is the solution of Diophantine equation $x^2 + y^2 = z^2$.

Nowadays, there have been many studies about Diophantine equations. Most of their research is about finding the solutions of a given equation, one of which is the work on the equation $x^2 + 3a41^b = y^n$ by Alan and Zengin [2] where a, b are non-negative integers and x, y are relatively prime. There are many forms of Diophantine equations with various variables defined. Rahmawati et al [7] figured out the solutions from the equation $(7^k - 1)^x + (7^k)^y = z^2$ where x, y, z are non-negative integers and k is the positive even integer, Burshtein [4] stated the solutions of Diophantine equation $p^x + p^y = z^2$ when $p \geq 2$ are primes and x, y, z are positive integers, and Chakraborty and Hogue [5] investigated the solvability of the Diophantine equation
\[dx^2 + p^{2a}q^{2b} = 4y^p, \]
where $d > 1$ is a square-free integer, p, q are distinct odd primes and x, y, a, b are positive integers with $gcd(x, y) = 1$.

Another interesting Diophantine equation is $x^2 + cy^2 = z^2$, where all the variables are integers. Some cases of this problem have been solved, such as for case of $c = 1$ (see in [8]).

*Email address: aswadh2905@gmail.com
Next, there are Abdealim and Dyani [1] who had given the solutions for case of \(c = 3 \) by using the arithmetic technical. Following this, Rahman and Hidayat [6] presented the primitive-solutions for case of \(c = 9 \) using characteristics of the primitive solutions which are a development of the previous cases.

On this paper, we extend the results of [1], [6] and [8] to determine the primitive-solutions of Diophantine equation \(x^2 + pqy^2 = z^2 \) where \(x, y \) and \(z \) are positive integers, and \(p \) and \(q \) are primes. We establish results that the equation for case \(y \) is odd has no primitive-solution and case \(y \) is even have two primitive-solutions.

2. MAIN RESULTS

Before showing our results, firstly, we fix some notation. If not previously defined, then we use Diophantine equation \(x^2 + pqy^2 = z^2 \) with \(x, y, z \) are positive integers, and \(p, q \) are primes. Also, if integers \(m \) and \(n \) are relatively primes, we write \((m, n) = 1\). Sometimes, we just write \(x, y \) for indicate \(x \) and \(y \).

Definition 2.1. Any triple Phytagor as \((x, y, z) \) is called a triple primitive Phytagoras if \((x, y, z) = 1\) [3].

Next, We note one result from [3],

Theorem 2.2. The positive integers \(x, y, z \) is a primitive-solution of Diophantine equation \(x^2 + y^2 = z^2 \) with \(y \) is even, if and only if there are positive integers \(m \) and \(n \) such that \(x = m^2 - n^2, y = 2mn, \) and \(z = m^2 + n^2 \) with \((m, n) = 1, m > n, \) and \(m, n \) have different parity.

We also share the fundamental theorem of arithmetic without any comment,

Theorem 2.3. Every positive integer can be written uniquely as a product of primes, with the prime factors in the product written in order of non-decreasing size [3].

Now, we begin our work.

Definition 2.4. The positive integers \(x, y, z \) is called a primitive-solution of Diophantine equation

\[
x^2 + pqy^2 = z^2
\]

if \((x, y, z) = 1\).

Example 2.5. 21,45 is a primitive-solution of Diophantine equation \(x^2 + 2021y^2 = z^2 \), because of \(z^2 + 2021(1)^2 = 2025 = 45^2 \) and \((2,1,45) = 1\).

Theorem 2.6. If \(x, y, z \) is a solution of Diophantine equation \(x^2 + pqy^2 = z^2 \) with \((x, y, z) = d\) such that \(x = dx_1, y = dy_1, \) and \(z = dz_1 \) for integers \(x_1, y_1, z_1 \), then \(x_1, y_1, z_1 \) is a solution of Diophantine equation \(x^2 + pqy^2 = z^2 \) with \((x_1, y_1, z_1) = 1\).

Proof. Let integers \(x, y, z \) is a solution of Diophantine equation \(x^2 + pqy^2 = z^2 \), so

\[
(x^2 + pqy^2 = z^2)
\]

\[
(dx_1)^2 + pq(dy_1)^2 = (dz_1)^2
\]

\[
d^2(x_1^2 + pqy_1^2) = d^2z_1^2
\]

\[
x_1^2 + pqy_1^2 = z_1^2
\]

From Equation (2.1), we can conclude that \(x_1, y_1, z_1 \) is a solution of Diophantine equation \(x^2 + pqy^2 = z^2 \). Also, from \((x, y, z) = d\), we have \((x, y, z) = 1\). This is equal to \((x_1, y_1, z_1) = 1\) which completes the proof of Theorem 2.3.
Example 2.7. 4, 2, 90 is a solution of Diophantine equation \(x^2 + 2021y^2 = z^2 \). We have \((4,2,90) = 2\). Hence, we get \(x_1 = 2, y_1 = 1\) and \(z_1 = 45\). From Example 2.5, we have 2,1,45 is also the solution of the equation with \((2,1,45) = 1\).

Lemma 2.8. If the integers \(x, y, z\) is a primitive-solution of Diophantine equation \(x^2 + p q y^2 = z^2\), then \((x, y) = (y, z) = (x, z) = 1\).

Proof. Suppose \((x, y) \neq 1\), then there a prime \(p_1\) with \(p_1 = (x, y)\) so that \(p|x\) and \(p|y\). Therefore, \(p_1 | (x^2 + p q y^2 = z^2)\). Hence, \(p_1 | z^2\) and then \(p_1 | z\). Because \(p_1 | x, p_1 | y\) and \(p_1 | z\), we can conclude that \((x, y, z) = p_1\). This contradicts the fact that \(x, y, z\) is a primitive-solution of Diophantine equation \(x^2 + p q y^2 = z^2\). Consequently, it must be \((x, y) = 1\). Using similar techniques, we prove for \((y, z) = 1\) and \((x, z) = 1\).

Theorem 2.9. If the positive integers \(x, y, z\) is a primitive-solution of Diophantine equation \(x^2 + p q y^2 = z^2\) and \(y\) is even, then \(x\) dan \(z\) are odd.

Proof. Let \(y\) is even and \(x, y, z\) is a primitive-solution of Diophantine equation \(x^2 + p q y^2 = z^2\). Using Lemma 2.8, we have \((x, y) = 1\) and \((y, z) = 1\). These equations mean that \(x\) and \(z\) are odd.

Example 2.10. 95, 92, 4137 is the primitive-solution of Diophantine equation \(x^2 + 2021y^2 = z^2\) where \(y = 92\) is even, and \(x = 95\) and \(z = 4137\) are odd.

Theorem 2.11. If the positive integers \(x, y, z\) is a primitive-solution of Diophantine equation \(x^2 + p q y^2 = z^2\) and \(y\) is odd, then \(x\) dan \(z\) are even.

Proof. Let \(y\) is odd and \(x, y, z\) is a primitive-solution of Diophantine equation \(x^2 + p q y^2 = z^2\). Using Lemma 2.8, we have \((x, y) = 1\) and \((y, z) = 1\). These equations mean that \(x\) and \(z\) are even.

Theorem 2.12. If \(r, s, t\) are positive integers with \((r, s) = 1\) and \(rs = p q t^2\) where \(p, q\) are primes, then there are integers \(m\) and \(n\) such that

i. \(r = p q m^2\) and \(s = n^2\),

ii. \(r = m^2\) and \(s = p q n^2\), or

iii. \(r = p m^2\) and \(s = q n^2\).

Proof. Based on Theorem 2.3, we can write each positive integers \(r, s\), and \(t\) as a single product of their primes. Write \(r = \prod_{i=1}^{a_1} p_i^{a_1} \cdots p_u^{a_u}, \ s = p_u^{a_{u+1}} p_{u+2}^{a_{u+2}} \cdots p_v^{a_v}\), and \(t = q_1^{\beta_1} q_2^{\beta_2} \cdots q_k^{\beta_k}\). So, we get \(p q t^2 = p q_1^{2\beta_1} q_2^{2\beta_2} \cdots q_k^{2\beta_k}\). Since \((r, s) = 1\), It means that prime factors of \(r\) and \(s\) are different. Because \(rs = p q t^2\), we get

\[
(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_u^{\alpha_u})(p_u^{\alpha_{u+1}} p_{u+2}^{\alpha_{u+2}} \cdots p_v^{\alpha_v}) = p q_1^{2\beta_1} q_2^{2\beta_2} \cdots q_k^{2\beta_k} . \tag{2.2}
\]

Case 1. \(p = q\)

If \(p = q\), we can write \(p q = q^{2\beta_k+1}\) where \(\beta_{k+1} = 1\). Hence, we can write Equation (2.2) as the following

\[
(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_u^{\alpha_u})(p_u^{\alpha_{u+1}} p_{u+2}^{\alpha_{u+2}} \cdots p_v^{\alpha_v}) = q_1^{2\beta_1} q_2^{2\beta_2} \cdots q_k^{2\beta_k} q_{k+1} q_{k+1} . \tag{2.3}
\]
If we look at the details on Equations (2.3), two sides of the equation must be equal. Therefore, every \(p_i \) has to be equal with \(q_j \), so that \(\alpha_i = 2\beta_j \). Hence, every exponent \(\alpha_i \) is even. Consequently, \(\beta_j = \frac{\alpha_i}{2} \) is an integer.

Let \(m \) and \(n \) are integers with \(m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_u^{\alpha_u} \) and \(n = p_{u+1}^{\alpha_{u+1}} p_{u+2}^{\alpha_{u+2}} \cdots p_v^{\alpha_v} \). So,

\[
pq q_1^{2\beta_1} q_2^{2\beta_2} \cdots q_k^{2\beta_k} = pq \left(\frac{\alpha_1}{p_1^2} \frac{\alpha_2}{p_2^2} \cdots \frac{\alpha_u}{p_u^2} \right)^2 \left(\frac{\alpha_{u+1}}{p_{u+1}^2} \frac{\alpha_{u+2}}{p_{u+2}^2} \cdots \frac{\alpha_v}{p_v^2} \right)^2
\]

\[
pqt^2 = pqm^2n^2
\]

\[
pqt^2 = pqm^2n^2
\]

\[
pqt^2 = (pqm^2)(n^2)
\]

\[
pqt^2 = (pm^2)(qn^2)
\]

Case 2. \(p \neq q \)

If \(p \neq q \), then there are two \(p_i \) which are equal to each \(p \) and \(q \). Suppose both are \(p_c = p \) and \(p_c = q \). Then, Equation (2.2) can be written as the following

\[
p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_c^{\alpha_c} p_d^{\alpha_d} \cdots p_u^{\alpha_u} p_{u+1}^{\alpha_{u+1}} \cdots p_v^{\alpha_v} = pq q_1^{2\beta_1} q_2^{2\beta_2} \cdots q_k^{2\beta_k}
\]

\[
p_1^{\alpha_c} p_2^{\alpha_c} \cdots p_c^{\alpha_c} p_d^{\alpha_g} \cdots p_u^{\alpha_u} p_{u+1}^{\alpha_{u+1}} \cdots p_v^{\alpha_v} = q_1^{2\beta_1} q_2^{2\beta_2} \cdots q_k^{2\beta_k}
\]

where \(\alpha_c = \alpha_c - 1 \) and \(\alpha_g = \alpha_g - 1 \). For a note, positions of \(p_c \) and \(p_q \) in Equation (2.4) can be randomly in \(r \) or \(s \). We don’t go into detail about them because they will give the same result later. Using similar techniques in Case 1, we get every exponent \(\alpha_i \) in Equation (2.4) is even. Hence, \(\beta_j = \frac{\alpha_i}{2} \) is an integer.

Let \(m \) and \(n \) are integers with \(m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_c^{\alpha_c} p_d^{\alpha_d} \cdots p_u^{\alpha_u} \) and \(n = p_{u+1}^{\alpha_{u+1}} p_{u+2}^{\alpha_{u+2}} \cdots p_v^{\alpha_v} \). So,

\[
pq q_1^{2\beta_1} q_2^{2\beta_2} \cdots q_k^{2\beta_k} = pq \left(\frac{\alpha_1}{p_1^2} \frac{\alpha_2}{p_2^2} \cdots \frac{\alpha_u}{p_u^2} \right)^2 \left(\frac{\alpha_{u+1}}{p_{u+1}^2} \frac{\alpha_{u+2}}{p_{u+2}^2} \cdots \frac{\alpha_v}{p_v^2} \right)^2
\]

\[
pqt^2 = pqm^2n^2
\]

\[
pqt^2 = pqm^2n^2
\]

\[
pqt^2 = (pqm^2)(n^2)
\]

\[
pqt^2 = (pm^2)(qn^2)
\]

Combining Case 1 and Case 2, it has proven that \(rs = pqm^2 \) and \(s = n^2 \), \(r = m^2 \) and \(s = pqn^2 \), or \(r = pm^2 \) and \(s = qn^2 \), where \(r \) and \(s \) are integers.

Example 2.13. Take \(p = 3 \), \(q = 2 \) and \(t = 5 \). Hence, we get \(rs = pqt^2 = 150 \). Next, we can choose integers \(m \) and \(n \) to define \(r \) and \(s \), such as

i. \(m = 5 \) and \(n = 1 \) so that \(r = pqm^2 = 150 \) and \(s = n^2 = 1 \),

ii. \(m = 1 \) and \(n = 5 \) so that \(r = m^2 = 1 \) and \(s = pqn^2 = 150 \), or

iii. \(m = 25 \) and \(n = 1 \) so that \(r = pm^2 = 75 \) and \(s = qn^2 = 2 \).

It is clear that \(rs = 150 \) when \(r = 15 \) and \(s = 2 \), \(r = 1 \) and \(s = 150 \), or \(r = 75 \) and \(s = 2 \).

Theorem 2.14. The Diophantine equation \(x^2 + py^2 = z^2 \) with \(y \) is odd, and \(p,q \) are primes have no primitive-solution.
Proof. Using Theorem 2.11, If \(y \) is odd then \(x \) and \(z \) are even. Hence, \(z - x \) and \(z + x \) are even. Write \(z - x = t_1 \) and \(z + x = t_2 \), for integers \(t_1, t_2 \). From the Diophantine equation \(x^2 + pqy^2 = z^2 \), we get \(pqy^2 = (z - x)(z + x) = 4t_1t_2 \). Because \(y \) is odd, \(pq \) must divide by 4. The only possible values are \(p = 2 \) and \(q = 2 \). So, we have \(4y^2 = (z - x)(z + x) \). If \(z - x = 4y^2 \) and \(z + x = 1 \), then \(z = \frac{4y^2 - 1}{2} \) is not an integer. So, this is impossible. Next, if \(z - x = 1 \) and \(z + x = 4y^2 \), then \(z = \frac{1-4y^2}{2} \) is not integer. So, this is also impossible. Then, If \(z - x = 2y \) and \(z + x = 2y \) then we get \(x = 0 \) but this is also not possible since \((x, y, z) = 1 \). So, we can conclude that the Diophantine equation \(x^2 + pqy^2 = z^2 \) with \(y \) is odd don’t have primitive-solutions.

After we have proved Theorem 2.14, we will share our results on the case \(y \) is even.

In the following theorem, we determine the primitive-solutions of Diophantine equation \(x^2 + pqy^2 = z^2 \) for case of \(p = q \).

Theorem 2.15. The positive integers \(x, y, z \) is a primitive-solution of Diophantine equation \(x^2 + p^2y^2 = z^2 \) with \(y \) is even, and \(p \) is prime, if and only if \(x = m^2 - n^2, \ y = \frac{2}{p}mn, \) and \(z = m^2 + n^2 \), where \((m, n) = 1, m \) and \(n \) have different parity, \(m > n, \) and \(m = pa \) or \(n = pb \) for any integers \(a, b \).

Proof. \((\Rightarrow)\) Let \(t = py \). Because \(y \) is even, \(t \) is also even. Based on Theorem 2.2, the primitive-solution of Diophantine equation \(x^2 + t^2 = z^2 \) such as \(x = m^2 - n^2, t = 2mn, \) and \(z = m^2 + n^2 \), with \((m, n) = 1, m > n, \) and \(m, n \) has different parity. Because \(t = py \) and \(t = 2mn \), we get \(y = \frac{2}{p}mn \). Since \(y \) is a positive integer and \(p \) is prime, \(mn \) must be divisible by \(p \). Consequently, \(m = pa \) or \(n = pb \) for any integers \(a, b \).

\((\Leftarrow)\) We will show that \(x, y, z \) satisfies the Diophantine equation \(x^2 + p^2y^2 = z^2 \).

Case 1. \(m = pa \)

\[
x^2 + p^2y^2 = (m^2 - n^2) + p^2 \left(\frac{2}{p}mn \right)^2
= (p^2a^2 - n^2)^2 + (2pan)^2
= (p^2a^2 + n^2)^2
= (m^2 + n^2)^2
= z^2.
\]

Case 2. \(n = pb \)

\[
x^2 + p^2y^2 = (m^2 - n^2) + p^2 \left(\frac{2}{p}mn \right)^2
= (m - p^2b^2)^2 + (2mpb)^2
= (m^2 + p^2b^2)^2
= (m^2 + n^2)^2
= z^2.
\]

So, \(x, y, z \) is the solution of Diophantine equation \(x^2 + p^2y^2 = z^2 \). Next, integers \(x, y, z \) is called primitive if \((x, y, z) = 1 \). Suppose \((x, y, z) \neq 1 \). This means that there is a prime \(p \) such that \(p = (x, y, z) \). Hence, \(p|x \) and \(p|z \). Furthermore, \(p|(x + z) = 2m^2 \) and \(p|(x - z) = n^2 \). Because \(m \) and \(n \) have different parity, we get \(p \neq 2 \) so that \(p|m^2 \) and \(p|m \). Also, it is clear that \(p|n^2 \) and \(p|n \). Because \(p|m \) and \(p|n \), we can conclude that \(p = (m, n) \). It contradicts to \((m, n) = 1 \). However, it must be \((x, y, z) = 1 \). So, \(x, y, z \) is a primitive-solution of Diophantine equation \(x^2 + p^2y^2 = z^2 \).
Example 2.16. Take $m = 3$ and $n = 2$. Hence, we get $x = m^2 - n^2 = 5$, $y = \frac{2}{p} mn = 4$ for $p = 3$, and $z = m^2 + n^2 = 13$. It is clear that 5,4,13 is a primitive-solution of Diophantine equation $x^2 + 9y^2 = z^2$.

Theorem 2.17. The positive integers x, y, z with y is even is a primitive-solution of Diophantine equation $x^2 + pqy^2 = z^2$ if and only if

i. $x = pqm^2 - n^2$, $y = 2mn$, and $z = pqm^2 + n^2$.

ii. $x = m^2 - pqn^2$, $y = 2mn$, and $z = m^2 + pqn^2$, or

iii. $x = pm^2 - pn^2$, $y = 2mn$, and $z = pm^2 + qn^2$.

where $(m, n) = 1$, $m > n$, and m, n has different parity.

Proof. (\Rightarrow) Based on Theorem 2.9, If y is even, then x and z are odd. Hence, $z + x$ dan $z - x$ are even so that there are two integers $r = \frac{x + z}{2}$ and $s = \frac{z - x}{2}$. Write $y = 2t$, for any integer t. So, we get $x^2 + pq(2t)^2 = z^2$ or $pq t^2 = rs$. Furthermore, using Theorem 2.12, we have

i. $r = pqm^2$ and $s = n^2$.

ii. $r = m^2$ and $s = pqn^2$, or

iii. $r = pm^2$ and $s = qn^2$.

Substituting values of r and s above to the equations $r = \frac{x + z}{2}$, $s = \frac{z - x}{2}$ and $y = 2t$. We get respectively

i. $x = pqm^2 - n^2$, $y = 2mn$, and $z = pqm^2 + n^2$.

ii. $x = m^2 - pqn^2$, $y = 2mn$, and $z = m^2 + pqn^2$, and

iii. $x = pm^2 - pn^2$, $y = 2mn$, and $z = pm^2 + qn^2$.

(\Leftarrow) We substitute values of x, y and z to the Diophantine equation $x^2 + pqy^2 = z^2$.

i. $x^2 + pqy^2 = (pqm^2 - n^2)^2 + pq(2mn)^2$

$= p^2 q^2 m^4 + 2pqm^2 n^2 + n^4$

$= (pqm^2 + n^2)^2$

$= z^2$.

ii. $x^2 + pqy^2 = (m^2 - pqn^2)^2 + pq(2mn)^2$

$= m^4 + 2pq m^2 n^2 + p^2 q^2 n^4$

$= (m^2 + pqn^2)^2$

$= z^2$.

iii. $x^2 + pqy^2 = (pm^2 - qn^2)^2 + pq(2mn)^2$

$= p^2 m^4 + 2pqm^2 n^2 + q^2 n^4$

$= (pm^2 + pn^2)^2$

$= z^2$.

Because $(m, n) = 1$, $m > n$, and m, n has different parity, we can conclude that integers x, y, z is a primitive-solution of Diophantine equation $x^2 + pqy^2 = z^2$. Also, from $y = 2mn$, we get y which is even.

Example 2.18. Take $p = 47$, $q = 43$, $m = 2$ and $n = 1$. It is clear that
i. \(x = pqm^2 - n^2 = 8083, y = 2mn = 4 \) and \(z = pqm^2 + n^2 = 8085 \), and

ii. \(x = pm^2 - pn^2 = 145, y = 2mn = 4 \) and \(z = pm^2 + qn^2 = 231 \) are two primitive-solutions of Diophantine equation \(x^2 + 2021y^2 = z^2 \).

Example 2.19. Take \(p = 47, q = 43, m = 46 \) and \(n = 1 \). Hence, we get \(x = m^2 - pqn^2 = 95, y = 2mn = 92, \) and \(z = m^2 + pqn^2 = 4137 \). From Example 2.10, we get 95,92,4137 is the primitive-solution of Diophantine equation \(x^2 + 2021y^2 = z^2 \).

REFERENCES

