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Abstract.

In this paper, we introduce the concept of continuous g-fusion frame and K-g-fusion

frame in Hilbert C∗-modules. Furthermore, we investigate some properties of them

and discuss the perturbation problem for continuous K-g-fusion frames.
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1. Introduction and preliminaries

Frame theory has a great revolution in recent years it was introduced by Duffin and

Schaeffer [7] in 1952 to study some deep problems in nonharmonic Fourier series. In

2000, Frank and Larson [9] introduced the concept of frames in Hilbert C∗-modules as a

generalization of frames in Hilbert spaces. The basic idea was to consider modules over

C∗-algebras of linear spaces and to allow the inner product to take values in C∗-algebras

[15]. A. Khosravi and B. Khosravi [14] introduced the fusion frames and g−frames in

Hilbert C∗-modules. Afterwards, A. Alijani and M. Dehghan consider frames with



C∗-valued bounds [2] in Hilbert C∗-modules. Recently, Fakhr-dine Nhari et al. [18]

introduced the concepts of g-fusion frame and K-g-fusion frame in Hilbert C∗-modules.

Many generalizations of the concept of frame have been defined in Hilbert C∗-modules

(see [10, 20, 21, 22, 23, 24, 25] for more detail).

The notion of a generalization of frames to a family indexed by some locally compact

space endowed with a Radon measure was proposed by Kaiser [11] and independently

by Ali, Antoine and Gazeau [1], and these frames are known as continuous frames.

The paper is organized as follows: We continue this introductory section we briefly

recall the definitions and basic properties of C∗-algebra and Hilbert C∗-modules. In

Section 2, we introduce the concept of continuous g-fusion frame, the continuous g-

fusion frame operator and establish some results. In Section 3, we introduce the concept

of continuous K-g-fusion frame and gives some properties. Finally, in Section 4, we

discuss the perturbation problem for continuous K-g-fusion frame.

In the following, we briefly recall the definitions and basic properties of C∗-algebra,

Hilbert C∗-modules. The references for C∗-algebras are [4, 6]. For a C∗-algebra A if

a ∈ A is positive we write a ≥ 0 and A+ denotes the set of positive elements of A.

Definition 0.1. [4]. If A is a Banach algebra, then an involution is a map a 7→ a∗ of

A into itself such that for all a and b in A and all scalars α the following conditions

hold:

(1) (a∗)∗ = a;

(2) (ab)∗ = b∗a∗;

(3) (αa+ b)∗ = ᾱa∗ + b∗.

Definition 0.2. [4]. A C∗-algebra A is a Banach algebra with involution such that

∥a∗a∥ = ∥a∥2

for all a in A.

Example 0.3. Let B = B(H) be the algebra of bounded operators on a Hilbert space

H. Then B = B(H) is a C∗-algebra, where, for each operator A, A∗ is the adjoint of

A.

Definition 0.4. [12]. Let A be a unital C∗-algebra and U be a left A-module such that

the linear structures of A and U are compatible. Then U is a pre-Hilbert A-module if
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U is equipped with an A-valued inner product ⟨., .⟩ : U × U → A which is sesquilinear

and positive definite. In the other words,

(i) ⟨x, x⟩ ≥ 0 for all x ∈ U and ⟨x, x⟩ = 0 if and only if x = 0;

(ii) ⟨ax+ y, z⟩ = a⟨x, z⟩+ ⟨y, z⟩ for all a ∈ A and x, y, z ∈ U ;

(iii) ⟨x, y⟩ = ⟨y, x⟩∗ for all x, y ∈ U .

For x ∈ U , we define ||x|| = ||⟨x, x⟩||
1
2 . If U is complete with || · ||, then it is called

a Hilbert A-module or a Hilbert C∗-module over A. For every a in C∗-algebra A, we

have ∥a∥ = (a∗a)
1
2 .

Throughout this paper, U is considered to be a Hilbert C∗-module over a C∗-algebra,

and we denote that IU is a countable index set, {Hw}w∈Ω is a sequence of Hilbert C∗-

submodules over U and {Vw}w∈Ω is a sequence of Hilbert C∗-modules.

We denote that End∗A(U, Vw) is a set of all adjointable operators. In particular

End∗A(U) denote the set of all bounded linear operators on U . We denote R(T ) for the

range of T .

The following lemmas will be used to prove our mains results.

Lemma 0.5. [19]. Let H be a Hilbert A-module. If T ∈ End∗A(H), then

⟨Tx, Tx⟩ ≤ ∥T∥2⟨x, x⟩,∀x ∈ H.

Lemma 0.6. [3]. Let H and K be two Hilbert A-modules and T ∈ End∗A(H,K). Then

the following statements are equivalent:

(i) T is surjective.

(ii) T ∗ is bounded below with respect to norm, i.e., there is m > 0 such that ∥T ∗x∥ ≥

m∥x∥ for all x ∈ K.

(iii) T ∗ is bounded below with respect to the inner product, i.e., there is m′ > 0 such

that ⟨T ∗x, T ∗x⟩ ≥ m′⟨x, x⟩ for all x ∈ K.

Lemma 0.7. [2]. Let H and K be two Hilbert A-modules and T ∈ End∗A(H,K).

(i) If T is injective and T has a closed range, then the adjointable map T ∗T is

invertible and

∥(T ∗T )−1∥−1 ≤ T ∗T ≤ ∥T∥2.

(ii) If T is surjective, then the adjointable map TT ∗ is invertible and

∥(TT ∗)−1∥−1 ≤ TT ∗ ≤ ∥T∥2.
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Lemma 0.8. [3] Let H be a Hilbert A-module over a C∗-algebra A, and T ∈ End∗A(H)

such that T ∗ = T . The following statements are equivalent:

(i) T is surjective.

(ii) There are m,M > 0 such that m∥x∥ ≤ ∥Tx∥ ≤ M∥x∥ for all x ∈ H.

(iii) There are m′,M ′ > 0 such that m′⟨x, x⟩ ≤ ⟨Tx, Tx⟩ ≤ M ′⟨x, x⟩ for all x ∈ H.

Lemma 0.9. [8] Let A be a C∗-algebra and E, H and K be Hilbert A-modules. Let T ∈

End∗A(E,K) and T
′ ∈ End∗A(H,K) be such that R(T ∗) is orthogonally complemented.

Then the following statements are equivalent:

(1) T
′
(T

′
)∗ ≤ µTT ∗ for some µ > 0.

(2) There exists µ > 0 such that ||(T ′
)∗z|| ≤ µ||T ∗z|| for all z ∈ K.

(3) There exists a solution X ∈ End∗A(H,E) of the so-called Douglas equation

T
′
= TX.

(3) R(T
′
) ⊆ R(T ).

Lemma 0.10. [2] If ϕ : A → B is a ∗-homomorphism between C∗-algebras, then ϕ is

positive and increasing, that is, ϕ(A+) ⊆ B+, and if a ≤ b, then ϕ(a) ≤ ϕ(b).

2. Continuous g-fusion frames in Hilbert C∗-modules

Definition 0.11. Let {Hw}w∈Ω be a sequence of closed submodules orthogonally com-

plemented in U , PHw be the orthogonal projection from U to Hw, Λw ∈ End∗A(U, Vw),

w ∈ Ω and {vw}w∈Ω be a family of weights in A, i.e., each vw is a positive invertible

element from the center of A. We say Λ = {Hw,Λw, vw}w∈Ω is a continuous g-fusion

frame for U if

(1) for each x ∈ U , {PHwx}w∈Ω is measurable;

(2) for each x ∈ U , the fonction Λ̃ : Ω → Vw defined by Λ̃(w) = Λwx is measurable;

(3) there exist 0 < A ≤ B < ∞ such that

(0.1) A⟨x, x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩, ∀x ∈ U.

We call A and B the lower and upper continuous g-fusion frame bounds, respec-

tively. If the right-hand inequality of (0.1) is satisfied, then we call Λ a continuous

g-fusion Bessel sequence. If A = B, then we call Λ the tight continuous g-fusion frame.

Moreover, If A = B = 1, then Λ is called the Parseval continuous g-fusion frame.

See [5, 13, 16, 17, 26] for more information on fusion frames and properties.
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Proposition 0.12. Let Λ = {Hw,Λw, vw}w∈Ω. If Λ is a continuous g-fusion frame for

U , then {vwΛwPHw}w∈Ω is a continuous g-frame for U .

Proof. Since Λ is a continuous g-fusion frame, for each x ∈ U , we have

A⟨x, x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩.

Thus

A⟨x, x⟩ ≤
∫
Ω
⟨vwΛwPHwx, vwΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩.

Hence {vwΛwPHw}w∈Ω is a continuous g-fusion frame for U . □

Proposition 0.13. If Λ is a continuous g-fusion Bessel sequence for U , then the

operator TΛ : ⊕w∈ΩVw → U , defined by TΛ({xw}w∈Ω) =
∫
Ω vwPHwΛ

∗
wxwdµ(w), for all

{xw}w∈Ω ∈ ⊕w∈ΩVw, is adjointable bounded.

Proof. Let {xw}w∈Ω ∈ ⊕w∈ΩVw. Then

TΛ({xw}w∈Ω) = sup
||y||=1

||⟨
∫
Ω
vwPHwΛ

∗
wxwdµ(w), y⟩||

= sup
||y||=1

||
∫
Ω
⟨xw, vwΛwPHwy⟩dµ(w)||

≤ sup
||y||=1

||
∫
Ω
⟨xw, xw⟩dµ(w)||

1
2 ||

∫
Ω
v2w⟨ΛwPHwy,ΛwPHwy⟩dµ(w)||

1
2

≤
√
B||{xw}w∈Ω||.

So TΛ is bounded. And we have, for all y ∈ U and {xw}w∈Ω ∈ ⊕w∈ΩVw,

⟨TΛ{xw}w∈Ω, y⟩ = ⟨
∫
Ω
vwPHwΛ

∗
wxwdµ(w), y⟩ =

∫
Ω
⟨xw, vwΛwPHwy⟩dµ(w)

= ⟨{xw}w∈Ω, {vwΛwPHwy}w∈Ω⟩.

Thus T ∗
Λ(x) = {vwΛwPHwx}w∈Ω. □

Note that TΛ is called the synthesis operator of Λ, and T ∗
Λ is called the analysis

operator of Λ.

Theorem 0.14. If Λ = {Hw,Λw, vw}w∈Ω is a continuous g-fusion frame for U with

frame bounds A and B, then TΛ is surjective with ||TΛ|| ≤
√
B and T ∗

Λ is injective and

a closed range.
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Proof. We have, for all x ∈ U ,

A⟨x, x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩.

Thus

(0.2) A⟨x, x⟩ ≤ ⟨T ∗
Λx, T

∗
Λx⟩ ≤ B⟨x, x⟩.

Hence

(0.3)
√
A||x|| ≤ ||T ∗

Λx||.

So T ∗
Λ is injective.

Now we will show that the R(T ∗
Λ) is closed.

Let {T ∗
Λ(xn)}n∈N ∈ R(T ∗

Λ) such that lim
n

T ∗
Λ(xn) = y. For n, m ∈ N, we have, from

(0.2),

⟨xn − xm, xn − xm⟩ ≤ A−1⟨T ∗
Λ(xn − xm), T ∗

Λ(xn − xm)⟩.

Thus

||⟨xn − xm, xn − xm⟩|| ≤ A−1||T ∗
Λ(xn − xm)||2.

Since {T ∗
Λ(xn)}n∈N is a Cauchy sequence in ⊕w∈ΩVw, ||⟨xn − xm, xn − xm⟩|| → 0.

Therefore, the sequence {xn}nN is a Cauchy sequence in U and so there exists x ∈ U

such that lim
n

xn = x. Again by (0.2), we have

||T ∗
Λxn − T ∗

Λx||2 ≤ B||⟨xn − x, xn − x⟩||

and thus ||T ∗
Λ(xn) − T ∗

Λ(x)|| → 0 implies that T ∗
Λ(x) = y and hence R(T ∗

Λ) is closed.

Finally from (0.3) and Lemma 0.6, TΛ is surjective. □

Definition 0.15. Let Λ be a continuous g-fusion frame for U . Define a continuous

g-fusion frame operator SΛ on U by SΛx = TΛT
∗
Λx =

∫
Ω v2wPHwΛ

∗
wΛwPHwxdµ(w) for

all x ∈ U .

Theorem 0.16. The continuous g-fusion frame operator SΛ of Λ is bounded, positive,

selfadjoint and invertible. Moreover,

(0.4) AIU ≤ SΛ ≤ BIU .
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Proof. It easy to see that the operator SΛ is positive, selfadjoint and bounded.

Now from Theorem 0.14, TΛ is surjective and by Lemma 0.7, TΛT
∗
Λ is invertible and

so SΛ is invertible.

We have, for all x ∈ U ,

⟨SΛx, x⟩ = ⟨
∫
Ω
v2wPHwΛ

∗
wΛwPHwxdµ(w), x⟩ =

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w).

From (0.1),

AIU ≤ SΛ ≤ BIU .

This completes the proof. □

In this theorem, we give an equivalent definition of continuous g-fusion frame in

Hilbert C∗-module.

Theorem 0.17. Let Λ = {Hw,Λw, vw}w∈Ω. Then Λ is a countinuous g-fusion frame

for U if and only if there exist constants 0 < A ≤ B < ∞ such that

(0.5) A||x||2 ≤ ||
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)|| ≤ B||x||2, ∀x ∈ U.

Proof. If Λ is a continuous g-fusion frame for U , then we have the inequality (0.5).

Conversely, assume that (0.5) holds. Then the operator TΛ : ⊕w∈ΩVw → U , defined

by TΛ({xw}w∈Ω) =
∫
Ω vwPHwΛ

∗
wxwdµ(w), is well-defined, adjointable and bounded

with T ∗
Λ : U → ⊕w∈ΩVw defined by T ∗

Λ({xw}w∈Ω) = {vwΛwPHwx}w∈Ω, and hence the

operator SΛ = TΛT
∗
Λ is selfadjoint and positive. From (0.5), we have, for all x ∈ U ,

A||x||2 ≤ ||⟨T ∗
Λx, T

∗
Λx⟩|| ≤ B||x||2

and so
√
A||x|| ≤ ||T ∗

Λx|| ≤
√
B||x||.

Hence
√
A||x|| ≤ ||⟨S

1
2
Λx, S

1
2
Λx⟩|| ≤

√
B||x||

and so by Lemma 0.8, there exist two positive constants A
′
and B

′
such that

A
′⟨x, x⟩ ≤ ⟨SΛx, x⟩ ≤ B

′⟨x, x⟩.

Finally, for all x ∈ U , we have

A
′⟨x, x⟩ ≤

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B

′⟨x, x⟩.

This completes the proof. □
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Theorem 0.18. If T : ⊕w∈ΩVw → U , defined by T ({xw}w∈Ω) =
∫
Ω vwPHwΛ

∗
wxwdµ(w),

is well-defined and surjective, then {Hw,Λw, vw}w∈Ω is a continuous g-fusion frame for

U .

Proof. We have, for all x ∈ U ,

∥
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)∥ = ∥

∫
Ω
⟨x, v2wPHwΛ

∗
wΛwPHwx⟩dµ(w)∥

= ∥⟨x,
∫
Ω
v2wPHwΛ

∗
wΛwPHwxdµ(w)⟩∥

≤ ∥x∥∥
∫
Ω
v2wPHwΛ

∗
wΛwPHwxdµ(w)∥

≤ ∥x∥∥T ({vwΛwPHwx}w∈Ω)∥

≤ ∥x∥∥T∥∥{vwΛwPHwx}w∈Ω∥

= ∥x∥∥T∥∥
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)∥

1
2 .

So

(0.6) ||
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)|| ≤ ||T ||2||x||2.

On the other hand, since T is surjective, by Lemma 0.6, T ∗ is bounded below

and hence T ∗ is injective and so T ∗ : U → R(T ∗) is invertible. So for al x ∈ U ,

(T ∗
/R(T ∗))

−1T ∗x = x, which implies ||x||2 ≤ ||(T ∗
/R(T ∗))

−1||2||T ∗x||2. Thus

(0.7) ||(T ∗
/R(T ∗))

−1||−2||x||2 ≤ ||
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)||.

From (0.6) and (0.7), {Hw,Λw, vw}w∈Ω is a continuous g-fusion frame for U . □

Theorem 0.19. Let Λ = {Hw,Λw, vw}w∈Ω and Γ = {Hw,Γw, vw}w∈Ω be two Bessel

sequences for U with frame bounds B1 and B2, respectively. The operator Q on U ,

defined by Q(x) =
∫
Ω v2wPHwΓ

∗
wΛwPHwxdµ(w), is bounded.
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Proof. Let x ∈ U . Then

∥Q(x)∥ = sup
∥y∥=1

∥⟨Q(x), y⟩∥ = sup
∥y∥=1

∥⟨
∫
Ω
v2wPHwΓ

∗
wΛwPHwxdµ(w), y⟩∥

= sup
∥y∥=1

∥
∫
Ω
v2w⟨ΛwPHwx,ΓwPHwy⟩dµ(w)∥

≤ sup
∥y∥=1

(
∥
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)∥

1
2 ∥

∫
Ω
v2w⟨ΓwPHwy,ΓwPHwy⟩dµ(w)∥

1
2
)

≤ (B1B2)
1
2 ∥x∥.

This completes the proof. □

Theorem 0.20. Let Λ = {Hw,Λw, vw}w∈Ω be a continuous g-fusion frame for U and

Γ = {Hw,Γw, vw}w∈Ω be a continuous g-fusion Bessel sequence for U . If the operator

Q, defined in Theorem 0.19, is surjective, then Γ is a continuous g-fusion frame for U .

Proof. Suppose that Λ is a continuous g-fusion frame for U with synthesis operator TΛ.

Since Γ is a continuous g-fusion Bessel sequence for U , we define the synthesis operator

TΓ : ⊕w∈ΩVw → U by TΓ({xw}w∈Ω) =
∫
Ω vwPHwΓ

∗
wxwdµ(w).

We have, for all x ∈ U ,

Q(x) =

∫
Ω
v2wPHwΓ

∗
wΛwPHwxwdµ(w) =

∫
Ω
vwPHwΓ

∗
w(vwΛwPHwx)dµ(w)

= TΓT
∗
Λx.

Then Q = TΓT
∗
Λ. Since Q is surjective, there exists x ∈ U such that y = Q(x) =

TΓ(T
∗
Λx) and T ∗

Λx ∈ ⊕w∈ΩVw and hence TΓ is surjective. So by Theorem 0.18, Γ is a

continuous g-fusion frame for U . □

Theorem 0.21. Let Λ = {Hw,Λw, vw}w∈Ω be a continuous g-fusion frame for U with

frame bounds A and B. If θ ∈ End∗A(U) is injective and has a closed range and

θPHw = PHwθ for all w ∈ Ω, then {Hw,Λwθ, vw}w∈Ω is a continuous g-fusion frame

for U .

Proof. Since Λ is a continuous g-fusion frame, for all x ∈ U ,

A⟨x, x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩.
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We have, for all x ∈ U ,∫
Ω
v2w⟨ΛwθPHwx,ΛwθPHwx⟩dµ(w) =

∫
Ω
v2w⟨ΛwPHwθx,ΛwPHwθx⟩dµ(w)

≤ B⟨θx, θx⟩

≤ B||θ||2⟨x, x⟩.(0.8)

On the other hand, for all x ∈ U ,∫
Ω
v2w⟨ΛwθPHwx,ΛwθPHwx⟩dµ(w) =

∫
Ω
v2w⟨ΛwPHwθx,ΛwPHwθx⟩dµ(w)

≥ A⟨θx, θx⟩.(0.9)

Since θ is injective and has a closed range,

(0.10) ||(θ∗θ)−1||−1⟨x, x⟩ ≤ ⟨θ∗θx, x⟩, ∀x ∈ U.

By (0.9) and (0.10), we have

(0.11) A||(θ∗θ)−1||−1⟨x, x⟩ ≤
∫
Ω
v2w⟨ΛwθPHwx,ΛwθPHwx⟩dµ(w), ∀x ∈ U.

From (0.8) and (0.11), we conclude that {Hw,Λwθ, vw}w∈Ω is a continuous g-fusion

frame for U . □

Theorem 0.22. Let Λ = {Hw,Λw, vw}w∈Ω be a continuous g-fusion frame for U with

frame bounds A and B. If θ ∈ End∗A(U, Vw) is injective and has a closed range, then

{Hw, θΛw, vw}w∈Ω is a continuous g-fusion frame for U .

Proof. We have, for all x ∈ U ,

A⟨x, x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩.

Since θ is injective and has a closed range, for all x ∈ U ,

||(θ∗θ)−1||−1⟨vwΛwPHwx, vwΛwPHwx⟩ ≤ ⟨θ∗θvwΛwPHwx, vwΛwPHwx⟩

≤ ||θ||2⟨vwΛwPHwx, vwΛwPHwx⟩.

So, for all x ∈ U ,

||(θ∗θ)−1||−1

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤

∫
Ω
v2w⟨θ∗θΛwPHwx,ΛwPHwx⟩dµ(w)

and ∫
Ω
v2w⟨θ∗θΛwPHwx,ΛwPHwx⟩dµ(w) ≤ ||θ||2

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w).
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Hence for all x ∈ U ,

A||(θ∗θ)−1||−1⟨x, x⟩ ≤
∫
Ω
v2w⟨θΛwPHwx, θΛwPHwx⟩dµ(w) ≤ B||θ||2⟨x, x⟩.

Therefore, {Hw, θΛw, vw}w∈Ω is a continuous g-fusion frame for U . □

We give a relationship between a continuous frame and continuous g-fusion frame in

Hilbert C∗-modules.

Theorem 0.23. Let w ∈ Ω, Λw ∈ End∗A(U,⊕w∈ΩVw) and {yw,v}v∈Ωw be a continuous

frame for Vw with frame bounds Cw, Dw such that there exist C, D > 0 for which

C ≤ Cw and Dw ≤ D, then the following conditions are equivalent:

(1) {vwPHwΛ
∗
wyw,v}v∈Ωw is a continuous frame for U .

(2) {Hw,Λw, vw}w∈Ω is a continuous g-fusion frame for U .

Proof. Since {yw,v}v∈Ωw is a continuous frame for Vw, for all x ∈ U ,

Cw⟨vwΛwPHwx, vwΛwPHwx⟩ ≤
∫
Ωw

⟨vwΛwPHwx, yw,v⟩⟨yw,v, vwΛwPHwx⟩dµ(v)

≤ Dw⟨vwΛwPHwx, vwΛwPHwx⟩.

Thus

Cw⟨vwΛwPHwx, vwΛwPHwx⟩ ≤
∫
Ωw

⟨x, vwPHwΛ
∗
wyw,v⟩⟨vwPHwΛ

∗
wyw,v, x⟩dµ(v)

≤ Dw⟨vwΛwPHwx, vwΛwPHwx⟩.

Hence

C⟨vwΛwPHwx, vwΛwPHwx⟩ ≤
∫
Ωw

⟨x, vwPHwΛ
∗
wyw,v⟩⟨vwPHwΛ

∗
wyw,v, x⟩dµ(v)

≤ D⟨vwΛwPHwx, vwΛwPHwx⟩.

So

C

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤

∫
Ω

∫
Ωw

⟨x, vwPHwΛ
∗
wyw,v⟩⟨vwPHwΛ

∗
wyw,v, x⟩dµ(v)dµ(w)

≤ D

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w).(0.12)

Suppose that, {vwPHwΛ
∗
wyw,v}v∈Ωw is a continuous frame for U with frame bounds C

′

and D
′
. Then for all x ∈ U ,

C
′⟨x, x⟩ ≤

∫
Ω

∫
Ωw

⟨x, vwPHwΛ
∗
wyw,v⟩⟨vwPHwΛ

∗
wyw,v, x⟩dµ(v)dµ(w) ≤ D

′⟨x, x⟩.(0.13)
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By (0.12) and (0.13), we have

C

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ D

′⟨x, x⟩

and

C
′⟨x, x⟩ ≤ D

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w).

Therefore,

D−1C
′⟨x, x⟩ ≤

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ C−1D

′⟨x, x⟩, ∀x ∈ U.

Thus we conclude that {Hw,Λw, vw}w∈Ω is a continuous g-fusion frame for U .

Conversely, suppose that {Hw,Λw, vw}w∈Ω is a continuous g-fusion frame for U with

frame bounds C
′
and D

′
. Then for all x ∈ U , we have

C
′⟨x, x⟩ ≤

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ D

′⟨x, x⟩.

So by (0.12), for all x ∈ U , we have

CC
′⟨x, x⟩ ≤

∫
Ω

∫
Ωw

⟨x, vwPHwΛ
∗
wyw,v⟩⟨vwPHwΛ

∗
wyw,v, x⟩dµ(v)dµ(w)

and ∫
Ω

∫
Ωw

⟨x, vwPHwΛ
∗
wyw,v⟩⟨vwPHwΛ

∗
wyw,v, x⟩dµ(v)dµ(w) ≤ DD

′⟨x, x⟩.

We conclude that {vwPHwΛ
∗
wyw,v}v∈Ωw is a continuous frame for U . □

Corollary 0.24. Let w ∈ Ω, Λw ∈ End∗A(U, Vw) and {yw,v}v∈Ωw be a Parseval continu-

ous frame for Vw. Then the continuous g-fusion frame operator of Λ = {Hw,Λw, vw}w∈Ω

is a continuous frame operator of {vwPHwΛ
∗
wyw,v}v∈Ωw .

Proof. Let x ∈ U and y ∈ Vw. Then

⟨vwPHwΛ
∗
wy, x⟩ = ⟨y, vwΛwPHwx⟩

= ⟨
∫
Ωw

⟨y, yw,v⟩yw,vdµ(v), vwΛwPHwx⟩

=

∫
Ωw

⟨y, yw,v⟩⟨yw,v, vwΛwPHwx⟩dµ(v)

= ⟨
∫
Ωw

⟨y, yw,v⟩vwPHwΛ
∗
wyw,vdµ(v), x⟩.

So

vwPHwΛ
∗
wy =

∫
Ωw

⟨y, yw,v⟩vwPHwΛ
∗
wyw,vdµ(v).
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Hence

∫
Ω
v2wPHwΛ

∗
wΛwPHwxdµ(w) =

∫
Ω

∫
Ωw

v2w⟨ΛwPHwx, yw,v⟩PHwΛ
∗
wyw,vdµ(v)dµ(w).

Therefore, the operator frame of {vwPHwΛ
∗
wyw,v}v∈Ωw is the continuous g-fusion frame

operator of Λ. □

Theorem 0.25. Let {U,A, ⟨., .⟩A} and {U,B, ⟨., .⟩B} be two Hilbert C∗-modules and

ϕ : A → B be a ∗-homomorphism and θ be a map on U such that ϕ(⟨x, y⟩A) = ⟨θx, θy⟩B
for all x, y ∈ U . Suppose that θ is surjective and θΛwPHw = ΛwPHwθ for all w ∈ Ω. If

{Hw,Λw, vw}w∈Ω is a continuous g-fusion frame for {U,A, ⟨., .⟩A} with frame bounds

A and B, then {Hw,Λw, ϕ(vw)}w∈Ω is a continuous g-fusion frame for {U,B, ⟨., .⟩B}

with frame bounds A and B. Moreover ϕ(⟨SAx, y⟩A) = ⟨SBθx, θy⟩B.

Proof. Let y ∈ U . Since θ is surjective on U , there exists x ∈ U such that y = θ(x),

and so we have

A⟨x, x⟩A ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩Adµ(w) ≤ B⟨x, x⟩A.

By definition of ∗-homomorphism, we have

ϕ(A⟨x, x⟩A) ≤ ϕ
( ∫

Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩Adµ(w)

)
≤ ϕ(B⟨x, x⟩A).

Hence

A⟨θx, θx⟩B ≤
∫
Ω
ϕ(vw)

2⟨θΛwPHwx, θΛwPHwx⟩Bdµ(w) ≤ B⟨θx, θx⟩B.

Thus

A⟨y, y⟩B ≤
∫
Ω
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Moreover, let x, y ∈ U . then

ϕ(⟨SAx, y⟩A) = ϕ
(
⟨
∫
Ω
v2wPHwΛ

∗
wΛwPHwxdµ(w), y⟩A

)
= ϕ

( ∫
Ω
⟨v2wPHwΛ

∗
wΛwPHwx, y⟩Adµ(w)

)
=

∫
Ω
ϕ
(
⟨v2wPHwΛ

∗
wΛwPHwx, y⟩A

)
dµ(w)

=

∫
Ω
ϕ(v2w)⟨θΛwPHwx, θΛwPHwy⟩Bdµ(w)

=

∫
Ω
ϕ(vw)

2⟨ΛwPHwθx,ΛwPHwθy⟩Bdµ(w)

=

∫
Ω
ϕ(vw)

2⟨PHwΛ
∗
wΛwPHwθx, θy⟩Bdµ(w)

= ⟨
∫
Ω
ϕ(vw)

2PHwΛ
∗
wΛwPHwθxdµ(w), θy⟩B

= ⟨SBθx, θy⟩B.

This completes the proof. □

3. Continuous K-g-fusion frame in Hilbert C∗-modules

We begin this section with the following lemma.

Lemma 0.26. Let {Hw}w∈Ω be a sequence of orthogonally complemented closed sub-

modules of U and T ∈ End∗A(U) is invertible. If T ∗THw ⊆ Hw for all w ∈ Ω,

then {THw}w∈Ω is a sequence of orthogonally complemented closed submodules and

PHwT
∗ = PHwT

∗PTHw .

Proof. Firstly, for each w ∈ Ω, T : Hw → THw is invertible and so each THw is a

closed submodule of U . We will show that U = THw ⊕ T (H⊥
w ). Since U = TU , for

each x ∈ U , there exists y ∈ U sutch that x = Ty. On the other hand, y = u + v for

some u ∈ Hw and v ∈ H⊥
w . Hence x = Tu + Tv, where Tu ∈ THw and Tv ∈ T (H⊥

w ).

It is easy to show that THw ∩ T (H⊥
w ) = (0). So U = THw ⊕ T (H⊥

w ). Hence for every

y ∈ Hw, h ∈ H⊥
w we have T ∗Ty ∈ Hw and therefore ⟨Ty, Th⟩ = ⟨T ∗Ty, h⟩ = 0 and

so T (H⊥
w ) ⊂ (THw)

⊥ and consequently T (H⊥
w ) = (THw)

⊥ which implies that THw is

orthogonally complemented.

Let x ∈ U . Then we have x = PTHwx + y for some y ∈ (THw)
⊥. Then T ∗x =

T ∗PTHwx + T ∗y. Let v ∈ Hw. Then ⟨T ∗y, v⟩ = ⟨y, Tv⟩ = 0 and so T ∗y ∈ H⊥
w . Thus
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we have PHwT
∗x = PHwT

∗PTHwx + PHwT
∗y and so PHwT

∗x = PHwT
∗PTHwx, which

implies that for all w ∈ Ω we have PHwT
∗ = PHwT

∗PTHw . □

Definition 0.27. LetK ∈ End∗A(U). Let {Hw}w∈Ω be a sequence of closed submodules

orthogonally complemented in U , PHw be the orthogonal projection from U to Hw,

Λw ∈ End∗A(U, Vw) for all w ∈ Ω and {vw}w∈Ω be a family of weights in A, i.e.,

each vw is a positive invertible element from the center of A. Then we say that Λ =

{Hw,Λw, vw}w∈Ω is a continuous K-g-fusion frame for U if

(1) for each x ∈ U , {PHwx}w∈Ω is measurable;

(2) for each x ∈ U , the function Λ̃ : Ω → Vw defined by Λ̃(w) = Λwx is measurable;

(3) there exist 0 < A ≤ B < ∞ such that

(0.14) A⟨K∗x,K∗x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩, ∀x ∈ U.

We call A and B lower and upper frame bounds of a continuous K-g-fusion frame,

respectively. If the left-hand inequality of (0.14) is an equality, then we say that

{Hw,Λw, vw}w∈Ω is a tight continuous K-g-fusion frame.

If A = B = 1, then we say that {Hw,Λw, vw}w∈Ω is a Parseval continuous K-g-fusion

frame for U .

If the right-hand inequality of (0.14) holds, then {Hw,Λw, vw}w∈Ω is called a con-

tinuous g-fusion Bessel sequence with a bound B for U .

Proposition 0.28. Let K ∈ End∗A(U).

Every continuous g-fusion frame for U is a continuous K-g-fusion frame for U .

Proof. Let Λ = {Hw,Λw, vw}w∈Ω be a continuous g-fusion frame for U . Then for all

x ∈ U ,

A⟨x, x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩.

And we have, for all x ∈ U ,

⟨K∗x,K∗x⟩ ≤ ||K||2⟨x, x⟩ =⇒ ||K||−2⟨K∗x,K∗x⟩ ≤ ⟨x, x⟩.

So

A||K||−2⟨K∗x,K∗x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩.

Therefore, Λ is a continounus K-g-fusion frame for U . □
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Remark 0.29. Let Λ = {Hw,Λw, vw}w∈Ω be a continuous g-fusion Bessel sequence for

U with continuous g-fusion frame operator SΛ. If Λ is a continuous K-g-fusion frame

for U with frame bounds A and B, then we have

(0.15) AKK∗ ≤ SΛ ≤ BIU .

Theorem 0.30. Let Λ = {Hw,Λw, vw}w∈Ω be a continuous g-fusion Bessel sequence

for U with continuous g-fusion frame operator SΛ for U . Then Λ is a continuous K-g-

fusion frame for U if and only if there exists a constant A > 0 such that AKK∗ ≤ SΛ.

Proof. Let Λ be a continuous K-g-fusion frame for U . Then from (0.15) we have the

result.

Conversely, assume that there exists a constant A > 0 such that AKK∗ ≤ SΛ. Since

Λ is a continuous g-fusion Bessel sequence for U , AKK∗ ≤ SΛ ≤ BIU . So Λ is a

continuous K-g-fusion frame for U . □

Theorem 0.31. Let K ∈ End∗A(U) and Λ = {Hw,Λw, vw}w∈Ω be a continuous g-fusion

Bessel sequence for U with frame operator SΛ. Suppose that R(S
1
2
Λ ) is orthogonally

complemented. Then Λ is a continuous K-g-fusion frame for U if and only if K = S
1
2
ΛQ

for some Q ∈ End∗A(U).

Proof. Since the operator frame SΛ is positive self-adjoint, so is also S
1
2
Λ .

Assume that Λ is a continuous K-g-fusion frame for U . Then there exists A > 0

such that KK∗ ≤ 1
AS

1
2
ΛS

1
2
Λ , and by Lemma 0.9, there exists Q ∈ End∗A(U) such that

K = S
1
2
ΛQ.

Conversely, suppose that there exists Q ∈ End∗A(U) such that K = S
1
2
ΛQ. Then by

Lemma 0.9, there exists λ > 0 such that KK∗ ≤ λS
1
2
ΛS

1
2
Λ = λSΛ and so 1

λKK∗ ≤ SΛ.

Hence Λ is a continuous K-g-fusion frame for U . □

Theorem 0.32. Let T ∈ End∗A(U) be an invertible operator on U and Λ = {Hw,Λw, vw}w∈Ω

be a continuous K-g-fusion frame for U with frame bounds A and B for some K ∈

End∗A(U). Then Γ = {THw,ΛwPHwT
∗, vw}w∈Ω is a continuous TKT ∗-g-fusion frame

for U .
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Proof. Let x ∈ U . By Lemma 0.26,

∫
Ω
v2w⟨ΛwPHwT

∗PTHwx,ΛwPHwT
∗PTHwx⟩dµ(w) =

∫
Ω
v2w⟨ΛwPHwT

∗x,ΛwPHwT
∗x⟩dµ(w)

≤ B⟨T ∗x, T ∗x⟩

≤ B||T ||2⟨x, x⟩.(0.16)

On the other hand, for all x ∈ U ,

A⟨(TKT ∗)∗x, (TKT ∗)∗x⟩ = A⟨TK∗T ∗x, TK∗T ∗x⟩

≤ A||T ||2⟨K∗T ∗x,K∗T ∗x⟩

≤ ||T ||2
∫
Ω
v2w⟨ΛwPHwT

∗x,ΛwPHwT
∗x⟩dµ(w)

= ||T ||2
∫
Ω
v2w⟨ΛwPHwT

∗x,ΛwPHwT
∗x⟩dµ(w).

So

(0.17)

A||T ||−2⟨(TKT ∗)∗x, (TKT ∗)∗x⟩ ≤
∫
Ω
v2w⟨ΛwPHwT

∗PTHwx,ΛwPHwT
∗PTHwx⟩dµ(w).

From (0.16) and (0.17), we have Γ is a continuous TKT ∗-g-fusion frame for U . □

Theorem 0.33. If {THw,ΛwPHwT
∗, vw}w∈Ω is a continuous K-g-fusion frame for U

with frame bounds A and B, then {Hw,Λw, vw}w∈Ω is a continuous T−1KT -g-fusion

frame for U .

Proof. Let x ∈ U . By Lemma 0.26, we have

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) =

∫
Ω
v2w⟨ΛwPHwT

∗(T ∗)−1x,ΛwPHwT
∗(T ∗)−1x⟩dµ(w)

=

∫
Ω
v2w⟨ΛwPHwT

∗PHw(T
∗)−1x,ΛwPHwT

∗PHw(T
∗)−1x⟩dµ(w)

≤ B⟨(T ∗)−1x, (T ∗)−1x⟩

≤ B||(T ∗)−1||⟨x, x⟩.(0.18)
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Also we have, for all x ∈ U ,

A⟨(T−1KT )∗x, (T−1KT )∗x⟩ = A⟨T ∗K∗(T−1)∗x, T ∗K∗(T−1)∗x⟩

≤ A||T ||2⟨K∗(T−1)∗x,K∗(T−1)∗x⟩

≤ ||T ||2
∫
Ω
v2w⟨ΛwPHwT

∗PTHw(T
−1)∗x,ΛwPHwT

∗PTHw(T
−1)∗x⟩dµ(w)

≤ ||T ||2
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w).

Hence

(0.19) A||T ||−2⟨(T−1KT )∗x, (T−1KT )∗x⟩ ≤
∫
Ω
v2w⟨ΛwPHwT

∗x,ΛwPHwT
∗x⟩dµ(w).

From (0.18) and (0.19), we conclude that {Hw,Λw, vw}w∈Ω is a continuous T−1KT -g-

fusion frame for U . □

Theorem 0.34. Let K ∈ End∗A(U) be an invertible operator, Λ = {Hw,Λw, vw}w∈Ω

be a continuous g-fusion frame for U with frame bounds A, B and SΛ be an associ-

ated continuous g-fusion frame operator. Then {KS−1
Λ Hw,ΛwPHwS

−1
Λ K∗, vw}w∈Ω is a

continuous K-g-fusion frame for U .

Proof. Put T = KS−1
Λ , which is invertible and T ∗ = (KS−1

Λ )∗ = S−1
Λ K∗. Then by

Lemma 0.26, for all x ∈ U ,∫
Ω
v2w⟨ΛwPHwT

∗PTHwx,ΛwPHwT
∗PTHwx⟩dµ(w) =

∫
Ω
v2w⟨ΛwPHwT

∗x,ΛwPHwT
∗x⟩dµ(w)

≤ B⟨T ∗x, T ∗x⟩

≤ B||T ||2⟨x, x⟩(0.20)

We have, for all x ∈ U ,

⟨K∗x,K∗x⟩ = ⟨SΛS
−1
Λ K∗x, SΛS

−1
Λ K∗x⟩ ≤ ||SΛ||2⟨S−1

Λ K∗x, S−1
Λ K∗x⟩

≤ B2⟨S−1
Λ K∗x, S−1

Λ K∗x⟩

and ∫
Ω
v2w⟨ΛwPHwT

∗PTHwx,ΛwPHwT
∗PTHwx⟩dµ(w) ≥ A⟨S−1

Λ K∗x, S−1
Λ K∗x⟩

≥ A

B2
⟨K∗x,K∗x⟩.

Therefore, {KS−1
Λ Hw,ΛwPHwS

−1
Λ K∗, vw}w∈Ω is a K-g-fusion frame for U . □
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Theorem 0.35. Let K ∈ End∗A(U) and Λ = {Hw,Λw, vw}w∈Ω be a continuous K-g-

fusion frame for U with frame bounds A and B. Suppose that G ∈ End∗A(U), R(G) ⊂

R(K) and R(K∗) is orthogonally complemented. Then Λ is a continuous G-g-fusion

frame for U .

Proof. Since R(G) ⊆ R(K) and R(K∗) is orthogonally complemented, by Lemma 0.9,

there exists λ > 0 such that GG∗ ≤ λKK∗ amd hence

A

λ
⟨G∗x,G∗x⟩ ≤ A⟨K∗x,K∗x⟩ ≤ ⟨SΛx, x⟩ ≤ B⟨x, x⟩, ∀x ∈ U.

So {Hw,Λw, vw}w∈Ω is a continuous G-g-fusion frame for U . □

Theorem 0.36. Let K ∈ End∗A(U) and Λ = {Hw,Λw, vw}w∈Ω be a continuous g-fusion

Bessel sequence for U with synthesis operator TΛ. Suppose that R(T ∗
Λ) and R(K∗) are

orthogonally complemented. Then the following statements hold:

(1) If Λ is a tight K-g-fusion frame for U , then R(K) = R(TΛ).

(2) R(K) = R(TΛ) if and only if there exist two constants A and B such that

A⟨K∗x,K∗x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨K∗x,K∗x⟩, ∀x ∈ U.

Proof. (1) Suppose that Λ is a continuous tight K-g-fusion frame for U . Then for all

x ∈ U ,

A⟨K∗x,K∗x⟩ =
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) = ⟨T ∗

Λx, T
∗
Λx⟩.

So

A⟨KK∗x, x⟩ = ⟨TΛT
∗
Λx, x⟩

and hence

AKK∗ = TΛT
∗
Λ.

By Lemma 0.9, we have R(TΛ) = R(K).

(2) Assume that R(K) = R(TΛ). Then by Lemma 0.9, there exist two constants A

and B such that

AKK∗ ≤ TΛT
∗
Λ ≤ BKK∗.

Hence

A⟨K∗x,K∗x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨K∗x,K∗x⟩.
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Conversely, suppose that there exist two constants A and B such that

A⟨K∗x,K∗x⟩ ≤
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨K∗x,K∗x⟩, ∀x ∈ U.

Thus

A⟨KK∗x, x⟩ ≤ ⟨TΛT
∗
Λx, x⟩ ≤ B⟨KK∗x, x⟩, ∀x ∈ U.

So

AKK∗ ≤ TΛT
∗
Λ ≤ BKK∗.

By Lemma 0.9, we have R(K) = R(TΛ). □

Theorem 0.37. Let K ∈ End∗A(U) and Λ = {Hw,Λw, vw}w∈Ω. Suppose that T : U →

⊕w∈ΩVw is given by T (x) = {vwΛwPHwx}w∈Ω. Then Λ is a continuous K-g-fusion

frame for U if and only if there exists two constants A and B such that

(0.21) A||K∗x||2 ≤ ||
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)|| ≤ B||x||2, ∀x ∈ U.

Proof. Suppose that Λ is a continuous K-g-fusion frame for U . Then we have (0.21).

Conversely, assume that (0.21) holds. Then we have, for all x ∈ U ,

||
∫
Ω
vwPHwΛ

∗
wxwdµ(w)|| = sup

||y||=1
||⟨
∫
Ω
vwPHwΛ

∗
wxdµ(w), y⟩||

= sup
||y||=1

||
∫
Ω
⟨xw, vwΛwPHwy⟩dµ(w)||

≤ sup
||y||=1

||
∫
Ω
⟨xw, xw⟩dµ(w)||

1
2 ||

∫
Ω
v2w⟨ΛwPHwy,ΛwPHwy⟩||

1
2

≤
√
B||{xw}w∈Ω||.

Thus the series
∫
Ω vwPHwΛ

∗
wxwdµ(w) converge in U and we have, for all x ∈ U and

{xw}w∈Ω ∈ ⊕w∈ΩVw,

⟨Tx, {xw}w∈Ω⟩ = ⟨{vwΛwPHwxw}w∈Ω, {xw}w∈Ω⟩

=

∫
Ω
⟨vwΛwPHwx, xw⟩dµ(w)

=

∫
Ω
⟨x, vwPHwΛ

∗
wxw⟩dµ(w)

= ⟨x,
∫
Ω
vwPHwΛ

∗
wxwdµ(w)⟩.

Hence T is adjointable and so, for all x ∈ U ,

⟨Tx, Tx⟩ =
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ ||T ||2⟨x, x⟩.
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On the other hand, from (0.21), we have, for all x ∈ U ,

||K∗x||2 ≤ 1

A
||Tx||2

and by Lemma 0.9, there exists a constant λ > 0 such that KK∗x ≤ λT ∗Tx. Therefore,

1

λ
⟨K∗x,K∗x⟩ ≤ ⟨Tx, Tx⟩ =

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)

for all x ∈ U . □

Theorem 0.38. Let Ki ∈ End∗A(U) for all i ∈ {1, .., n} and Λ = {Hw,Λw, vw}w∈Ω be a

continuous Ki-g-fusion frame for U with frame bounds Ai and B. Suppose that T : U →

⊕w∈ΩVw is given by Tx = {vwΛwPHwx}w∈Ω and R(T ) is orthogonally complemented.

Then Λ is a continuous
∑n

i=1Ki-g-fusion frame for U .

Proof. Let x ∈ U . Then

||⟨
( n∑
i=1

Ki

)∗
x,

( n∑
i=1

Ki

)∗
x⟩||

1
2 = ||

( n∑
i=1

Ki

)∗
x||

= ||
n∑

i=1

K∗
i x||

≤
n∑

i=1

||K∗
i x||

≤
n∑

i=1

1√
Ai

||
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)||

1
2

and so

(0.22)
( n∑
i=1

1√
Ai

)2||⟨( n∑
i=1

Ki

)∗
x,

( n∑
i=1

Ki

)∗
x⟩|| ≤ ||

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)||.

On the other hand, for all x ∈ U ,

(0.23) ||
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)|| ≤ B||x||2.

From (0.22) and (0.23), we conclude that Λ is a continuous
∑n

i=1Ki-g-fusion frame for

U . □

Theorem 0.39. Let Ki ∈ End∗A(U) for all i ∈ {1, .., n} and Λ = {Hw,Λw, vw}w∈Ω

be a continuous Ki-g-fusion frame for U with frame bounds Ai and B. Then Λ is a

continuous
∏n

i=1Ki-g-fusion frame for U .
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Proof. Let x ∈ U . Then

A1⟨
( n∏
i=1

Ki

)∗
x,

( n∏
i=1

Ki

)∗
x⟩ = A1⟨

1∏
i=n

K∗
i x,

1∏
i=n

K∗
i x⟩

≤ A1||
2∏

i=n

K∗
i ||2⟨K∗

1x,K
∗
1x⟩

≤
2∏

i=n

||Ki||2
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)

and hence

A1

( 2∏
i=n

||Ki||2
)−1⟨

( n∏
i=1

Ki

)∗
x,

( n∏
i=1

Ki

)∗
x⟩ ≤

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w).

And we have, for all x ∈ U ,∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩.

Therefore, Λ is a continuous
∏n

i=1Ki-g-fusion frame for U . □

4. Perturbation of continuous K-g-fusion frames

Theorem 0.40. Let Λ = {Hw,Λw, vw}w∈Ω be a continuous K-g-fusion frame for U

with bounds A and B and {Γw}w∈Ω ∈ End∗A(U, Vw). Suppose that

(1) for all x ∈ U ,

||{(vwΛwPHw − zwΓwPZw)x}w∈Ω||

≤ λ1||{(vwΛwPHw)x}w∈Ω||+ λ2||{(zwΓwPZw)x}w∈Ω||+ ϵ||K∗x||,

where 0 < λ1, λ2 < 1 and ϵ < (1− λ1)
√
A;

(2) T : U → ⊕w∈ΩVw is given by T (x) = {zwΓwPZwx}w∈Ω and R(T ) is orthogonally

complemented.

Then {Zw,Γw, zw}w∈Ω is a continuous K-g-fusion frame for U .

Proof. We have, for all x ∈ U ,

||{(zwΓwPZw)x}w∈Ω|| ≤ ||{(vwΛwPHw − zwΓwPZw)x}w∈Ω||+ ||{vwΛwPHwx}w∈Ω||

≤ λ1||{(vwΛwPHw)x}w∈Ω||+ λ2||{(zwΓwPZw)x}w∈Ω||+ ϵ||K∗x||

+ ||{(vwΛwPHw)x}w∈Ω||

≤ (λ1 + 1)||{(vwΛwPHw)x}w∈Ω||+ λ2||{(zwΓwPZw)x}w∈Ω||+ ϵ||K∗x||
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and hence

(1− λ2)||{(zwΓwPZw)x}w∈Ω|| ≤ (1 + λ1)||{(vwΛwPHw)x}w∈Ω||+ ϵ||K∗x||.

So

(1− λ2)||
∫
Ω
z2w⟨ΓwPZwx,ΓwPZwx⟩dµ(w)||

1
2 ≤ (1 + λ1)

√
B||x||+ ϵ||K||||x||.

Thus

(0.24) ||
∫
Ω
z2w⟨ΓwPZwx,ΓwPZwx⟩dµ(w)|| ≤

(
(1 + λ1)

√
B + ϵ||K||

1− λ2

)2

||x||2.

On the other hand, for all x ∈ U ,

||{(zwΓwPZw)x}w∈Ω|| ≥ ||{vwΛwPHwx}w∈Ω|| − ||{(vwΛwPHw − zwΓwPZw)x}w∈Ω||

≥ ||{vwΛwPHwx}w∈Ω|| − λ1||{(vwΛwPHw)x}w∈Ω||

− λ2||{(zwΓwPZw)x}w∈Ω|| − ϵ||K∗x||

≥ (1− λ1)||{vwΛwPHwx}w∈Ω|| − λ2||{(zwΓwPZw)x}w∈Ω|| − ϵ||K∗x||

and so

(1 + λ2)||{(zwΓwPZw)x}w∈Ω|| ≥ (1− λ1)||{vwΛwPHwx}w∈Ω|| − ϵ||K∗x||.

Thus

||
∫
Ω
z2w⟨ΓwPZwx,ΓwPZwx⟩dµ(w)||

1
2 ≥

(
(1− λ1)

√
A− ϵ

1 + λ2

)
||K∗x||

and hence

(0.25) ||
∫
Ω
z2w⟨ΓwPZwx,ΓwPZwx⟩dµ(w)|| ≥

(
(1− λ1)

√
A− ϵ

1 + λ2

)2

||K∗x||2.

From (0.24) and (0.25), we conclude that {Zw,Γw, zw}w∈Ω is a continuous K-g-fusion

frame for U . □

Theorem 0.41. Let Λ = {Hw,Λw, vw}w∈Ω be a continuous K-g-fusion frame for U

with frame bounds A and B and {Γw}w∈Ω ∈ End∗A(U, Vw). Suppose that

(1) there exists M > 0 such that, for all x ∈ U ,

||
∫
Ω
⟨(vwΛwPHw − zwΓwPZw)x, (vwΛwPHw − zwΓwPZw)x⟩dµ(w)||

≤ M

(
||
∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)||; ||

∫
Ω
z2w⟨ΓwPZwx,ΓwPZwx⟩dµ(w)||

)
;

(2) T : U → ⊕w∈ΩVw is given by T (x) = {zwΓwPZwx}w∈Ω and R(T ) is orthogonally

complemented.
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Then {Zw,Γw, zw}w∈Ω is a continuous K-g-fusion frame for U .

Proof. For all x ∈ U ,

√
A||K∗x|| ≤ ||

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)||

1
2

= ||{(vwΛwPHw)x}||

≤ ||{(vwΛwPHw − zwΓwPZw)x}w∈Ω||+ ||{(zwΓwPZw)x}w∈Ω||

= ||
∫
Ω
⟨(vwΛwPHw − zwΓwPZw)x, (vwΛwPHw − zwΓwPZw)x⟩dµ(w)||

1
2

+ ||
∫
Ω
z2w⟨ΓwPZwx,ΓwPZwx⟩dµ(w)||

1
2

≤ (1 +
√
M)||

∫
Ω
z2w⟨ΓwPZwx,ΓwPZwx⟩dµ(w)||

1
2

and so

(0.26)

√
A

1 +
√
M

||K∗x|| ≤ ||
∫
Ω
z2w⟨ΓwPZwx,ΓwPZwx⟩dµ(w)||

1
2 .

On the other hand, for allx ∈ U ,

||
∫
Ω
z2w⟨ΓwPZwx,ΓwPZwx⟩dµ(w)||

1
2 = ||{zwΛwPZwx}w∈Ω||

≤ ||{(zwΓwPZw − vwΛwPVw)x}w∈Ω||+ ||{(vwΛwPHw)x}w∈Ω||

≤
√
M ||

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)||

1
2 + ||

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)||

1
2

≤ (
√
M + 1)||

∫
Ω
v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w)||

1
2

≤ (
√
M + 1)

√
B||x||.

(0.27)

Then from (0.26) and (0.27), we conclude that {Zw,Γw, zw}w∈Ω is a continuous K-g-

fusion frame for U . □

5. Conclusion

We introduced the concept of continuous g-fusion frame and K-g-fusion frame in

Hilbert C∗-modules. Furthermore, we investigated some properties of them and dis-

cussed the perturbation problem for continuous K-g-fusion frames.
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[12] Kaplansky I, 1953. Modules over operator algebras, Am. J. Math. 75, 839–858.

REFERENCES 

264 



[13] Kaushik S. K, Vashisht L. K, Sharma S. K., 2013. Some results concerning frames associated with

measurable spaces, TWMS J. Pure Appl. Math. 4, no. 1, 52–62.

[14] Khosravi A., Khosravi B., 2007. Frames and bases in tensor products of Hilbert spaces and Hilbert

C∗-modules, Proc. Indian Acad. Sci. Math. Sci. 117, 1-12.

[15] Lance E. C, 1995. Hilbert C∗−Modules: A Toolkit for Operator Algebraist, London Math. Soc.

Lecture Note Ser. Cambridge Univ. Press, Cambridge.

[16] Li D, Leng J, Huang T, 2019. On some equalities and inequalities of fusion frame in Hilbert C∗-

modules, J. Math. Inequal. 13 (2019), 437–449.

[17] Li Y.-Z, Hussain T, 2021. Duality principles for Fa-frame theory in L2(R+), Bull. Malays. Math.

Sci. Soc. 44, 2401–2423.

[18] Nhari F. D., Echarghaoui R., Rossafi M., 2021. K − g−fusion frames in Hilbert C∗−modules, Int.

J. Anal. Appl. 19 (6).

[19] Paschke W, 1973. Inner product modules over B∗-algebras, Trans. Am. Math. Soc. 182, 443–468.

[20] Rossafi M, Nhari FD, Park C, Kabbaj S, 2022. Continuous g-Frames with C∗-Valued Bounds and

Their Properties. Complex Anal. Oper. Theory 16, 44. https://doi.org/10.1007/s11785-022-01229-

4

[21] Rossafi M, Kabbaj S, 2018. ∗-K-g-frames in Hilbert A-modules, J. Linear Topol. Algebra, 7, 63-71.

[22] Rossafi M, Kabbaj S, 2018. ∗-g-frames in tensor products of Hilbert C∗-modules, Ann. Univ.

Paedagog. Crac. Stud. Math. 17, 17-25.

[23] Rossafi M, Kabbaj S, 2019. Operator frame for End∗A(H), J. Linear Topol. Algebra, 8, 85-95.

[24] Rossafi M, Kabbaj S, 2020. ∗-K-operator frame for End∗A(H), Asian-Eur. J. Math. 13, 2050060.

https://doi.org/10.1142/S1793557120500606.

[25] Rossafi M, Kabbaj S, 2022. Generalized frames for B(H,K), Iran. J. Math. Sci. Inf. 17, no. 1, 1–9.

[26] Vashisht L. K, 2015. Banach frames generated by compact operators associated with a boundary

problem, TWMS J. Pure Appl. Math. 6, no. 2, 254–258.

265 


	Declarations
	References

