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Abstract

The theory of frames which appeared in the last half of the century, has been

generalized rapidly and various generalizations of frames in Hilbert spaces and Hilbert

C∗-modules. In this paper, we will give some new properties of modular Riesz basis

and modular g-Riesz basis that present a generalization of the results established in

a Hilbert space.
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1. Introduction

Frame theory has a great revolution for recent years, this theory has several properties

applicable in many fields of mathematics and engineering and play a significant role in

signal and image processing, which leads to many applications in informatics, medicine

and probability. Frame theory has been extended from Hilbert spaces to Hilbert C∗-

modules and began to be study widely and deeply. The basic idea was to consider

module over C∗-algebra instead of linear spaces and to allow the inner product to take

values in the C∗-algebra.

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer

[4] in 1952 to study some deep problems in nonharmonic Fourier series. After the

fundamental paper [3] by Daubechies, Grossman and Meyer, frame theory began to

be widely used, particularly in the more specialized context of wavelet frames and

Gabor frames [6]. Frames have been used in signal processing, image processing, data

compression and sampling theory.

This theory has been extended by Frank and Larson [5] in 2000 for the elements

of C∗-algebras and Hilbert C∗-modules. Eventually, frames with C∗-valued bounds in

Hilbert C∗-modules have been considered in [1].
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The theory of frames has been generalized rapidly and there are various general-

izations of frames in Hilbert spaces and Hilbert C∗-modules. The notions of modular

Riesz basis and modular g-Riesz basis has been introced by Khosravi A and Khosravi

B in [10].

The aim of this paper is to extend results of Khosravi A and Farmani M. R [8], given

in the Hilbert space to Hilbert C∗-module.

Let us recall some definitions and basic properties of a Hilbert C∗-module that we

need in the rest of the parer.

For a C∗-algebra A if a ∈ A is positive we write a ≥ 0 and A+ denotes the set of all

positive elements of A.

Definition 1.1. [11] Let A be a unital C∗-algebra and H be a left A-module, such

that the linear structures of A and H are compatible. H is a pre-Hilbert A-module

if H is equipped with an A-valued inner product ⟨., .⟩A : H × H → A, such that is

sesquilinear, positive definite and respects the module action. In the other words,

(i) ⟨x, x⟩A ≥ 0, for all x ∈ H, and ⟨x, x⟩A = 0 if and only if x = 0.

(ii) ⟨ax+ y, z⟩A = a⟨x, z⟩A + ⟨y, z⟩A, for all a ∈ A and x, y, z ∈ H.

(iii) ⟨x, y⟩A = ⟨y, x⟩∗A, for all x, y ∈ H.

For x ∈ H, we define the norm of x by ||x|| = ||⟨x, x⟩A||
1
2
A. If H is complete with ||.||,

it is called a Hilbert A-module or a Hilbert C∗-modules over A.

For every a in C∗-algebra A, we have |a|A = (a∗a)
1
2 and the A-valued norm on H is

defined by |x| = ⟨x, x⟩
1
2
A, for all x ∈ H.

Let H and K be two Hilbert A-modules, a map T : H → K is said to be adjointable

if there exists a map T ∗ : K → H such that ⟨Tx, y⟩A = ⟨x, T ∗y⟩A for all x ∈ H and

y ∈ K.

Throughout this paper, We reserve the notation End∗A(H,K) for the set of all ad-

jointable operators from H to K and End∗A(H,H) is abbreviated to End∗A(H).

For a unital C∗-algebra A, let I and J be a finite or countable subset of Z and

{Hi}i∈I be a sequence of Hilbert A-modules. Let l2({Hi}i∈I) be the Hilbert A-module

defined by

l2({Hi}i∈I) =
{
{xi}i∈I : xi ∈ Hi,

∑
i∈I

⟨xi, xi⟩A converge in ∥.∥
}
.
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Let l2(A) be the Hilbert A-module defined by

l2(A) =
{
{aj}j∈J ⊆ A :

∑
j∈J

aja
∗
j converge in ∥.∥

}
The following lemmas will be used to prove our mains results.

Lemma 1.2. [2]. Let H and K be two Hilbert A-modules and T ∈ End∗A(H,K). The

following statements are equivalent:

(i) T is surjective.

(ii) T ∗ is bounded below with respect to norm, i.e. there is m > 0 such that

m∥x∥ ≤ ∥T ∗x∥ x ∈ K.

(iii) T ∗ is bounded below with respect to the inner product, i.e. there is m′ > 0 such

that,

m′⟨x, x⟩A ≤ ⟨T ∗x, T ∗x⟩A x ∈ K.

Lemma 1.3. [11]. Let H be a Hilbert A-module and T ∈ End∗A(H), then we have for

all x ∈ H,

⟨Tx, Tx⟩A ≤ ∥T∥2⟨x, x⟩A.

Lemma 1.4. [7] Let A be a C∗-algebra. Suppose that {aj}j∈J and {bj}j∈J are two

sequences of A such that both
∑

j∈J aja
∗
j and

∑
j∈J bjb

∗
j converge in A, then,∑

j∈J
(aj + bj)(aj + bj)

∗ ≤ 2
∑
j∈J

(aja
∗
j + bjb

∗
j )

2. G-frame in Hilbert C∗-module

Definition 2.1. [5]. Let H be a Hilbert A-module. A family {xi}i∈I of elements of

H is called a frame for H, if there exist two positive constants A, B, such that for all

x ∈ H,

(2.1) A⟨x, x⟩A ≤
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ≤ B⟨x, x⟩A.

The numbers A and B are called lower and upper bound of the frame, respectively.

If A = B = λ, the frame is called λ-tight. If A = B = 1, it is called a normalized

tight frame or a Parseval frame. If only upper inequality of (2.1) hold, then {xi}i∈I is

called a Bessel sequence for H.
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Let {xi}i∈I be a Bessel sequence in a Hilbert C∗-module H, we define the analysis

operator by

T : H −→ l2(A)

x −→ {⟨x, xi⟩A}i∈I

T is a bounded linear operator, the adjoin operator called the synthesis operator is

defined by

T ∗ : l2(A) −→ H

{ai}i∈I −→
∑
i∈I

aixi

By composing T and T ∗, the frame operator S is given by

S : H −→ H

x −→ Sx = T ∗Tx =
∑
i∈I

⟨x, xi⟩Axi

Proposition 2.2. Let {xi}i∈I be a frame in a Hilbert C∗-module H. Then the frame

operator S thus defined is bounded, selfadjoint, positive and invertible.

Definition 2.3. [9]. Let H be a Hilbert A-module and (Hi)i∈I be a sub-modules of

H. We call a sequence {Λi ∈ End∗A(H,Hi), i ∈ I} a g-frame in Hilbert A-module H

with respect to {Hi}i∈I if there exist two positive constants A and B, such that for all

x ∈ H,

(2.2) A⟨x, x⟩A ≤
∑
i∈I

⟨Λix,Λix⟩A ≤ B⟨x, x⟩A.

The numbers A and B are called lower and upper bound of the g-frame, respectively.

If A = B = λ, the g-frame is called a λ-tight. If A = B = 1, it is called a g-Parseval

frame.

Let H and K be a Hilbert A-modules. We recall that H⊕K = {(x, y) : x ∈ H, y ∈ K}

is a Hilbert A-module with pointwise operations and inner product

⟨(x1, y1), (x2, y2)⟩ = ⟨x1, x2⟩A + ⟨y1, y2⟩A x1, x2 ∈ H; y1, y2 ∈ K.

Let U and V be two Hilbert A-modules. For T ∈ End∗A(H,U) and L ∈ End∗A(K,V) we

define

T ⊕ L ∈ End∗A(H⊕K,U ⊕ V) by (T ⊕ L)(x, y) := (Tx, Ly) x ∈ H, y ∈ K.
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Theorem 2.4. Let {xi}i∈I be a frame for H with bounds A, B and frame operator

Sx. Let {yj}j∈I be a frame for K with bounds C, D and frame operator Sy. Then

{(xi ⊕ yj)}(i∈I, j∈J) is a frame for H⊕K with frame operator S(x⊕y) = Sx ⊕ Sy.

Proof. Let {xi}i∈I and {yj}j∈J be a frames as they were defined in the last Theorem.

Then for all x ∈ H and y ∈ K we have

(2.3) A⟨x, x⟩A ≤
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ≤ B⟨x, x⟩A.

(2.4) C⟨y, y⟩A ≤
∑
j∈J

⟨y, yi⟩A⟨yi, y⟩A ≤ D⟨y, y⟩A.

From (2.3), (2.4) and Lemma (1.4), we have

min{A,C}(⟨(x, y), (x, y)⟩) = min{A,C}(⟨x, x⟩A + ⟨y, y⟩A)

≤
∑

(i,j)∈IxJ

|⟨(x, y), (xi, yj)⟩|2

=
∑

(i,j)∈IxJ

|⟨x, xi⟩A + ⟨y, yj⟩A|2

≤ 2max{B,D}(⟨x, x⟩A + ⟨y, y⟩A)

= 2max{B,D}(⟨(x, y), (x, y)⟩),

which shows that {(xi ⊕ yj)}(i∈I, j∈J) is a frame for H⊕K.

Moreover, we have for all (x⊕ y) ∈ H ⊕K,

S(x⊕y)(x, y) =
∑

i∈I, j∈J
⟨(x, y), (xi, yj)⟩(xi, yj)

=
∑

i∈I, j∈J
(⟨x, xi⟩A + ⟨y, yi⟩A)(xi, yj)

= Sx(x)⊕ Sy(y) = (Sx ⊕ Sy)(x⊕ y).

Then,

S(x⊕y) = Sx ⊕ Sy

□
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3. Modular G-frame in Hilbert C∗-module

Let {Λi}i∈I be a g-Bessel sequence for {End∗A(H,Hi), i ∈ I}, we recall that the

analysis operator for {Λi}i∈I is defined by

TΛ : H −→ l2({Hi}i∈I)

x −→ T ∗
Λx = {Λix}i∈I

The adjoin of this operator is called the synthesis operator and defined by

T ∗
Λ : l2({Hi}i∈I) −→ H

{xi}i∈I −→ T ∗
Λ{xi}i∈I =

∑
i∈I

Λ∗
ixi.

The g-frame operator SΛ is defined by

SΛ : H −→ H

x −→ SΛx = T ∗
ΛTΛx =

∑
i∈I

Λ∗
iΛix.

The g-frame operator SΛ is a positive and self-adjoin operator. Moreover, if {Λi}i∈I is

a g-frame, then SΛ is invertible, for more details see ([9])

Definition 3.1. [12] Let K ∈ End∗A(H) and Λi ∈ End∗A(H,Hi) for all i ∈ I, then

{Λi}i∈I is said to be a K-g-frame for H with respect to {Hi}i∈I if there exist two

constants A,B > 0 such that

A⟨K∗x,K∗x⟩A ≤
∑
i∈I

⟨Λix,Λix⟩A ≤ B⟨x, x⟩A x ∈ H.

Theorem 3.2. Let K ∈ End∗A(H) and let {Λi ∈ End∗A(H,Hi), i ∈ I} be a g-frame

in Hilbert A-module H with respect to {Hi}i∈I with bounds A,B > 0. Let Li ∈

End∗A(H,Ui) where Ui is a Hilbert C∗-module for each i ∈ I. Suppose that there exist

C,D > 0, such that

C⟨xi, xi⟩A ≤ ⟨Lixi, Lixi⟩A ≤ D⟨xi, xi⟩A for all i ∈ I , xi ∈ Hi

Then,

(a) The sequence {LiΛiK ∈ End∗A(H,Ui) : i ∈ I} is a K∗-g-frame.

(b) If K is invertible, then the sequence {LiΛiK ∈ End∗A(H,Ui) : i ∈ I} is a

g-frame.

Mohamed Rossafi, Hatim Labrigui

3. Modular G-frame in Hilbert C*-Module

   320



7

Proof. (a) For all x ∈ H, we have

(3.1) A⟨x, x⟩A ≤
∑
i∈I

⟨Λix,Λix⟩A ≤ B⟨.x, x⟩A.

On one hand we have

∑
i∈I

⟨LiΛiKx,LiΛiKx⟩A ≤ D
∑
i∈I

⟨ΛiKx,ΛiKx⟩A

≤ DB⟨Kx,Kx⟩A

≤ DB∥K∥2⟨x, x⟩A

One the other hand, we have,

∑
i∈I

⟨LiΛiKx,LiΛiKx⟩A ≥ C
∑
i∈I

⟨ΛiKx,ΛiKx⟩A

≥ CA⟨Kx,Kx⟩A

= CA⟨(K∗)∗x, (K∗)∗x⟩A,

which ends the proof.

(b) Let K be an invertible operator, we have for all x ∈ H

⟨x, x⟩A = ⟨K−1Kx,K−1Kx⟩A

≤ ∥K−1∥2⟨Kx,Kx⟩A

≤ 1

A
∥K−1∥2

∑
i∈I

⟨ΛiKx,ΛiKx⟩A

≤ 1

AC
∥K−1∥2

∑
i∈I

⟨LiΛiKx,LiΛiKx⟩A.

So,

AC∥K−1∥−2⟨x, x⟩A ≤
∑
i∈I

⟨LiΛiKx,LiΛiKx⟩A,

which shows that {LiΛiK ∈ End∗A(H,Ui) : i ∈ I} is a g-frame with boundsAC∥K−1∥−2

and DB∥K∥2. □

Definition 3.3. [10] Let Λ = {Λi}i∈I be a sequence in End∗A(H,Hi) for all i ∈ I

(1) If the A-linear hull of
⋃

i∈i Λ
∗(Hi) is dense in H, then {Λi}i∈I is g-complete.
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(2) If {Λi}i∈I is g-complete and there exist A,B > 0 such that for any subset J ⊆ I

and yi ∈ Hi we have

A∥
∑
j∈J

|yj |2∥ ≤ ∥
∑
j∈J

Λ∗
jyj∥2 ≤ B∥

∑
j∈J

|yj |2∥,

then {Λi}i∈I is a modular g-Riesz basis for H with respect to {Hi}i∈I . A and

B are called bounds of {Λi}i∈I .

Theorem 3.4. Let {Λi ∈ End∗A(H,Hi), i ∈ I} and let {xi,j}j∈Ji be a Parseval frame

for Hi for each i ∈ I. Then the following assertions hold

(1) The sequence {Λi ∈ End∗A(H,Hi), i ∈ I} is a g-frame (g-Bessel sequence)

in Hilbert A-module H with respect to {Hi}i∈I if and only if the sequence

{(Λi)
∗xi,j : i ∈ I, j ∈ Ji} is a frame in H (Bessel sequence).

(2) If {(Λi)
∗xi,j : i ∈ I, j ∈ Ji} is a modular Riesz basis, then {Λi}i∈I is a modular

g-Riesz basis. Conversely if {Λi}i∈I is a modular g-Riesz basis and there exist

m > 0 such that for each i ∈ Ii and (ci,j)j∈I1 for each finite I1 ⊆ Ji,

m∥
∑
i∈S

∑
j∈Ji

ci,jc
∗
i,j∥

1
2 ≤ ∥

∑
i∈S

∑
j∈I1

ci,jΛ
∗
ixi,j∥

then {(Λi)
∗xi,j : i ∈ I, j ∈ Ji} is a modular Riesz basis.

Proof. (1) Let x ∈ H, for each i ∈ I we have

⟨Λix,Λix⟩A =
∑
j∈Ji

⟨Λix, xi,j⟩A⟨xi,j ,Λix⟩A =
∑
j∈Ji

⟨x,Λ∗
ixi,j⟩A⟨Λ∗

ixi,j , x⟩A.

This last equality allows us to conclude that {Λi}i∈I is a g-frame if and only if {Λ∗
ixi,j}i∈I,j∈Ji

is a frame.

(2) Let {(Λi)
∗xi,j : i ∈ I, j ∈ Ji} be a modular Riesz basis with bounds A and B.

For each yi ∈ Hi we have

yi =
∑
j∈Ji

⟨yi, xi,j⟩Axi,j and ⟨yi, yi⟩A =
∑
j∈Ji

⟨yi, xi,j⟩A⟨xi,j , yi⟩A =
∑
j∈Ji

|⟨yi, xi,j⟩A|2.

Furthermore, we have

Λ∗
i yi =

∑
j∈Ji

⟨yi, xi,j⟩AΛ∗
ixi,j ,
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So, let S ⊆ I a finite subset, we have

A∥
∑
i∈S

⟨yi, yi⟩A∥ = A∥
∑
i∈S

∑
j∈Ji

|⟨yi, xi,j⟩A|2∥

≤ ∥
∑
i∈S

∑
j∈Ji

⟨yi, xi,j⟩AΛ∗
i yi∥2

= ∥
∑
i∈S

Λ∗
i yi∥2

≤ B∥
∑
i∈S

∑
j∈Ji

|⟨yi, xi,j⟩A|2∥

= B∥
∑
i∈S

⟨yi, yi⟩A∥

Conversely, we assume that {Λi}i∈I be a modular g-Riesz basis for H with bounds A

and B, it follows that for any finite subset S ⊆ I,

(3.2) A∥
∑
i∈S

⟨yi, yi⟩A∥ ≤ ∥
∑
i∈S

Λ∗
i yi∥2 ≤ B∥

∑
i∈S

⟨yi, yi⟩A∥

Since yi =
∑

j∈Ji ci,jxi,j and

∥
∑
i∈S

⟨yi, yi⟩A∥2 = ∥
∑
i∈S

⟨yi,
∑
j∈Ji

ci,jxi,j⟩A∥2

= ∥
∑
i∈S

∑
j∈Ji

⟨yi, xi,j⟩Ac∗i,j∥2

≤ ∥
∑
i∈S

∑
j∈Ji

|⟨yi, xi,j⟩A|2∥∥
∑
i∈S

∑
j∈Ji

ci,jc
∗
i,j∥

= ∥
∑
i∈S

⟨yi, yi⟩A∥∥
∑
i∈S

∑
j∈Ji

ci,jc
∗
i,j∥,

then for each i ∈ I, on one hand, we have

∥
∑
i∈S

⟨yi, yi⟩A∥ ≤ ∥
∑
i∈S

∑
j∈Ji

ci,jc
∗
i,j∥.

On the other hand, from (3.2) we have

∥
∑
i∈S

Λ∗
i yi∥2 = ∥

∑
i∈S

∑
j∈Ji

ci,jΛ
∗
ixi,j∥2 ≤ B∥

∑
i∈S

⟨yi, yi⟩A∥ ≤ ∥
∑
i∈S

∑
j∈Ji

ci,jc
∗
i,j∥.

Which ends the proof. □
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