Some New Properties of g-Frame in Hilbert C^*-Modules

Mohamed Rossafi1, Hatim Labrigui2

Abstract

The theory of frames which appeared in the last half of the century, has been generalized rapidly and various generalizations of frames in Hilbert spaces and Hilbert C^*-modules. In this paper, we will give some new properties of modular Riesz basis and modular g-Riesz basis that present a generalization of the results established in a Hilbert space.

Keywords: Frame, modular Riesz basis, modular g-Riesz basis, C^*-algebra, Hilbert A-modules.

1. INTRODUCTION

Frame theory has a great revolution for recent years, this theory has several properties applicable in many fields of mathematics and engineering and play a significant role in signal and image processing, which leads to many applications in informatics, medicine and probability. Frame theory has been extended from Hilbert spaces to Hilbert C^*-modules and began to be study widely and deeply. The basic idea was to consider module over C^*-algebra instead of linear spaces and to allow the inner product to take values in the C^*-algebra.

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer [4] in 1952 to study some deep problems in nonharmonic Fourier series. After the fundamental paper [3] by Daubechies, Grossman and Meyer, frame theory began to be widely used, particularly in the more specialized context of wavelet frames and Gabor frames [6]. Frames have been used in signal processing, image processing, data compression and sampling theory.

This theory has been extended by Frank and Larson [5] in 2000 for the elements of C^*-algebras and Hilbert C^*-modules. Eventually, frames with C^*-valued bounds in Hilbert C^*-modules have been considered in [1].
The theory of frames has been generalized rapidly and there are various generalizations of frames in Hilbert spaces and Hilbert C^*-modules. The notions of modular Riesz basis and modular g-Riesz basis has been introcued by Khosravi A and Khosravi B in [10].

The aim of this paper is to extend results of Khosravi A and Farmani M. R [8], given in the Hilbert space to Hilbert C^*-module.

Let us recall some definitions and basic properties of a Hilbert C^*-module that we need in the rest of the paper.

For a C^*-algebra A if $a \in A$ is positive we write $a \geq 0$ and A^+ denotes the set of all positive elements of A.

\begin{definition}{1.1} [11] Let A be a unital C^*-algebra and H be a left A-module, such that the linear structures of A and H are compatible. H is a pre-Hilbert A-module if H is equipped with an A-valued inner product $\langle ., . \rangle_A : H \times H \rightarrow A$, such that is sesquilinear, positive definite and respects the module action. In the other words,

\begin{enumerate}
 \item $\langle x, x \rangle_A \geq 0$, for all $x \in H$, and $\langle x, x \rangle_A = 0$ if and only if $x = 0$.
 \item $\langle ax + y, z \rangle_A = a\langle x, z \rangle_A + \langle y, z \rangle_A$, for all $a \in A$ and $x, y, z \in H$.
 \item $\langle x, y \rangle_A = \langle y, x \rangle_A^*$, for all $x, y \in H$.
\end{enumerate}

For $x \in H$, we define the norm of x by $\|x\| = \|\langle x, x \rangle_A\|^{\frac{1}{2}}_A$. If H is complete with $\| . \|$, it is called a Hilbert A-module or a Hilbert C^*-modules over A.

For every a in C^*-algebra A, we have $|a|_A = (a^*a)^{\frac{1}{2}}$ and the A-valued norm on H is defined by $|x| = \langle x, x \rangle_A^{\frac{1}{2}}$, for all $x \in H$.

Let H and K be two Hilbert A-modules, a map $T : H \rightarrow K$ is said to be adjointable if there exists a map $T^* : K \rightarrow H$ such that $\langle Tx, y \rangle_A = \langle x, T^*y \rangle_A$ for all $x \in H$ and $y \in K$.

Throughout this paper, We reserve the notation $End_A^*(H, K)$ for the set of all adjointable operators from H to K and $End_A^*(H, H)$ is abbreviated to $End_A^*(H)$.

For a unital C^*-algebra A, let I and J be a finite or countable subset of \mathbb{Z} and $\{H_i\}_{i \in I}$ be a sequence of Hilbert A-modules. Let $l^2(\{H_i\}_{i \in I})$ be the Hilbert A-module defined by

$$l^2(\{H_i\}_{i \in I}) = \left\{ \{x_i\}_{i \in I} : x_i \in H_i, \sum_{i \in I} \langle x_i, x_i \rangle_A \text{ converge in } \| . \| \right\}.$$
Let $l^2(A)$ be the Hilbert A-module defined by

\[l^2(A) = \left\{ \{a_j\}_{j \in J} \subseteq A : \sum_{j \in J} a_j a_j^* \text{ converge in } \| \cdot \| \right\} \]

The following lemmas will be used to prove our main results.

Lemma 1.2. [2]. Let \mathcal{H} and \mathcal{K} be two Hilbert A-modules and $T \in \text{End}_A^*(\mathcal{H}, \mathcal{K})$. The following statements are equivalent:

(i) T is surjective.

(ii) T^* is bounded below with respect to norm, i.e. there is $m > 0$ such that

\[m\|x\| \leq \|T^*x\| \quad x \in \mathcal{K}. \]

(iii) T^* is bounded below with respect to the inner product, i.e. there is $m' > 0$ such that,

\[m'\langle x, x \rangle_A \leq \langle T^*x, T^*x \rangle_A \quad x \in \mathcal{K}. \]

Lemma 1.3. [11]. Let \mathcal{H} be a Hilbert A-module and $T \in \text{End}_A^*(\mathcal{H})$, then we have for all $x \in \mathcal{H}$,

\[\langle Tx, Tx \rangle_A \leq \|T\|^2 \langle x, x \rangle_A. \]

Lemma 1.4. [7] Let A be a C^*-algebra. Suppose that $\{a_j\}_{j \in J}$ and $\{b_j\}_{j \in J}$ are two sequences of A such that both $\sum_{j \in J} a_j a_j^*$ and $\sum_{j \in J} b_j b_j^*$ converge in A, then,

\[\sum_{j \in J} (a_j + b_j)(a_j + b_j)^* \leq 2 \sum_{j \in J} (a_j a_j^* + b_j b_j^*) \]

2. G-frame in Hilbert C^*-Module

Definition 2.1. [5]. Let \mathcal{H} be a Hilbert A-module. A family $\{x_i\}_{i \in I}$ of elements of \mathcal{H} is called a frame for \mathcal{H}, if there exist two positive constants A, B, such that for all $x \in \mathcal{H}$,

\[A\langle x, x \rangle_A \leq \sum_{i \in I} \langle x, x_i \rangle_A \langle x_i, x \rangle_A \leq B\langle x, x \rangle_A. \]

The numbers A and B are called lower and upper bound of the frame, respectively.

If $A = B = \lambda$, the frame is called λ-tight. If $A = B = 1$, it is called a normalized tight frame or a Parseval frame. If only upper inequality of (2.1) hold, then $\{x_i\}_{i \in I}$ is called a Bessel sequence for \mathcal{H}.
Let \(\{x_i\}_{i \in I} \) be a Bessel sequence in a Hilbert \(C^* \)-module \(\mathcal{H} \), we define the analysis operator by

\[T : \mathcal{H} \rightarrow l^2(\mathcal{A}) \]
\[x \rightarrow \{\langle x, x_i \rangle_{\mathcal{A}}\}_{i \in I} \]

\(T \) is a bounded linear operator, the adjoin operator called the synthesis operator is defined by

\[T^* : l^2(\mathcal{A}) \rightarrow \mathcal{H} \]
\[\{a_i\}_{i \in I} \rightarrow \sum_{i \in I} a_i x_i \]

By composing \(T \) and \(T^* \), the frame operator \(S \) is given by

\[S : \mathcal{H} \rightarrow \mathcal{H} \]
\[x \rightarrow Sx = T^* Tx = \sum_{i \in I} \langle x, x_i \rangle_{\mathcal{A}} x_i \]

Proposition 2.2. Let \(\{x_i\}_{i \in I} \) be a frame in a Hilbert \(C^* \)-module \(\mathcal{H} \). Then the frame operator \(S \) thus defined is bounded, selfadjoint, positive and invertible.

Definition 2.3. [9]. Let \(\mathcal{H} \) be a Hilbert \(\mathcal{A} \)-module and \((\mathcal{H}_i)_{i \in I} \) be a sub-modules of \(\mathcal{H} \). We call a sequence \(\{\Lambda_i \in \text{End}^*_\mathcal{A}(\mathcal{H}, \mathcal{H}_i), i \in I\} \) a \(g \)-frame in Hilbert \(\mathcal{A} \)-module \(\mathcal{H} \) with respect to \(\{\mathcal{H}_i\}_{i \in I} \) if there exist two positive constants \(A \) and \(B \), such that for all \(x \in \mathcal{H} \),

\[A \langle x, x \rangle_{\mathcal{A}} \leq \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x \rangle_{\mathcal{A}} \leq B \langle x, x \rangle_{\mathcal{A}}. \tag{2.2} \]

The numbers \(A \) and \(B \) are called lower and upper bound of the \(g \)-frame, respectively.

If \(A = B = \lambda \), the \(g \)-frame is called a \(\lambda \)-tight. If \(A = B = 1 \), it is called a \(g \)-Parseval frame.

Let \(\mathcal{H} \) and \(\mathcal{K} \) be a Hilbert \(\mathcal{A} \)-modules. We recall that \(\mathcal{H} \oplus \mathcal{K} = \{(x, y) : x \in \mathcal{H}, y \in \mathcal{K}\} \) is a Hilbert \(\mathcal{A} \)-module with pointwise operations and inner product

\[\langle (x_1, y_1), (x_2, y_2) \rangle = \langle x_1, x_2 \rangle_{\mathcal{A}} + \langle y_1, y_2 \rangle_{\mathcal{A}} \quad x_1, x_2 \in \mathcal{H}; \ y_1, y_2 \in \mathcal{K}. \]

Let \(\mathcal{U} \) and \(\mathcal{V} \) be two Hilbert \(\mathcal{A} \)-modules. For \(T \in \text{End}^*_\mathcal{A}(\mathcal{H}, \mathcal{U}) \) and \(L \in \text{End}^*_\mathcal{A}(\mathcal{K}, \mathcal{V}) \) we define

\[T \oplus L \in \text{End}^*_\mathcal{A}(\mathcal{H} \oplus \mathcal{K}, \mathcal{U} \oplus \mathcal{V}) \quad \text{by} \quad (T \oplus L)(x, y) := (Tx, Ly) \quad x \in \mathcal{H}, \ y \in \mathcal{K}. \]
Theorem 2.4. Let \(\{x_i\}_{i \in I} \) be a frame for \(\mathcal{H} \) with bounds \(A, B \) and frame operator \(S_x \). Let \(\{y_j\}_{j \in J} \) be a frame for \(\mathcal{K} \) with bounds \(C, D \) and frame operator \(S_y \). Then \(\{(x_i \oplus y_j)\}_{(i \in I, j \in J)} \) is a frame for \(\mathcal{H} \oplus \mathcal{K} \) with frame operator \(S_{(x \oplus y)} = S_x \oplus S_y \).

Proof. Let \(\{x_i\}_{i \in I} \) and \(\{y_j\}_{j \in J} \) be a frames as they were defined in the last Theorem. Then for all \(x \in \mathcal{H} \) and \(y \in \mathcal{K} \) we have

(2.3) \[A \langle x, x \rangle_A \leq \sum_{i \in I} (x, x_i)_A \langle x, x \rangle_A \leq B \langle x, x \rangle_A. \]

(2.4) \[C \langle y, y \rangle_A \leq \sum_{j \in J} (y, y_i)_A \langle y, y \rangle_A \leq D \langle y, y \rangle_A. \]

From (2.3), (2.4) and Lemma (1.4), we have

\[
\min \{A, C\}(\langle (x, y), (x, y) \rangle) = \min \{A, C\}(\langle x, x \rangle_A + \langle y, y \rangle_A) \\
\leq \sum_{(i, j) \in I \times J} |\langle (x, y), (x_i, y_j) \rangle|^2 \\
= \sum_{(i, j) \in I \times J} |\langle x, x_i \rangle_A + \langle y, y_j \rangle_A|^2 \\
\leq 2 \max \{B, D\}(\langle x, x \rangle_A + \langle y, y \rangle_A) \\
= 2 \max \{B, D\}(\langle (x, y), (x, y) \rangle),
\]

which shows that \(\{(x_i \oplus y_j)\}_{(i \in I, j \in J)} \) is a frame for \(\mathcal{H} \oplus \mathcal{K} \).

Moreover, we have for all \((x \oplus y) \in \mathcal{H} \oplus \mathcal{K} \),

\[
S_{(x \oplus y)}(x, y) = \sum_{i \in I, j \in J} (\langle (x, y), (x_i, y_j) \rangle)(x_i, y_j) \\
= \sum_{i \in I, j \in J} (\langle x, x_i \rangle_A + \langle y, y_i \rangle_A)(x_i, y_j) \\
= S_x(x) \oplus S_y(y) = (S_x \oplus S_y)(x \oplus y).
\]

Then,

\[S_{(x \oplus y)} = S_x \oplus S_y \]

\(\square \)
3. Modular G-frame in Hilbert C*-Module

Let \(\{\Lambda_i\}_{i \in I} \) be a \(g \)-Bessel sequence for \(\{\text{End}_A^*(\mathcal{H}, \mathcal{H}_i), i \in I\} \), we recall that the analysis operator for \(\{\Lambda_i\}_{i \in I} \) is defined by

\[
T_\Lambda : \mathcal{H} \rightarrow l^2(\{\mathcal{H}_i\}_{i \in I})
\]

\[
x \mapsto T_\Lambda^*x = \{\Lambda_i x\}_{i \in I}
\]

The adjoin of this operator is called the synthesis operator and defined by

\[
T_\Lambda^* : l^2(\{\mathcal{H}_i\}_{i \in I}) \rightarrow \mathcal{H}
\]

\[
\{x_i\}_{i \in I} \mapsto T_\Lambda^*\{x_i\}_{i \in I} = \sum_{i \in I} \Lambda_i^* x_i.
\]

The \(g \)-frame operator \(S_\Lambda \) is defined by

\[
S_\Lambda : \mathcal{H} \rightarrow \mathcal{H}
\]

\[
x \mapsto S_\Lambda x = T_\Lambda^* T_\Lambda x = \sum_{i \in I} \Lambda_i^* \Lambda_i x.
\]

The \(g \)-frame operator \(S_\Lambda \) is a positive and self-adjoin operator. Moreover, if \(\{\Lambda_i\}_{i \in I} \) is a \(g \)-frame, then \(S_\Lambda \) is invertible, for more details see ([9])

Definition 3.1. [12] Let \(K \in \text{End}_A^*(\mathcal{H}) \) and \(\Lambda_i \in \text{End}_A^*(\mathcal{H}, \mathcal{H}_i) \) for all \(i \in I \), then \(\{\Lambda_i\}_{i \in I} \) is said to be a \(K \)-\(g \)-frame for \(\mathcal{H} \) with respect to \(\{\mathcal{H}_i\}_{i \in I} \) if there exist two constants \(A, B > 0 \) such that

\[
A \langle K^* x, K^* x \rangle_A \leq \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x \rangle_A \leq B \langle x, x \rangle_A \quad x \in \mathcal{H}.
\]

Theorem 3.2. Let \(K \in \text{End}_A^*(\mathcal{H}) \) and let \(\{\Lambda_i \in \text{End}_A^*(\mathcal{H}, \mathcal{H}_i), i \in I\} \) be a \(g \)-frame in Hilbert \(A \)-module \(\mathcal{H} \) with respect to \(\{\mathcal{H}_i\}_{i \in I} \) with bounds \(A, B > 0 \). Let \(L_i \in \text{End}_A^*(\mathcal{H}, \mathcal{U}_i) \) where \(\mathcal{U}_i \) is a Hilbert C*-module for each \(i \in I \). Suppose that there exist \(C, D > 0 \), such that

\[
C \langle x_i, x_i \rangle_A \leq \langle L_i x_i, L_i x_i \rangle_A \leq D \langle x_i, x_i \rangle_A \quad \text{for all} \quad i \in I, \ x_i \in \mathcal{H}_i
\]

Then,

(a) The sequence \(\{L_i \Lambda_i K \in \text{End}_A^*(\mathcal{H}, \mathcal{U}_i) : i \in I\} \) is a \(K^* \)-\(g \)-frame.

(b) If \(K \) is invertible, then the sequence \(\{L_i \Lambda_i K \in \text{End}_A^*(\mathcal{H}, \mathcal{U}_i) : i \in I\} \) is a \(g \)-frame.
Proof. (a) For all \(x \in \mathcal{H} \), we have

\[
A\langle x, x \rangle_{\mathcal{A}} \leq \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x \rangle_{\mathcal{A}} \leq B\langle x, x \rangle_{\mathcal{A}}.
\]

On one hand we have

\[
\sum_{i \in I} \langle L_i \Lambda_i K x, L_i \Lambda_i K x \rangle_{\mathcal{A}} \leq D \sum_{i \in I} \langle \Lambda_i K x, \Lambda_i K x \rangle_{\mathcal{A}} \\
\leq DB\langle K x, K x \rangle_{\mathcal{A}} \\
\leq DB\|K\|^2\langle x, x \rangle_{\mathcal{A}}
\]

One the other hand, we have,

\[
\sum_{i \in I} \langle L_i \Lambda_i K x, L_i \Lambda_i K x \rangle_{\mathcal{A}} \geq C \sum_{i \in I} \langle \Lambda_i K x, \Lambda_i K x \rangle_{\mathcal{A}} \\
\geq CA\langle K x, K x \rangle_{\mathcal{A}} \\
= CA\langle (K^*)^* x, (K^*)^* x \rangle_{\mathcal{A}},
\]

which ends the proof.

(b) Let \(K \) be an invertible operator, we have for all \(x \in \mathcal{H} \)

\[
\langle x, x \rangle_{\mathcal{A}} = \langle K^{-1} K x, K^{-1} K x \rangle_{\mathcal{A}} \\
\leq \|K^{-1}\|^2\langle K x, K x \rangle_{\mathcal{A}} \\
\leq \frac{1}{A}\|K^{-1}\|^2 \sum_{i \in I} \langle \Lambda_i K x, \Lambda_i K x \rangle_{\mathcal{A}} \\
\leq \frac{1}{AC}\|K^{-1}\|^2 \sum_{i \in I} \langle L_i \Lambda_i K x, L_i \Lambda_i K x \rangle_{\mathcal{A}}.
\]

So,

\[
AC\|K^{-1}\|^{-2}\langle x, x \rangle_{\mathcal{A}} \leq \sum_{i \in I} \langle L_i \Lambda_i K x, L_i \Lambda_i K x \rangle_{\mathcal{A}},
\]

which shows that \(\{L_i \Lambda_i K \in \text{End}^*_A(\mathcal{H}, \mathcal{U}_i) : i \in I\} \) is a \(g \)-frame with bounds \(AC\|K^{-1}\|^{-2} \) and \(DB\|K\|^2 \).

\[\square\]

Definition 3.3. [10] Let \(\Lambda = \{\Lambda_i\}_{i \in I} \) be a sequence in \(\text{End}^*_A(\mathcal{H}, \mathcal{H}_i) \) for all \(i \in I \)

1. If the \(\mathcal{A} \)-linear hull of \(\bigcup_{i \in I} \Lambda^*(\mathcal{H}_i) \) is dense in \(\mathcal{H} \), then \(\{\Lambda_i\}_{i \in I} \) is \(g \)-complete.
(2) If \(\{ \Lambda_i \}_{i \in I} \) is \(g \)-complete and there exist \(A, B > 0 \) such that for any subset \(J \subseteq I \) and \(y_i \in \mathcal{H}_i \) we have

\[
A \left\| \sum_{j \in J} |y_j|^2 \right\| \leq \left\| \sum_{j \in J} \Lambda_i^* y_j \right\|^2 \leq B \left\| \sum_{j \in J} |y_j|^2 \right\|
\]

then \(\{ \Lambda_i \}_{i \in I} \) is a modular \(g \)-Riesz basis for \(\mathcal{H} \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \). \(A \) and \(B \) are called bounds of \(\{ \Lambda_i \}_{i \in I} \).

Theorem 3.4. Let \(\{ \Lambda_i \in \text{End}_A^x(\mathcal{H}, \mathcal{H}_i), i \in I \} \) and let \(\{ x_{i,j} \}_{j \in J_i} \) be a Parseval frame for \(\mathcal{H}_i \) for each \(i \in I \). Then the following assertions hold

1. The sequence \(\{ \Lambda_i \in \text{End}_A^x(\mathcal{H}, \mathcal{H}_i), i \in I \} \) is a \(g \)-frame (\(g \)-Bessel sequence) in Hilbert \(A \)-module \(\mathcal{H} \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \) if and only if the sequence \(\left\{ \langle \Lambda_i^* x_{i,j} : i \in I, j \in J_i \right\} \) is a frame in \(\mathcal{H} \) (Bessel sequence).
2. If \(\left\{ \langle \Lambda_i^* x_{i,j} : i \in I, j \in J_i \right\} \) is a modular Riesz basis, then \(\{ \Lambda_i \}_{i \in I} \) is a modular \(g \)-Riesz basis. Conversely if \(\{ \Lambda_i \}_{i \in I} \) is a modular \(g \)-Riesz basis and there exist \(m > 0 \) such that for each \(i \in I \) and \(\{ c_{i,j} \}_{j \in J_i} \) for each finite \(I_1 \subseteq J_i ,

\[
m \left\| \sum_{i \in S} \sum_{j \in J_i} c_{i,j} c_{i,j}^* \right\|^{\frac{1}{2}} \leq \left\| \sum_{i \in S} \sum_{j \in J_i} c_{i,j} \Lambda_i^* x_{i,j} \right\|
\]

then \(\left\{ \langle \Lambda_i^* x_{i,j} : i \in I, j \in J_i \right\} \) is a modular Riesz basis.

Proof. (1) Let \(x \in \mathcal{H} \), for each \(i \in I \) we have

\[
\langle \Lambda_i x, \Lambda_i x \rangle_A = \sum_{j \in J_i} \langle \Lambda_i x, x_{i,j} \rangle_A \langle x_{i,j}, \Lambda_i x \rangle_A = \sum_{j \in J_i} |\langle x, \Lambda_i^* x_{i,j} \rangle_A^2 | \langle \Lambda_i^* x_{i,j}, x \rangle_A.
\]

This last equality allows us to conclude that \(\{ \Lambda_i \}_{i \in I} \) is a \(g \)-frame if and only if \(\{ \Lambda_i^* x_{i,j} \}_{i \in I, j \in J_i} \) is a frame.

(2) Let \(\left\{ \langle \Lambda_i^* x_{i,j} : i \in I, j \in J_i \right\} \) be a modular Riesz basis with bounds \(A \) and \(B \). For each \(y_i \in \mathcal{H}_i \) we have

\[
y_i = \sum_{j \in J_i} \langle y_i, x_{i,j} \rangle_A x_{i,j} \text{ and } \langle y_i, y_i \rangle_A = \sum_{j \in J_i} \langle y_i, x_{i,j} \rangle_A \langle x_{i,j}, y_i \rangle_A = \sum_{j \in J_i} |\langle y_i, x_{i,j} \rangle_A|^2 .
\]

Furthermore, we have

\[
\Lambda_i^* y_i = \sum_{j \in J_i} \langle y_i, x_{i,j} \rangle_A \Lambda_i^* x_{i,j}.
\]
So, let $S \subseteq I$ a finite subset, we have
\[
A \| \sum_{i \in S} \langle y_i, y_i \rangle_A \| = A \| \sum_{i \in S} \sum_{j \in J_i} |\langle y_i, x_{i,j} \rangle_A|^2 \|
\leq \| \sum_{i \in S} \sum_{j \in J_i} \langle y_i, x_{i,j} \rangle_A \Lambda_i^* y_i \|^2
= \| \sum_{i \in S} \Lambda_i^* y_i \|^2
\leq B \| \sum_{i \in S} \sum_{j \in J_i} |\langle y_i, x_{i,j} \rangle_A|^2 \|
= B \| \sum_{i \in S} \langle y_i, y_i \rangle_A \|
\]

Conversely, we assume that $\{\Lambda_i\}_{i \in I}$ be a modular g-Riesz basis for \mathcal{H} with bounds A and B, it follows that for any finite subset $S \subseteq I$,
\[
A \| \sum_{i \in S} \langle y_i, y_i \rangle_A \| \leq \| \sum_{i \in S} \Lambda_i^* y_i \|^2 \leq B \| \sum_{i \in S} \langle y_i, y_i \rangle_A \|
\]
Since $y_i = \sum_{j \in J_i} c_{i,j} x_{i,j}$ and
\[
\| \sum_{i \in S} \langle y_i, y_i \rangle_A \|^2 = \| \sum_{i \in S} \sum_{j \in J_i} c_{i,j} x_{i,j} \Lambda_i^* \|^2
= \| \sum_{i \in S} \sum_{j \in J_i} \langle y_i, x_{i,j} \rangle_A c_{i,j} \|^2
\leq \| \sum_{i \in S} \sum_{j \in J_i} |\langle y_i, x_{i,j} \rangle_A|^2 \| \| \sum_{i \in S} \sum_{j \in J_i} c_{i,j} \|^2
= \| \sum_{i \in S} \langle y_i, y_i \rangle_A \| \| \sum_{i \in S} \sum_{j \in J_i} c_{i,j} \|^2,
\]
then for each $i \in I$, on one hand, we have
\[
\| \sum_{i \in S} \langle y_i, y_i \rangle_A \| \leq \| \sum_{i \in S} \sum_{j \in J_i} c_{i,j} \|^2.
\]
On the other hand, from (3.2) we have
\[
\| \sum_{i \in S} \Lambda_i^* y_i \|^2 = \| \sum_{i \in S} \sum_{j \in J_i} c_{i,j} \Lambda_i^* x_{i,j} \|^2 \leq B \| \sum_{i \in S} \langle y_i, y_i \rangle_A \| \leq \| \sum_{i \in S} \sum_{j \in J_i} c_{i,j} \|^2.
\]
Which ends the proof. □
ACKNOWLEDGEMENTS

The authors are thankful to the area editor and referees for giving valuable comments and suggestions.

REFERENCES