# JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI e-ISSN: 2614-8811

Published by Departement of Mathematics, Hasanuddin University, Indonesia

https://journal.unhas.ac.id/index.php/jmsk/index

Vol. 19, No. 2, January 2023, pp. 342-350 DOI:10.20956/j.v19i2.23481

# Modeling of COVID-19 Cases in Indonesia with the Method of Geographically Weighted Regression

Samsul Arifin<sup>1\*</sup>, Erna Tri Herdiani<sup>2\*</sup>

\*Department of Statistics, Hasanuddin University, Makassar, Indonesia, 90245

**E-mail:** samsul.arrr@unhas.ac.id<sup>1</sup>, herdiani.erna@unhas.ac.id<sup>2</sup>

Received: 12 October 2022; Accepted: 9 November 2022; Published: 5 January 2023

### Abstract

The COVID-19 pandemic has spread to all corners of the world, including Indonesia. Various factors affect the spread of COVID-19 cases in an area so that the government and the community can make prevention and control efforts so that this pandemic does not spread. This study aims to model the number of COVID-19 cases in Indonesia using the Geographically Weighted Regression (GWR) method, which develops a linear regression model. The GWR model uses weights based on the location of each observation so that the model is obtained for that location. Determine the weighting on the bandwidth. Optimum bandwidth selection is obtained by minimizing the value of Cross-Validation (CV). The GWR model using a fixed bisquare kernel weighting function has an optimum bandwidth of 0.999948 with a minimum CV value of 397.076.128 with a coefficient of determination  $(R^2)$  of 85.1 %. The results show that the number of positive cases positively correlates with the number of patients who died from COVID-19. In contrast, the number of recovered patients negatively correlates with the number of patients who died from COVID-19.

COVID-19 Pandemic, Geographically Weighted Regression, Cross-**Keywords:** Validation, Coefficient of Determination

# **1. INTRODUCTION**

The Indonesian Ministry of Health stated that Coronavirus is a large family of viruses that cause disease in humans and animals. In humans, it usually causes respiratory tract infections, ranging from the common cold to serious diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). Coronavirus is known to have originated in the city of Wuhan, China, in December 2019 [14], later named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV2), and caused Coronavirus Disease-2019 (COVID-19). This new type of virus even causes a pandemic status, which includes spreading the virus in a wide geographical area to all corners of the world, including Indonesia. The spread of this



This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

virus can be said to be very fast, and no one has escaped exposure to this pandemic. The following is a graph of positive cases of COVID-19 in Indonesia until the end of 2021.

As of December 31, 2021, the baseline confirmed positive was 4,262,697 cases, with details of as many as 3,743 patients being treated, 4,114,744 patients recovered, and 144,210 patients died. As many as 80% of positive cases of COVID-19 in Indonesia came from the island of Java, DKI Jakarta Province, which has the most COVID-19 cases, with 218,684,767 confirmed. Many experts have also researched the spread of COVID-19, including Ogundokun et al. [9], predicting confirmed cases of COVID-19 in Nigeria. Furthermore, Fitrial et al. [4] modeled the number of COVID-19 cases in Indonesia using the Poisson and negative binomial regression approaches. Sameni [12] carried out mathematical modeling of epidemic diseases in COVID-19 cases, and Fajar [3] carried out parametric modeling of the growth curve of the COVID-19 epidemic in Indonesia.

The spread of COVID-19 has spread to every province in Indonesia. A speedy distribution from one location to another indicates a spatial effect in the modeling. One method used in spatial analysis is Geographically Weighted Regression (GWR). This technique brings the framework from a simple regression model to a weighted regression model [5]. Ma, Xue, and Hu [7] conducted economic data modeling using geographically weighted regression models. Song et al. [13] Conducted GWR modeling to see the properties of the soil. Putra et al. [11] conducted a geographically weighted regression model only produces parameter estimators that apply globally, while in the GWR model, local parameter estimators are generated for each observation location [10]. Based on this, this research will focus on modeling the number of COVID-19 cases in Indonesia using Geographically Weighted Regression (GWR).

# 2. METHODOLOGY

The data used in this study is the number of positive cases of COVID-19 in Indonesia, sourced from <u>https://www.kaggle.com</u>. The method used in this study is the Geographically Weighted Regression method.

#### 2.1 Linear Regression Analysis

Linear regression analysis is a method used to express the relationship between a dependent variable or response (Y) with several independent variables or predictors (X). Multiple linear regression model for k predictor variables and the number of observations as many as n can be written in equation (2.1) as follows:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{p}X_{pi} + \varepsilon_{i}$$
 2.1

Where:  $Y_i$  is the dependent variable,  $\beta_0, \beta_1, ..., \beta_p$  are Unknown parameters  $X_{1i}, X_{2i}, ..., X_{pi}$  is the Predictor variable, and  $\varepsilon_i$  Is the error term for observation i(i = 1, 2, ..., n).

In the multiple linear regression model, if there are n observations, the model can be arranged in the form of a matrix:

$$\begin{split} \mathbf{Y} &= \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \\ \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} &= \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{p1} \\ 1 & X_{21} & X_{22} & \cdots & X_{p2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} \end{split}$$

Where: Y is the response variable vector of size nx1, X is the independent variable matrix with nxp size,  $\beta$  is the parameter vector px1, and  $\varepsilon$  is the error vector nx1.

The parameter  $\boldsymbol{\beta}$  is estimated using the ordinary least square (OLS) method by minimizing  $\boldsymbol{\varepsilon}'\boldsymbol{\varepsilon}$  by decreasing  $\boldsymbol{\varepsilon}'\boldsymbol{\varepsilon} = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$  to  $\boldsymbol{\beta}$ . The derivative result is then equated with zero so that the Estimator  $\boldsymbol{\hat{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$  is obtained.

#### 2.2 Geographically Weighted Regression

Geographically Weighted Regression (GWR) is a development of linear regression which applies locally to GWR. This model calculates the parameters at each observation location so that each location will have a different regression model [8]. The model form of GWR is as in equation (2.2) as follows:

$$y_i = \beta_0(u_i, v_i) + \sum_{k=1}^p \beta_k(u_i, v_i) x_{ik} + \varepsilon_i$$
2.2

Where:  $y_i$  is Dependent variable at location *i* for i = 1, 2, ..., n,  $x_{ik}$  is an independent variable at the location,  $(u_i, v_i)$  is Longitude latitude coordinates of the i-th point in a geographic location,  $\beta_k(u_i, v_i)$  Is the regression coefficient at each location,  $\varepsilon_i$  Is Error that is assumed to be identical, independent, and generally distributed with zero mean and constant variance  $\sigma^2$ .

With the Weighted Least Square (WLS) method, the parameter estimator at location i is formulated as equation (2.3) as follows:

$$\hat{\beta}_i = (X'W(i)X)^{-1}X'W(i)y$$
 2.3

where:  $W(i) = diag[w_1(i), w_2(i), ..., w_n(i)]$ . W(i) is a diagonal matrix of size nxn, which is the spatial weighting matrix whose values for the diagonal elements are determined by the proximity of the i-th location to other locations.

#### 2.3 Geographically Weighted Regression

In the GWR model, a weighting matrix shows the close relationship between locations. In the GWR model, there are several weighting functions [5], such as

- a.  $W_j(u_i, v_i) = 1$ , for all *i* and *j*. This weighted GWR model will produce an ordinary regression model, where each data in all locations is given the same weight, namely 1, regardless of its location or distance from other locations.
- b.  $W_j(u_i, v_i) = exp\left[-\frac{1}{2}\left(\frac{d_{ij}}{h}\right)^2\right]$ , where  $d_{ij}$  The distance from location *i* to location *j* and *h* is the optimum bandwidth fixed and the same at all locations. This function is called the fixed Gaussian kernel function.
- c.  $W_j(u_i, v_i) = \left[1 \left(\frac{d_{ij}}{h}\right)^2\right]^2$ , if  $d_{ij} < h$ , and  $W_j(u_i, v_i) = 0$  for  $d_{ij} \ge h$ . This function follows the form of a weighted kernel and is commonly called a fixed Bisquare kernel function.
- d.  $W_j(u_i, v_i) = exp\left[-\frac{R_{ij}}{h}\right]$ , where  $R_{ij}$  Is the rank (rank) distance from location-i to location-j for j = 1, 2, ..., n. The closest distance will result in the value of  $W_j(u_i, v_i)$  Approaching one will decrease with increasing distance from location i to location j.

In this study, the weighting function is the fixed gaussian kernel function and the fixed Bisquare kernel function.

#### 2.4 Optimum Bandwidth Selection

The selection of the optimum bandwidth affects the accuracy of the parameter estimation results [2]. The method used is to use Cross Validation which is written in equation (2.4) as follows:

$$CV = \sum_{i=1}^{n} (y_i - \hat{y}_{\neq i}(h))^2$$
2.4

where;  $y_i$  Is the Observation value of the response variable and  $\hat{y}_{\neq i}$  Estimator where every observation at location i is removed from the estimation process. The selection of the optimum bandwidth is obtained from an iteration process that produces a minimum CV value.

#### 2.5 Spatial Dependency and Spatial Heterogeneity

Spatial data is data with spatial dependencies and spatial diversity characteristics. One way to determine the existence of spatial dependencies between locations is to perform a spatial autocorrelation test using the Moran index statistic [6]. The spatial dependency measurement tool uses the Moran Index, which can be written in equation (2.5) as follows:

$$Z = \frac{I - E(I)}{\sqrt{Var(I)}}$$
2.5

Where: Z is the Moran index test statistic value, and I is the Moran index value.

The spatial diversity that is a requirement in GWR modeling is spatial heterogeneity. o detect the presence or absence of spatial heterogeneity in the model, the Breusch-Pagan test [1] is written in equation (2.6) as follows:

$$BP = \frac{1}{2}b^{T}A(A^{T}A)^{-1}A^{T}b$$
 2.6

Where: b is Vector of size 1xn with  $b_i = \frac{e_i^2}{\sigma^2} - 1$ ,  $e^i$  Residual at observation i,  $\sigma^2$  is the variance of residual, and A is the Vector of the normalized response variable for each observation

# **3. RESULT AND DISCUSSION**

Data on the development of COVID-19 cases until the end of December 2021 is given in Table 3.1.

| Table 3.1. Characteristics of COVID-19 Cases in Indone |
|--------------------------------------------------------|

| Positives | Recovered | Died    |
|-----------|-----------|---------|
| 4.262.697 | 4.114.744 | 144.210 |

COVID-19 has spread to every province in Indonesia until December 2021. There were 4,262,697 positive cases recorded, 4,114,744 patients recovered, and 144,210 patients died.

#### **3.1 Linear Regression Model**

The Linear regression model is a global model using OLS estimation. The estimation results from the global regression are given in Table 3.2

| Table 3.2. Estimation Results of Linear Regression Model |         |        |       |        |  |  |
|----------------------------------------------------------|---------|--------|-------|--------|--|--|
| Variable Estimation T P-Value R-Squar                    |         |        |       |        |  |  |
| Intercept                                                | 469.002 | 0,908  | 0,371 |        |  |  |
| Positives $(x_1)$                                        | 0,838   | 7,543  | 0,000 | 84,2 % |  |  |
| Recovered $(x_2)$                                        | -0,813  | -7,290 | 0,000 |        |  |  |

Based on the results of the F test, the statistical value of F = 82.44 with a p-value of 0.000 means that the predictor variables are simultaneously significant to the response variable. In comparison, the partial test results in the table above show that the number of positive cases and recovered patients are significant to the number of COVID-19 patients who died in Indonesia. Based on this global regression model, spatial dependencies and spatial heterogeneity tests will be carried out, which are assumptions in the GWR model. The test results using the Moran and Breusch-Pagan indexes are given in Table 3.3.

| Table 3.3. Dependency Test and Spatial Heterogeneit |        |             |  |
|-----------------------------------------------------|--------|-------------|--|
| Test                                                | Result |             |  |
| Moran Index                                         | 0.000  | Significant |  |
| Breusch-Pagan                                       | 0,000  | Significant |  |

The value of the Moran and Breusch-Pagan Index test results in a significant p-value of =5%. So it can be concluded that there are spatial dependencies and spatial heterogeneity. With this assumption fulfilled, global modeling cannot be used because it will cause inefficient parameter estimation, so local modeling through GWR is needed by considering spatial effects on the data.

#### **3.2 GWR Model with Fixed Gaussian Kernel Function**

Optimum bandwidth selection is obtained by minimizing the value of Cross-Validation (CV). By using the fixed gaussian kernel function, the CV calculation results are given in Table 3.4.

| Table 3.4. Optimum Bandwidth Selection |             |  |  |  |
|----------------------------------------|-------------|--|--|--|
| Bandwidth                              | CV          |  |  |  |
| 0,381966                               | 668.472.235 |  |  |  |
| 0,618034                               | 571.600.803 |  |  |  |
| 0,763932                               | 509.913.843 |  |  |  |
| 0,854102                               | 458.185.252 |  |  |  |
| 0,909830                               | 453.140.816 |  |  |  |
| :                                      | ÷           |  |  |  |
| 0,999948                               | 397.076.128 |  |  |  |

The optimum bandwidth is 0.999948, with a minimum CV value of 397.076.128. GWR modeling uses a weighting matrix for each location based on the optimal bandwidth. The summary of parameter estimates in GWR modeling is given in Table 3.5.

| Table 3.5. GWR Model with Fixed Gaussian Kernel Function |         |         |         |        |  |  |  |
|----------------------------------------------------------|---------|---------|---------|--------|--|--|--|
| Variable Minimum Median Maximum R-Square                 |         |         |         |        |  |  |  |
| Intercept                                                | 407,075 | 418,868 | 511,810 |        |  |  |  |
| Positives $(x_1)$                                        | 0,820   | 0,855   | 0,860   | 84,4 % |  |  |  |
| Recovered $(x_2)$                                        | -0,834  | -0,830  | -0,795  |        |  |  |  |

The results show that the number of positive cases positively correlates with the number of patients who died from COVID-19. In contrast, the number of recovered patients negatively correlates with the number of patients who died from COVID-19.

#### 3.3 GWR Model with Fixed Bisquare Kernel Function

Optimum bandwidth selection is obtained by minimizing the value of Cross-Validation (CV). By using the fixed bisquare kernel function, the CV calculation results are given in Table 3.6.

| Bandwidth | CV            |
|-----------|---------------|
| 0,381966  | 1.389.418.745 |
| 0,618034  | 1.005.790.334 |
| 0,763932  | 834.023.618   |
| 0,854102  | 723.189.072   |
| 0,909830  | 710.104.218   |
| :         | :             |
| 0,999955  | 582.119.244   |

 Table 3.6. Optimum Bandwidth Selection

The optimum bandwidth is 0,999955, with a minimum CV value of 582.119.244. GWR modeling uses a weighting matrix for each location based on the optimal bandwidth. The summary of parameter estimates in GWR modeling is given in Table 3.7.

| <b>Table 3.7.</b> | GWR Model | with Fixed | Gaussian | Kernel | Function |
|-------------------|-----------|------------|----------|--------|----------|
|                   |           |            | _        |        | _ ~      |

| Variable          | Minimum | Median  | Maximum | <b>R-Square</b> |
|-------------------|---------|---------|---------|-----------------|
| Intercept         | 223,089 | 316,459 | 603,022 |                 |
| Positives $(x_1)$ | 0,719   | 0,885   | 0,914   | 85,1 %          |
| Recovered $(x_2)$ | -0,889  | -0,859  | -0,691  |                 |

The results show that the number of positive cases positively correlates with the number of patients who died from COVID-19. In contrast, the number of recovered patients negatively correlates with the number of patients who died from COVID-19.

Modeling the number of COVID-19 cases in Indonesia using the fixed bisquare kernel weighting function is better because it has a higher coefficient of determination of 85.1%. The local model for each region can be seen in table 3.8.

| Table 3.8. Local model for regions in Indonesia |               |           |           |           |       |  |
|-------------------------------------------------|---------------|-----------|-----------|-----------|-------|--|
| No                                              | Province      | Intercept | $\beta_1$ | $\beta_2$ | $R^2$ |  |
| 1.                                              | Aceh          | 223.089   | 0.914     | -0.889    | 0.848 |  |
| 2.                                              | Bali          | 346.805   | 0.875     | -0.849    | 0.852 |  |
| 3.                                              | Banten        | 259.175   | 0.906     | -0.880    | 0.848 |  |
| 4.                                              | Bengkulu      | 240.758   | 0.910     | -0.885    | 0.848 |  |
| 5.                                              | DI Yogyakarta | 291.139   | 0.896     | -0.871    | 0.849 |  |
| 6.                                              | DKI Jakarta   | 263.292   | 0.904     | -0.879    | 0.848 |  |
| 7.                                              | Gorontalo     | 435.996   | 0.799     | -0.773    | 0.863 |  |
| 8.                                              | Jambi         | 241.756   | 0.910     | -0.884    | 0.848 |  |
| 9.                                              | Jawa Barat    | 268.463   | 0.903     | -0.878    | 0.848 |  |

| 10. | Jawa Tengah               | 288.546 | 0.897 | -0.871 | 0.849 |
|-----|---------------------------|---------|-------|--------|-------|
| 11. | Jawa Timur                | 314.949 | 0.888 | -0.863 | 0.850 |
| 12. | Kalimantan Barat          | 292.146 | 0.891 | -0.866 | 0.852 |
| 13. | Kalimantan Selatan        | 346.582 | 0.870 | -0.845 | 0.855 |
| 14. | Kalimantan Tengah         | 317.970 | 0.882 | -0.857 | 0.853 |
| 15. | Kalimantan Timur          | 356.430 | 0.858 | -0.832 | 0.858 |
| 16. | Kalimantan Utara          | 349.090 | 0.858 | -0.832 | 0.859 |
| 17. | Kepulauan Bangka Belitung | 260.025 | 0.904 | -0.879 | 0.849 |
| 18. | Kepulauan Riau            | 267.767 | 0.898 | -0.873 | 0.851 |
| 19. | Lampung                   | 252.850 | 0.907 | -0.882 | 0.848 |
| 20. | Maluku                    | 548.900 | 0.756 | -0.729 | 0.857 |
| 21. | Maluku Utara              | 512.967 | 0.757 | -0.730 | 0.859 |
| 22. | Nusa Tenggara Barat       | 375.583 | 0.860 | -0.834 | 0.856 |
| 23. | Nusa Tenggara Timur       | 459.371 | 0.827 | -0.801 | 0.859 |
| 24. | Papua                     | 603.022 | 0.719 | -0.692 | 0.852 |
| 25. | Papua Barat               | 567.521 | 0.733 | -0.706 | 0.854 |
| 26. | Riau                      | 237.818 | 0.910 | -0.885 | 0.849 |
| 27. | Sulawesi Barat            | 393.867 | 0.837 | -0.811 | 0.862 |
| 28. | Sulawesi Selatan          | 414.150 | 0.832 | -0.806 | 0.861 |
| 29. | Sulawesi Tengah           | 423.126 | 0.816 | -0.790 | 0.863 |
| 30. | Sulawesi Tenggara         | 453.464 | 0.815 | -0.789 | 0.861 |
| 31. | Sulawesi Utara            | 468.108 | 0.777 | -0.750 | 0.861 |
| 32. | Sumatera Barat            | 233.604 | 0.912 | -0.887 | 0.848 |
| 33. | Sumatera Selatan          | 248.249 | 0.908 | -0.883 | 0.848 |
| 34. | Sumatera Utara            | 228.849 | 0.913 | -0.888 | 0.848 |

Each location has a different model. For example, the local model for South Sulawesi Province is:

$$y_{sulsel} = 414.150 + 0.832 - 0.806$$

The equation explains that if the independent variable is fixed and the number of positive cases increases by one unit, the number of patients dying will increase by 0.839. If the number of recovered patients decreased by one unit, the number of patients who died would decrease by 0.814. The coefficient of determination in South Sulawesi Province is 86.1%. This shows that the variance of the independent variables used in the model can explain 86.1% of the variable number of patients dying, and the rest is explained by other variables that have not been included in this study.

# 4. CONCLUSION

The COVID-19 case originated in Wuhan, China, and continues to spread to all corners of the world, including Indonesia. This virus causes mild respiratory infections, such as the flu. However, this virus can also cause severe respiratory infections, such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). As of December 31, 2021, there were 4,262,697 positive cases in Indonesia, with details of 3,743 patients being treated, 4,114,744 patients recovered, and 144,210 patients died. The GWR model using a fixed bisquare kernel weighting function has an optimum bandwidth of 0.999948 with a minimum CV value of 397.076.128 with a coefficient of determination ( $R^2$ ) of 85.1 %. The results show that the number

of positive cases positively correlates with the number of patients who died from COVID-19. In contrast, the number of recovered patients negatively correlates with the number of patients who died from COVID-19.

# REFERENCES

- [1] Anselin, L.,1988. *Spatial Econometrics: methods and models*. Dordrecht. Kluwer Academic Publishers, 1988.
- [2] Brundson, C., Fotheringham, A.S., dan Charlton, M.E., 1996. Geographically Weighted Regression: Method for Exploring Spatial Nonstationarity. *Geographical Analysis*, 28(4), 281-298.
- [3] Fajar, M., 2021. Pemodelan Parametrik Kurva Pertumbuhan Epidemi Covid-19 Di Indonesia. *Jurnal Matematika dan Sains*: ISSN 0854-5154.
- [4] Fitrial, N.H., Fatikhurrizqi, A., 2020. Pemodelan Jumlah Kasus Covid-19 Di Indonesia Dengan Pendekatan Regresi Poisson Dan Regresi Binomial Negatif. Seminar Nasional Official Statistics 2020: Pemodelan Statistika tentang COVID-19.
- [5] Fotheringham, A.S., Brundson, C., Charlton, M.E., 2002. *Geographically Weighted Regression: The Analysis of Spatially Varying Relationship.* John Wiley and Sons Ltd.
- [6] Goodchild, M.F., 1989. Spatial Autocorrelation. Norwich: Geobooks, Norwich.
- [7] Ma, Z., Xue, Y., Hu, G., 2020. Geographically Weighted Regression Analysis for Spatial Economics Data: A Bayesian Recourse. *International Regional Science Review* XX(X).
- [8] Mahdy, Ilham,F., 2020. Pemodelan Jumlah Kasus Covid-19 Di Jawa Barat Menggunakan Geographically Weighted Regression. *Seminar Nasional Official Statistics 2020: Statistics in the New Normal: A Challenge of Big Data and Officials Statistics*. Departemen Statistika, Universitas Padjadjaran.
- [9] Ogundokun, R., O. Lukman, A., F. Golam B.M. Kibria, F.,G. Awotunde, J., B. Aladeitan, B., 2020. Predictive Modelling of COVID-19 Confirmed Cases In Nigeria. *Infectious Disease Modelling 5.*
- [10] Purhadi & Yasin, 2008. Mixed Geographically Weighted Regression Model (Case Study: the Percentage of Poor Households in Mojokerto 2008. *European Journal of Scientific Research*, 188-196.
- [11] Putra, R., Tyas, S.W., Fadhlurrahman, M.G., 2022. Geographically Weighted Regression with The Best Kernel Function on Open Unemployment Rate Data in East Java Province. *ENTHUSIASTIC: International Journal Of Statistics And Data Science*. Volume 2, April 2022.
- [12] Sameni, R., 2020. Mathematical Modeling of Epidemic Diseases; A Case Study of the COVID-19 Coronavirus. Quantitative Biology: Cornell University.
- [13] Song, Y., Shen, Z., Wul, P., Rossel, R.A.V., 2021. Wavelet Geographically Weighted Regression For Spectroscopic Modelling Of Soil Properties. *Scientific Reports:* https://doi.org/10.1038/s41598-021-96772-z
- [14] Susilo A., Rumende C.M., Pitoyo C.W., Santoso W.D., Yulianti M, Herikurniawan H., et al., 2020. Coronavirus Disease 2019: Tinjauan Literatur Terkini. *Jurnal Penyakit Dalam Indonesia*, Vol. 7(1), Hal. 45–67.
- [15] Teguh, R., Sahay, A.S., Adjib. F.F., 2020. Pemodelan penyebaran Infeksi COVID-19 di Kalimantan. *Jurnal Teknologi Informasi*.