JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Published by Departement of Mathematics, Hasanuddin University, Indonesia

https://journal.unhas.ac.id/index.php/jmsk/index Vol. 19, No. 2, January 2023, pp. 240-265 DOI: 10.20956/j.v19i2.23961

Continuous K-g-fusion frames in Hilbert C^* -modules

Fakhr-dine Nhari¹, Choonkil Park², Mohamed Rossafi³

¹ Laboratory Analysis, Geometry and Applications Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco

²Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea

³LaSMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El

Mahraz University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco E-mail: nharidoc@gmail.com¹,

 $baak@hanyang.ac.kr^2, rossafimohamed@gmail.com^3$

Received: 11 November 2022; Accepted: 24 December 2022; Published: 5 January 2023

Abstract.

In this paper, we introduce the concept of continuous g-fusion frame and K-g-fusion frame in Hilbert C^* -modules. Furthermore, we investigate some properties of them and discuss the perturbation problem for continuous K-g-fusion frames.

Keywords: Continuous fusion frame; Continuous g-fusion frame; Continuous K-g-fusion frame; C^* -algebra; Hilbert C^* -module.

1. Introduction and preliminaries

Frame theory has a great revolution in recent years it was introduced by Duffin and Schaeffer [7] in 1952 to study some deep problems in nonharmonic Fourier series. In 2000, Frank and Larson [9] introduced the concept of frames in Hilbert C^* -modules as a generalization of frames in Hilbert spaces. The basic idea was to consider modules over C^* -algebras of linear spaces and to allow the inner product to take values in C^* -algebras [15]. A. Khosravi and B. Khosravi [14] introduced the fusion frames and g-frames in Hilbert C^* -modules. Afterwards, A. Alijani and M. Dehghan consider frames with

 C^* -valued bounds [2] in Hilbert C^* -modules. Recently, Fakhr-dine Nhari et al. [18] introduced the concepts of g-fusion frame and K-g-fusion frame in Hilbert C^* -modules. Many generalizations of the concept of frame have been defined in Hilbert C^* -modules (see [10, 20, 21, 22, 23, 24, 25] for more detail).

The notion of a generalization of frames to a family indexed by some locally compact space endowed with a Radon measure was proposed by Kaiser [11] and independently by Ali, Antoine and Gazeau [1], and these frames are known as continuous frames.

The paper is organized as follows: We continue this introductory section we briefly recall the definitions and basic properties of C^* -algebra and Hilbert C^* -modules. In Section 2, we introduce the concept of continuous g-fusion frame, the continuous gfusion frame operator and establish some results. In Section 3, we introduce the concept of continuous K-g-fusion frame and gives some properties. Finally, in Section 4, we discuss the perturbation problem for continuous K-g-fusion frame.

In the following, we briefly recall the definitions and basic properties of C^* -algebra, Hilbert C^* -modules. The references for C^* -algebras are [4, 6]. For a C^* -algebra \mathcal{A} if $a \in \mathcal{A}$ is positive we write $a \geq 0$ and \mathcal{A}^+ denotes the set of positive elements of \mathcal{A} .

Definition 0.1. [4]. If \mathcal{A} is a Banach algebra, then an involution is a map $a \mapsto a^*$ of \mathcal{A} into itself such that for all a and b in \mathcal{A} and all scalars α the following conditions hold:

- (1) $(a^*)^* = a;$
- (2) $(ab)^* = b^*a^*;$
- (3) $(\alpha a + b)^* = \bar{\alpha}a^* + b^*.$

Definition 0.2. [4]. A C^* -algebra \mathcal{A} is a Banach algebra with involution such that

$$||a^*a|| = ||a||^2$$

for all a in \mathcal{A} .

Example 0.3. Let $\mathcal{B} = B(\mathcal{H})$ be the algebra of bounded operators on a Hilbert space \mathcal{H} . Then $\mathcal{B} = B(\mathcal{H})$ is a C^* -algebra, where, for each operator A, A^* is the adjoint of A.

Definition 0.4. [12]. Let \mathcal{A} be a unital C^* -algebra and U be a left \mathcal{A} -module such that the linear structures of \mathcal{A} and U are compatible. Then U is a pre-Hilbert \mathcal{A} -module if

U is equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : U \times U \to \mathcal{A}$ which is sesquilinear and positive definite. In the other words,

- (i) $\langle x, x \rangle \ge 0$ for all $x \in U$ and $\langle x, x \rangle = 0$ if and only if x = 0;
- (ii) $\langle ax + y, z \rangle = a \langle x, z \rangle + \langle y, z \rangle$ for all $a \in \mathcal{A}$ and $x, y, z \in U$;
- (iii) $\langle x, y \rangle = \langle y, x \rangle^*$ for all $x, y \in U$.

For $x \in U$, we define $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. If U is complete with $|| \cdot ||$, then it is called a Hilbert \mathcal{A} -module or a Hilbert C^* -module over \mathcal{A} . For every a in C^* -algebra \mathcal{A} , we have $||a|| = (a^*a)^{\frac{1}{2}}$.

Throughout this paper, U is considered to be a Hilbert C^* -module over a C^* -algebra, and we denote that I_U is a countable index set, $\{H_w\}_{w\in\Omega}$ is a sequence of Hilbert C^* submodules over U and $\{V_w\}_{w\in\Omega}$ is a sequence of Hilbert C^* -modules.

We denote that $End^*_{\mathcal{A}}(U, V_w)$ is a set of all adjointable operators. In particular $End^*_{\mathcal{A}}(U)$ denote the set of all bounded linear operators on U. We denote $\mathcal{R}(T)$ for the range of T.

The following lemmas will be used to prove our mains results.

Lemma 0.5. [19]. Let \mathcal{H} be a Hilbert \mathcal{A} -module. If $T \in End^*_{\mathcal{A}}(\mathcal{H})$, then

$$\langle Tx, Tx \rangle \le ||T||^2 \langle x, x \rangle, \forall x \in \mathcal{H}.$$

Lemma 0.6. [3]. Let \mathcal{H} and \mathcal{K} be two Hilbert \mathcal{A} -modules and $T \in End^*_{\mathcal{A}}(\mathcal{H}, \mathcal{K})$. Then the following statements are equivalent:

- (i) T is surjective.
- (ii) T^* is bounded below with respect to norm, i.e., there is m > 0 such that $||T^*x|| \ge m||x||$ for all $x \in \mathcal{K}$.
- (iii) T* is bounded below with respect to the inner product, i.e., there is m' > 0 such that (T*x, T*x) ≥ m'(x, x) for all x ∈ K.

Lemma 0.7. [2]. Let \mathcal{H} and \mathcal{K} be two Hilbert \mathcal{A} -modules and $T \in End^*_{\mathcal{A}}(\mathcal{H},\mathcal{K})$.

(i) If T is injective and T has a closed range, then the adjointable map T^*T is invertible and

$$||(T^*T)^{-1}||^{-1} \le T^*T \le ||T||^2.$$

(ii) If T is surjective, then the adjointable map TT^* is invertible and

$$||(TT^*)^{-1}||^{-1} \le TT^* \le ||T||^2.$$

Lemma 0.8. [3] Let H be a Hilbert A-module over a C^* -algebra A, and $T \in End^*_A(H)$ such that $T^* = T$. The following statements are equivalent:

- (i) T is surjective.
- (ii) There are m, M > 0 such that $m||x|| \le ||Tx|| \le M||x||$ for all $x \in H$.
- (iii) There are m', M' > 0 such that $m'\langle x, x \rangle \leq \langle Tx, Tx \rangle \leq M'\langle x, x \rangle$ for all $x \in H$.

Lemma 0.9. [8] Let \mathcal{A} be a C^* -algebra and E, H and K be Hilbert \mathcal{A} -modules. Let $T \in End^*_{\mathcal{A}}(E, K)$ and $T' \in End^*_{\mathcal{A}}(H, K)$ be such that $\overline{\mathcal{R}(T^*)}$ is orthogonally complemented. Then the following statements are equivalent:

- (1) $T'(T')^* \le \mu T T^*$ for some $\mu > 0$.
- (2) There exists $\mu > 0$ such that $||(T')^*z|| \le \mu ||T^*z||$ for all $z \in K$.
- (3) There exists a solution $X \in End^*_{\mathcal{A}}(H, E)$ of the so-called Douglas equation T' = TX.
- (3) $\mathcal{R}(T') \subseteq \mathcal{R}(T).$

Lemma 0.10. [2] If $\phi : \mathcal{A} \to \mathcal{B}$ is a *-homomorphism between C^* -algebras, then ϕ is positive and increasing, that is, $\phi(\mathcal{A}^+) \subseteq \mathcal{B}^+$, and if $a \leq b$, then $\phi(a) \leq \phi(b)$.

2. Continuous g-fusion frames in Hilbert C^* -modules

Definition 0.11. Let $\{H_w\}_{w\in\Omega}$ be a sequence of closed submodules orthogonally complemented in U, P_{H_w} be the orthogonal projection from U to H_w , $\Lambda_w \in End^*_{\mathcal{A}}(U, V_w)$, $w \in \Omega$ and $\{v_w\}_{w\in\Omega}$ be a family of weights in \mathcal{A} , i.e., each v_w is a positive invertible element from the center of \mathcal{A} . We say $\Lambda = \{H_w, \Lambda_w, v_w\}_{w\in\Omega}$ is a continuous g-fusion frame for U if

- (1) for each $x \in U$, $\{P_{H_w}x\}_{w \in \Omega}$ is measurable;
- (2) for each $x \in U$, the function $\tilde{\Lambda} : \Omega \to V_w$ defined by $\tilde{\Lambda}(w) = \Lambda_w x$ is measurable;
- (3) there exist $0 < A \leq B < \infty$ such that

(0.1)
$$A\langle x, x \rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle x, x \rangle, \quad \forall x \in U.$$

We call A and B the lower and upper continuous g-fusion frame bounds, respectively. If the right-hand inequality of (0.1) is satisfied, then we call Λ a continuous g-fusion Bessel sequence. If A = B, then we call Λ the tight continuous g-fusion frame. Moreover, If A = B = 1, then Λ is called the Parseval continuous g-fusion frame.

See [5, 13, 16, 17, 26] for more information on fusion frames and properties.

Proposition 0.12. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$. If Λ is a continuous g-fusion frame for U, then $\{v_w \Lambda_w P_{H_w}\}_{w \in \Omega}$ is a continuous g-frame for U.

Proof. Since Λ is a continuous g-fusion frame, for each $x \in U$, we have

$$A\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle x,x\rangle.$$

Thus

$$A\langle x,x\rangle \leq \int_{\Omega} \langle v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle x,x\rangle.$$

Hence $\{v_w \Lambda_w P_{H_w}\}_{w \in \Omega}$ is a continuous g-fusion frame for U.

Proposition 0.13. If Λ is a continuous g-fusion Bessel sequence for U, then the operator $T_{\Lambda} : \bigoplus_{w \in \Omega} V_w \to U$, defined by $T_{\Lambda}(\{x_w\}_{w \in \Omega}) = \int_{\Omega} v_w P_{H_w} \Lambda_w^* x_w d\mu(w)$, for all $\{x_w\}_{w \in \Omega} \in \bigoplus_{w \in \Omega} V_w$, is adjointable bounded.

Proof. Let $\{x_w\}_{w\in\Omega} \in \bigoplus_{w\in\Omega} V_w$. Then

$$T_{\Lambda}(\{x_w\}_{w\in\Omega}) = \sup_{||y||=1} ||\langle \int_{\Omega} v_w P_{H_w} \Lambda_w^* x_w d\mu(w), y \rangle ||$$

$$= \sup_{||y||=1} ||\int_{\Omega} \langle x_w, v_w \Lambda_w P_{H_w} y \rangle d\mu(w) ||$$

$$\leq \sup_{||y||=1} ||\int_{\Omega} \langle x_w, x_w \rangle d\mu(w) ||^{\frac{1}{2}} ||\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} y, \Lambda_w P_{H_w} y \rangle d\mu(w) ||^{\frac{1}{2}}$$

$$\leq \sqrt{B} ||\{x_w\}_{w\in\Omega}||.$$

So T_{Λ} is bounded. And we have, for all $y \in U$ and $\{x_w\}_{w \in \Omega} \in \bigoplus_{w \in \Omega} V_w$,

$$\langle T_{\Lambda}\{x_w\}_{w\in\Omega}, y \rangle = \langle \int_{\Omega} v_w P_{H_w} \Lambda_w^* x_w d\mu(w), y \rangle = \int_{\Omega} \langle x_w, v_w \Lambda_w P_{H_w} y \rangle d\mu(w)$$
$$= \langle \{x_w\}_{w\in\Omega}, \{v_w \Lambda_w P_{H_w} y\}_{w\in\Omega} \rangle.$$

Thus $T^*_{\Lambda}(x) = \{v_w \Lambda_w P_{H_w} x\}_{w \in \Omega}.$

Note that T_{Λ} is called the synthesis operator of Λ , and T_{Λ}^* is called the analysis operator of Λ .

Theorem 0.14. If $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U with frame bounds A and B, then T_{Λ} is surjective with $||T_{\Lambda}|| \leq \sqrt{B}$ and T^*_{Λ} is injective and a closed range.

Proof. We have, for all $x \in U$,

$$A\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle x,x\rangle.$$

Thus

(0.2)
$$A\langle x, x \rangle \le \langle T^*_{\Lambda} x, T^*_{\Lambda} x \rangle \le B\langle x, x \rangle.$$

Hence

(0.3)
$$\sqrt{A||x||} \le ||T_{\Lambda}^*x||$$

So T^*_Λ is injective.

Now we will show that the $\mathcal{R}(T^*_{\Lambda})$ is closed.

Let $\{T^*_{\Lambda}(x_n)\}_{n\in\mathbb{N}} \in \mathcal{R}(T^*_{\Lambda})$ such that $\lim_{n} T^*_{\Lambda}(x_n) = y$. For $n, m \in \mathbb{N}$, we have, from (0.2),

$$\langle x_n - x_m, x_n - x_m \rangle \leq A^{-1} \langle T^*_{\Lambda}(x_n - x_m), T^*_{\Lambda}(x_n - x_m) \rangle.$$

Thus

$$||\langle x_n - x_m, x_n - x_m \rangle|| \le A^{-1} ||T^*_{\Lambda}(x_n - x_m)||^2.$$

Since $\{T^*_{\Lambda}(x_n)\}_{n\in\mathbb{N}}$ is a Cauchy sequence in $\bigoplus_{w\in\Omega}V_w$, $||\langle x_n - x_m, x_n - x_m\rangle|| \to 0$. Therefore, the sequence $\{x_n\}_{n\mathbb{N}}$ is a Cauchy sequence in U and so there exists $x \in U$ such that $\lim_n x_n = x$. Again by (0.2), we have

$$||T_{\Lambda}^*x_n - T_{\Lambda}^*x||^2 \le B||\langle x_n - x, x_n - x\rangle||$$

and thus $||T^*_{\Lambda}(x_n) - T^*_{\Lambda}(x)|| \to 0$ implies that $T^*_{\Lambda}(x) = y$ and hence $\mathcal{R}(T^*_{\Lambda})$ is closed. Finally from (0.3) and Lemma 0.6, T_{Λ} is surjective.

Definition 0.15. Let Λ be a continuous g-fusion frame for U. Define a continuous g-fusion frame operator S_{Λ} on U by $S_{\Lambda}x = T_{\Lambda}T_{\Lambda}^*x = \int_{\Omega} v_w^2 P_{H_w}\Lambda_w^*\Lambda_w P_{H_w}xd\mu(w)$ for all $x \in U$.

Theorem 0.16. The continuous g-fusion frame operator S_{Λ} of Λ is bounded, positive, selfadjoint and invertible. Moreover,

$$(0.4) AI_U \le S_\Lambda \le BI_U.$$

Proof. It easy to see that the operator S_{Λ} is positive, selfadjoint and bounded.

Now from Theorem 0.14, T_{Λ} is surjective and by Lemma 0.7, $T_{\Lambda}T_{\Lambda}^*$ is invertible and so S_{Λ} is invertible.

We have, for all $x \in U$,

$$\langle S_{\Lambda}x,x\rangle = \langle \int_{\Omega} v_w^2 P_{H_w} \Lambda_w^* \Lambda_w P_{H_w} x d\mu(w), x\rangle = \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w).$$

From (0.1),

$$AI_U \leq S_\Lambda \leq BI_U.$$

This completes the proof.

In this theorem, we give an equivalent definition of continuous g-fusion frame in Hilbert C^* -module.

Theorem 0.17. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$. Then Λ is a countinuous g-fusion frame for U if and only if there exist constants $0 < A \leq B < \infty$ such that

(0.5)
$$A||x||^2 \le ||\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w)|| \le B||x||^2, \quad \forall x \in U.$$

Proof. If Λ is a continuous g-fusion frame for U, then we have the inequality (0.5).

Conversely, assume that (0.5) holds. Then the operator $T_{\Lambda} : \bigoplus_{w \in \Omega} V_w \to U$, defined by $T_{\Lambda}(\{x_w\}_{w \in \Omega}) = \int_{\Omega} v_w P_{H_w} \Lambda_w^* x_w d\mu(w)$, is well-defined, adjointable and bounded with $T_{\Lambda}^* : U \to \bigoplus_{w \in \Omega} V_w$ defined by $T_{\Lambda}^*(\{x_w\}_{w \in \Omega}) = \{v_w \Lambda_w P_{H_w} x\}_{w \in \Omega}$, and hence the operator $S_{\Lambda} = T_{\Lambda} T_{\Lambda}^*$ is selfadjoint and positive. From (0.5), we have, for all $x \in U$,

$$A||x||^2 \le ||\langle T^*_{\Lambda}x, T^*_{\Lambda}x\rangle|| \le B||x||^2$$

and so

$$\sqrt{A}||x|| \le ||T_{\Lambda}^*x|| \le \sqrt{B}||x||.$$

Hence

$$\sqrt{A}||x|| \le ||\langle S_{\Lambda}^{\frac{1}{2}}x, S_{\Lambda}^{\frac{1}{2}}x\rangle|| \le \sqrt{B}||x||$$

and so by Lemma 0.8, there exist two positive constants A' and B' such that

$$A'\langle x,x\rangle \leq \langle S_{\Lambda}x,x\rangle \leq B'\langle x,x\rangle.$$

Finally, for all $x \in U$, we have

$$A'\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B'\langle x,x \rangle$$

This completes the proof.

246

Theorem 0.18. If $T : \bigoplus_{w \in \Omega} V_w \to U$, defined by $T(\{x_w\}_{w \in \Omega}) = \int_{\Omega} v_w P_{H_w} \Lambda_w^* x_w d\mu(w)$, is well-defined and surjective, then $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U.

Proof. We have, for all $x \in U$,

$$\begin{split} \| \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \| &= \| \int_{\Omega} \langle x, v_w^2 P_{H_w} \Lambda_w^* \Lambda_w P_{H_w} x \rangle d\mu(w) \| \\ &= \| \langle x, \int_{\Omega} v_w^2 P_{H_w} \Lambda_w^* \Lambda_w P_{H_w} x d\mu(w) \rangle \| \\ &\leq \| x \| \| \int_{\Omega} v_w^2 P_{H_w} \Lambda_w^* \Lambda_w P_{H_w} x d\mu(w) \| \\ &\leq \| x \| \| T(\{v_w \Lambda_w P_{H_w} x\}_{w \in \Omega}) \| \\ &\leq \| x \| \| T \| \| \{v_w \Lambda_w P_{H_w} x\}_{w \in \Omega} \| \\ &= \| x \| \| T \| \| \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \|^{\frac{1}{2}}. \end{split}$$

So

(0.6)
$$|| \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) || \le ||T||^2 ||x||^2.$$

On the other hand, since T is surjective, by Lemma 0.6, T^* is bounded below and hence T^* is injective and so $T^* : U \to \mathcal{R}(T^*)$ is invertible. So for al $x \in U$, $(T^*_{/\mathcal{R}(T^*)})^{-1}T^*x = x$, which implies $||x||^2 \leq ||(T^*_{/\mathcal{R}(T^*)})^{-1}||^2||T^*x||^2$. Thus

(0.7)
$$||(T^*_{/\mathcal{R}(T^*)})^{-1}||^{-2}||x||^2 \le ||\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w)||.$$

From (0.6) and (0.7), $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U.

Theorem 0.19. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ and $\Gamma = \{H_w, \Gamma_w, v_w\}_{w \in \Omega}$ be two Bessel sequences for U with frame bounds B_1 and B_2 , respectively. The operator Q on U, defined by $Q(x) = \int_{\Omega} v_w^2 P_{H_w} \Gamma_w^* \Lambda_w P_{H_w} x d\mu(w)$, is bounded.

Proof. Let $x \in U$. Then

$$\begin{split} \|Q(x)\| &= \sup_{\|y\|=1} \|\langle Q(x), y\rangle\| = \sup_{\|y\|=1} \|\langle \int_{\Omega} v_w^2 P_{H_w} \Gamma_w^* \Lambda_w P_{H_w} x d\mu(w), y\rangle\| \\ &= \sup_{\|y\|=1} \|\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Gamma_w P_{H_w} y\rangle d\mu(w)\| \\ &\leq \sup_{\|y\|=1} \left(\|\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x\rangle d\mu(w)\|^{\frac{1}{2}} \|\int_{\Omega} v_w^2 \langle \Gamma_w P_{H_w} y, \Gamma_w P_{H_w} y\rangle d\mu(w)\|^{\frac{1}{2}} \right) \\ &\leq (B_1 B_2)^{\frac{1}{2}} \|x\|. \end{split}$$

This completes the proof.

Theorem 0.20. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion frame for U and $\Gamma = \{H_w, \Gamma_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion Bessel sequence for U. If the operator Q, defined in Theorem 0.19, is surjective, then Γ is a continuous g-fusion frame for U.

Proof. Suppose that Λ is a continuous g-fusion frame for U with synthesis operator T_{Λ} . Since Γ is a continuous g-fusion Bessel sequence for U, we define the synthesis operator $T_{\Gamma} : \bigoplus_{w \in \Omega} V_w \to U$ by $T_{\Gamma}(\{x_w\}_{w \in \Omega}) = \int_{\Omega} v_w P_{H_w} \Gamma_w^* x_w d\mu(w)$.

We have, for all $x \in U$,

$$Q(x) = \int_{\Omega} v_w^2 P_{H_w} \Gamma_w^* \Lambda_w P_{H_w} x_w d\mu(w) = \int_{\Omega} v_w P_{H_w} \Gamma_w^* (v_w \Lambda_w P_{H_w} x) d\mu(w)$$
$$= T_{\Gamma} T_{\Lambda}^* x.$$

Then $Q = T_{\Gamma}T_{\Lambda}^*$. Since Q is surjective, there exists $x \in U$ such that $y = Q(x) = T_{\Gamma}(T_{\Lambda}^*x)$ and $T_{\Lambda}^*x \in \bigoplus_{w \in \Omega} V_w$ and hence T_{Γ} is surjective. So by Theorem 0.18, Γ is a continuous g-fusion frame for U.

Theorem 0.21. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion frame for U with frame bounds A and B. If $\theta \in End^*_{\mathcal{A}}(U)$ is injective and has a closed range and $\theta P_{H_w} = P_{H_w}\theta$ for all $w \in \Omega$, then $\{H_w, \Lambda_w \theta, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U.

Proof. Since Λ is a continuous g-fusion frame, for all $x \in U$,

$$A\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle x,x\rangle.$$

We have, for all $x \in U$,

$$(0.8) \int_{\Omega} v_w^2 \langle \Lambda_w \theta P_{H_w} x, \Lambda_w \theta P_{H_w} x \rangle d\mu(w) = \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} \theta x, \Lambda_w P_{H_w} \theta x \rangle d\mu(w)$$
$$\leq B \langle \theta x, \theta x \rangle$$

On the other hand, for all $x \in U$,

(0.9)
$$\int_{\Omega} v_w^2 \langle \Lambda_w \theta P_{H_w} x, \Lambda_w \theta P_{H_w} x \rangle d\mu(w) = \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} \theta x, \Lambda_w P_{H_w} \theta x \rangle d\mu(w) \\ \geq A \langle \theta x, \theta x \rangle.$$

Since θ is injective and has a closed range,

(0.10)
$$||(\theta^*\theta)^{-1}||^{-1}\langle x,x\rangle \le \langle \theta^*\theta x,x\rangle, \qquad \forall x \in U.$$

By (0.9) and (0.10), we have

(0.11)
$$A||(\theta^*\theta)^{-1}||^{-1}\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w \theta P_{H_w} x, \Lambda_w \theta P_{H_w} x \rangle d\mu(w), \quad \forall x \in U.$$

From (0.8) and (0.11), we conclude that $\{H_w, \Lambda_w \theta, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U.

Theorem 0.22. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion frame for U with frame bounds A and B. If $\theta \in End^*_{\mathcal{A}}(U, V_w)$ is injective and has a closed range, then $\{H_w, \theta \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U.

Proof. We have, for all $x \in U$,

$$A\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle x,x\rangle.$$

Since θ is injective and has a closed range, for all $x \in U$,

$$\begin{aligned} ||(\theta^*\theta)^{-1}||^{-1} \langle v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle &\leq \langle \theta^* \theta v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle \\ &\leq ||\theta||^2 \langle v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle. \end{aligned}$$

So, for all $x \in U$,

$$||(\theta^*\theta)^{-1}||^{-1} \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \le \int_{\Omega} v_w^2 \langle \theta^* \theta \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w)$$

and

$$\int_{\Omega} v_w^2 \langle \theta^* \theta \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \le ||\theta||^2 \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w).$$

Hence for all $x \in U$,

$$A||(\theta^*\theta)^{-1}||^{-1}\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \theta \Lambda_w P_{H_w} x, \theta \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B||\theta||^2 \langle x,x\rangle.$$

Therefore, $\{H_w, \theta \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U.

We give a relationship between a continuous frame and continuous g-fusion frame in Hilbert C^* -modules.

Theorem 0.23. Let $w \in \Omega$, $\Lambda_w \in End^*_{\mathcal{A}}(U, \oplus_{w \in \Omega} V_w)$ and $\{y_{w,v}\}_{v \in \Omega_w}$ be a continuous frame for V_w with frame bounds C_w , D_w such that there exist C, D > 0 for which $C \leq C_w$ and $D_w \leq D$, then the following conditions are equivalent:

- (1) $\{v_w P_{H_w} \Lambda_w^* y_{w,v}\}_{v \in \Omega_w}$ is a continuous frame for U.
- (2) $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U.

Proof. Since $\{y_{w,v}\}_{v\in\Omega_w}$ is a continuous frame for V_w , for all $x \in U$,

$$C_w \langle v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle \leq \int_{\Omega_w} \langle v_w \Lambda_w P_{H_w} x, y_{w,v} \rangle \langle y_{w,v}, v_w \Lambda_w P_{H_w} x \rangle d\mu(v)$$
$$\leq D_w \langle v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle.$$

Thus

$$C_w \langle v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle \leq \int_{\Omega_w} \langle x, v_w P_{H_w} \Lambda_w^* y_{w,v} \rangle \langle v_w P_{H_w} \Lambda_w^* y_{w,v}, x \rangle d\mu(v)$$
$$\leq D_w \langle v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle.$$

Hence

$$C\langle v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle \leq \int_{\Omega_w} \langle x, v_w P_{H_w} \Lambda_w^* y_{w,v} \rangle \langle v_w P_{H_w} \Lambda_w^* y_{w,v}, x \rangle d\mu(v)$$
$$\leq D \langle v_w \Lambda_w P_{H_w} x, v_w \Lambda_w P_{H_w} x \rangle.$$

So

$$C \int_{\Omega} v_{w}^{2} \langle \Lambda_{w} P_{H_{w}} x, \Lambda_{w} P_{H_{w}} x \rangle d\mu(w) \leq \int_{\Omega} \int_{\Omega_{w}} \langle x, v_{w} P_{H_{w}} \Lambda_{w}^{*} y_{w,v} \rangle \langle v_{w} P_{H_{w}} \Lambda_{w}^{*} y_{w,v}, x \rangle d\mu(v) d\mu(w)$$

$$(0.12) \qquad \leq D \int_{\Omega} v_{w}^{2} \langle \Lambda_{w} P_{H_{w}} x, \Lambda_{w} P_{H_{w}} x \rangle d\mu(w).$$

Suppose that, $\{v_w P_{H_w} \Lambda_w^* y_{w,v}\}_{v \in \Omega_w}$ is a continuous frame for U with frame bounds C'and D'. Then for all $x \in U$,

$$(0.13) \quad C'\langle x,x\rangle \leq \int_{\Omega} \int_{\Omega_w} \langle x,v_w P_{H_w} \Lambda_w^* y_{w,v} \rangle \langle v_w P_{H_w} \Lambda_w^* y_{w,v},x \rangle d\mu(v) d\mu(w) \leq D'\langle x,x \rangle.$$

By (0.12) and (0.13), we have

$$C\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \le D' \langle x, x \rangle$$

and

$$C'\langle x,x\rangle \leq D \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w).$$

Therefore,

$$D^{-1}C'\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq C^{-1}D'\langle x,x\rangle, \qquad \forall x \in U.$$

Thus we conclude that $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U.

Conversely, suppose that $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for U with frame bounds C' and D'. Then for all $x \in U$, we have

$$C'\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq D' \langle x,x \rangle.$$

So by (0.12), for all $x \in U$, we have

$$CC'\langle x,x\rangle \leq \int_{\Omega} \int_{\Omega_w} \langle x,v_w P_{H_w} \Lambda_w^* y_{w,v} \rangle \langle v_w P_{H_w} \Lambda_w^* y_{w,v},x \rangle d\mu(v) d\mu(w)$$

and

$$\int_{\Omega} \int_{\Omega_w} \langle x, v_w P_{H_w} \Lambda_w^* y_{w,v} \rangle \langle v_w P_{H_w} \Lambda_w^* y_{w,v}, x \rangle d\mu(v) d\mu(w) \le DD' \langle x, x \rangle.$$

We conclude that $\{v_w P_{H_w} \Lambda_w^* y_{w,v}\}_{v \in \Omega_w}$ is a continuous frame for U.

Corollary 0.24. Let $w \in \Omega$, $\Lambda_w \in End^*_{\mathcal{A}}(U, V_w)$ and $\{y_{w,v}\}_{v \in \Omega_w}$ be a Parseval continuous frame for V_w . Then the continuous g-fusion frame operator of $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous frame operator of $\{v_w P_{H_w} \Lambda^*_w y_{w,v}\}_{v \in \Omega_w}$.

Proof. Let $x \in U$ and $y \in V_w$. Then

$$\begin{aligned} \langle v_w P_{H_w} \Lambda_w^* y, x \rangle &= \langle y, v_w \Lambda_w P_{H_w} x \rangle \\ &= \langle \int_{\Omega_w} \langle y, y_{w,v} \rangle y_{w,v} d\mu(v), v_w \Lambda_w P_{H_w} x \rangle \\ &= \int_{\Omega_w} \langle y, y_{w,v} \rangle \langle y_{w,v}, v_w \Lambda_w P_{H_w} x \rangle d\mu(v) \\ &= \langle \int_{\Omega_w} \langle y, y_{w,v} \rangle v_w P_{H_w} \Lambda_w^* y_{w,v} d\mu(v), x \rangle. \end{aligned}$$

So

$$v_w P_{H_w} \Lambda_w^* y = \int_{\Omega_w} \langle y, y_{w,v} \rangle v_w P_{H_w} \Lambda_w^* y_{w,v} d\mu(v).$$

Hence

$$\int_{\Omega} v_w^2 P_{H_w} \Lambda_w^* \Lambda_w P_{H_w} x d\mu(w) = \int_{\Omega} \int_{\Omega_w} v_w^2 \langle \Lambda_w P_{H_w} x, y_{w,v} \rangle P_{H_w} \Lambda_w^* y_{w,v} d\mu(v) d\mu(w).$$

Therefore, the operator frame of $\{v_w P_{H_w} \Lambda_w^* y_{w,v}\}_{v \in \Omega_w}$ is the continuous g-fusion frame operator of Λ .

Theorem 0.25. Let $\{U, \mathcal{A}, \langle ., . \rangle_{\mathcal{A}}\}$ and $\{U, \mathcal{B}, \langle ., . \rangle_{\mathcal{B}}\}$ be two Hilbert C^* -modules and $\phi : \mathcal{A} \to \mathcal{B}$ be a *-homomorphism and θ be a map on U such that $\phi(\langle x, y \rangle_{\mathcal{A}}) = \langle \theta x, \theta y \rangle_{\mathcal{B}}$ for all $x, y \in U$. Suppose that θ is surjective and $\theta \Lambda_w P_{H_w} = \Lambda_w P_{H_w} \theta$ for all $w \in \Omega$. If $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous g-fusion frame for $\{U, \mathcal{A}, \langle ., . \rangle_{\mathcal{A}}\}$ with frame bounds A and B, then $\{H_w, \Lambda_w, \phi(v_w)\}_{w \in \Omega}$ is a continuous g-fusion frame for $\{U, \mathcal{A}, \langle ., . \rangle_{\mathcal{A}}\}$ with frame bounds $u \in \Omega$. If with frame bounds A and B. Moreover $\phi(\langle S_{\mathcal{A}}x, y \rangle_{\mathcal{A}}) = \langle S_{\mathcal{B}}\theta x, \theta y \rangle_{\mathcal{B}}$.

Proof. Let $y \in U$. Since θ is surjective on U, there exists $x \in U$ such that $y = \theta(x)$, and so we have

$$A\langle x,x\rangle_{\mathcal{A}} \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle_{\mathcal{A}} d\mu(w) \leq B\langle x,x\rangle_{\mathcal{A}}.$$

By definition of *-homomorphism, we have

$$\phi(A\langle x, x\rangle_{\mathcal{A}}) \le \phi\Big(\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle_{\mathcal{A}} d\mu(w)\Big) \le \phi(B\langle x, x\rangle_{\mathcal{A}}).$$

Hence

$$A\langle \theta x, \theta x \rangle_{\mathcal{B}} \leq \int_{\Omega} \phi(v_w)^2 \langle \theta \Lambda_w P_{H_w} x, \theta \Lambda_w P_{H_w} x \rangle_{\mathcal{B}} d\mu(w) \leq B \langle \theta x, \theta x \rangle_{\mathcal{B}}.$$

Thus

$$A\langle y,y\rangle_{\mathcal{B}} \leq \int_{\Omega}$$

Moreover, let $x, y \in U$. then

$$\begin{split} \phi(\langle S_{\mathcal{A}}x, y \rangle_{\mathcal{A}}) &= \phi(\langle \int_{\Omega} v_{w}^{2} P_{H_{w}} \Lambda_{w}^{*} \Lambda_{w} P_{H_{w}} x d\mu(w), y \rangle_{\mathcal{A}}) \\ &= \phi(\int_{\Omega} \langle v_{w}^{2} P_{H_{w}} \Lambda_{w}^{*} \Lambda_{w} P_{H_{w}} x, y \rangle_{\mathcal{A}} d\mu(w)) \\ &= \int_{\Omega} \phi(\langle v_{w}^{2} P_{H_{w}} \Lambda_{w}^{*} \Lambda_{w} P_{H_{w}} x, y \rangle_{\mathcal{A}}) d\mu(w) \\ &= \int_{\Omega} \phi(v_{w}^{2}) \langle \theta \Lambda_{w} P_{H_{w}} x, \theta \Lambda_{w} P_{H_{w}} y \rangle_{\mathcal{B}} d\mu(w) \\ &= \int_{\Omega} \phi(v_{w})^{2} \langle \Lambda_{w} P_{H_{w}} \theta x, \Lambda_{w} P_{H_{w}} \theta y \rangle_{\mathcal{B}} d\mu(w) \\ &= \int_{\Omega} \phi(v_{w})^{2} \langle P_{H_{w}} \Lambda_{w}^{*} \Lambda_{w} P_{H_{w}} \theta x, \theta y \rangle_{\mathcal{B}} d\mu(w) \\ &= \langle \int_{\Omega} \phi(v_{w})^{2} P_{H_{w}} \Lambda_{w}^{*} \Lambda_{w} P_{H_{w}} \theta x d\mu(w), \theta y \rangle_{\mathcal{B}} \\ &= \langle S_{\mathcal{B}} \theta x, \theta y \rangle_{\mathcal{B}}. \end{split}$$

This completes the proof.

3. Continuous K-g-fusion frame in Hilbert C^* -modules

We begin this section with the following lemma.

Lemma 0.26. Let $\{H_w\}_{w\in\Omega}$ be a sequence of orthogonally complemented closed submodules of U and $T \in End^*_{\mathcal{A}}(U)$ is invertible. If $T^*TH_w \subseteq H_w$ for all $w \in \Omega$, then $\{TH_w\}_{w\in\Omega}$ is a sequence of orthogonally complemented closed submodules and $P_{H_w}T^* = P_{H_w}T^*P_{TH_w}$.

Proof. Firstly, for each $w \in \Omega$, $T : H_w \to TH_w$ is invertible and so each TH_w is a closed submodule of U. We will show that $U = TH_w \oplus T(H_w^{\perp})$. Since U = TU, for each $x \in U$, there exists $y \in U$ such that x = Ty. On the other hand, y = u + v for some $u \in H_w$ and $v \in H_w^{\perp}$. Hence x = Tu + Tv, where $Tu \in TH_w$ and $Tv \in T(H_w^{\perp})$. It is easy to show that $TH_w \cap T(H_w^{\perp}) = (0)$. So $U = TH_w \oplus T(H_w^{\perp})$. Hence for every $y \in H_w$, $h \in H_w^{\perp}$ we have $T^*Ty \in H_w$ and therefore $\langle Ty, Th \rangle = \langle T^*Ty, h \rangle = 0$ and so $T(H_w^{\perp}) \subset (TH_w)^{\perp}$ and consequently $T(H_w^{\perp}) = (TH_w)^{\perp}$ which implies that TH_w is orthogonally complemented.

Let $x \in U$. Then we have $x = P_{TH_w}x + y$ for some $y \in (TH_w)^{\perp}$. Then $T^*x = T^*P_{TH_w}x + T^*y$. Let $v \in H_w$. Then $\langle T^*y, v \rangle = \langle y, Tv \rangle = 0$ and so $T^*y \in H_w^{\perp}$. Thus

we have $P_{H_w}T^*x = P_{H_w}T^*P_{TH_w}x + P_{H_w}T^*y$ and so $P_{H_w}T^*x = P_{H_w}T^*P_{TH_w}x$, which implies that for all $w \in \Omega$ we have $P_{H_w}T^* = P_{H_w}T^*P_{TH_w}$.

Definition 0.27. Let $K \in End^*_{\mathcal{A}}(U)$. Let $\{H_w\}_{w \in \Omega}$ be a sequence of closed submodules orthogonally complemented in U, P_{H_w} be the orthogonal projection from U to H_w , $\Lambda_w \in End^*_{\mathcal{A}}(U, V_w)$ for all $w \in \Omega$ and $\{v_w\}_{w \in \Omega}$ be a family of weights in \mathcal{A} , i.e., each v_w is a positive invertible element from the center of \mathcal{A} . Then we say that $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous K-g-fusion frame for U if

- (1) for each $x \in U$, $\{P_{H_w}x\}_{w \in \Omega}$ is measurable;
- (2) for each $x \in U$, the function $\Lambda : \Omega \to V_w$ defined by $\Lambda(w) = \Lambda_w x$ is measurable;
- (3) there exist $0 < A \leq B < \infty$ such that

(0.14)
$$A\langle K^*x, K^*x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle x, x \rangle, \quad \forall x \in U.$$

We call A and B lower and upper frame bounds of a continuous K-g-fusion frame, respectively. If the left-hand inequality of (0.14) is an equality, then we say that $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a tight continuous K-g-fusion frame.

If A = B = 1, then we say that $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a Parseval continuous K-g-fusion frame for U.

If the right-hand inequality of (0.14) holds, then $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is called a continuous g-fusion Bessel sequence with a bound B for U.

Proposition 0.28. Let $K \in End^*_{\mathcal{A}}(U)$.

Every continuous g-fusion frame for U is a continuous K-g-fusion frame for U.

Proof. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion frame for U. Then for all $x \in U$,

$$A\langle x,x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle x,x\rangle.$$

And we have, for all $x \in U$,

$$\langle K^*x, K^*x \rangle \le ||K||^2 \langle x, x \rangle \implies ||K||^{-2} \langle K^*x, K^*x \rangle \le \langle x, x \rangle.$$

 So

$$A||K||^{-2}\langle K^*x, K^*x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w}x, \Lambda_w P_{H_w}x \rangle d\mu(w) \leq B \langle x, x \rangle.$$

Therefore, Λ is a continuous K-g-fusion frame for U.

Remark 0.29. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion Bessel sequence for U with continuous g-fusion frame operator S_{Λ} . If Λ is a continuous K-g-fusion frame for U with frame bounds A and B, then we have

Theorem 0.30. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion Bessel sequence for U with continuous g-fusion frame operator S_{Λ} for U. Then Λ is a continuous K-gfusion frame for U if and only if there exists a constant A > 0 such that $AKK^* \leq S_{\Lambda}$.

Proof. Let Λ be a continuous *K*-*g*-fusion frame for *U*. Then from (0.15) we have the result.

Conversely, assume that there exists a constant A > 0 such that $AKK^* \leq S_{\Lambda}$. Since Λ is a continuous g-fusion Bessel sequence for U, $AKK^* \leq S_{\Lambda} \leq BI_U$. So Λ is a continuous K-g-fusion frame for U.

Theorem 0.31. Let $K \in End^*_{\mathcal{A}}(U)$ and $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion Bessel sequence for U with frame operator S_{Λ} . Suppose that $\overline{\mathcal{R}(S^{\frac{1}{2}}_{\Lambda})}$ is orthogonally complemented. Then Λ is a continuous K-g-fusion frame for U if and only if $K = S^{\frac{1}{2}}_{\Lambda}Q$ for some $Q \in End^*_{\mathcal{A}}(U)$.

Proof. Since the operator frame S_{Λ} is positive self-adjoint, so is also $S_{\Lambda}^{\frac{1}{2}}$.

Assume that Λ is a continuous K-g-fusion frame for U. Then there exists A > 0such that $KK^* \leq \frac{1}{A}S_{\Lambda}^{\frac{1}{2}}S_{\Lambda}^{\frac{1}{2}}$, and by Lemma 0.9, there exists $Q \in End_{\mathcal{A}}^*(U)$ such that $K = S_{\Lambda}^{\frac{1}{2}}Q$.

Conversely, suppose that there exists $Q \in End^*_{\mathcal{A}}(U)$ such that $K = S^{\frac{1}{2}}_{\Lambda}Q$. Then by Lemma 0.9, there exists $\lambda > 0$ such that $KK^* \leq \lambda S^{\frac{1}{2}}_{\Lambda}S^{\frac{1}{2}}_{\Lambda} = \lambda S_{\Lambda}$ and so $\frac{1}{\lambda}KK^* \leq S_{\Lambda}$. Hence Λ is a continuous K-g-fusion frame for U.

Theorem 0.32. Let $T \in End^*_{\mathcal{A}}(U)$ be an invertible operator on U and $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous K-g-fusion frame for U with frame bounds A and B for some $K \in$ $End^*_{\mathcal{A}}(U)$. Then $\Gamma = \{TH_w, \Lambda_w P_{H_w}T^*, v_w\}_{w \in \Omega}$ is a continuous TKT^* -g-fusion frame for U.

Proof. Let $x \in U$. By Lemma 0.26,

$$\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^* P_{TH_w} x, \Lambda_w P_{H_w} T^* P_{TH_w} x \rangle d\mu(w) = \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^* x, \Lambda_w P_{H_w} T^* x \rangle d\mu(w)$$

$$\leq B \langle T^* x, T^* x \rangle$$

$$(0.16) \qquad \qquad \leq B ||T||^2 \langle x, x \rangle.$$

On the other hand, for all $x \in U$,

$$\begin{aligned} A\langle (TKT^*)^*x, (TKT^*)^*x \rangle &= A\langle TK^*T^*x, TK^*T^*x \rangle \\ &\leq A||T||^2 \langle K^*T^*x, K^*T^*x \rangle \\ &\leq ||T||^2 \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w}T^*x, \Lambda_w P_{H_w}T^*x \rangle d\mu(w) \\ &= ||T||^2 \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w}T^*x, \Lambda_w P_{H_w}T^*x \rangle d\mu(w). \end{aligned}$$

 So

$$(0.17)$$

$$A||T||^{-2}\langle (TKT^*)^*x, (TKT^*)^*x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^* P_{TH_w} x, \Lambda_w P_{H_w} T^* P_{TH_w} x \rangle d\mu(w).$$

From (0.16) and (0.17), we have Γ is a continuous TKT^* -g-fusion frame for U.

Theorem 0.33. If $\{TH_w, \Lambda_w P_{H_w}T^*, v_w\}_{w\in\Omega}$ is a continuous K-g-fusion frame for U with frame bounds A and B, then $\{H_w, \Lambda_w, v_w\}_{w\in\Omega}$ is a continuous $T^{-1}KT$ -g-fusion frame for U.

Proof. Let $x \in U$. By Lemma 0.26, we have

$$\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) = \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^*(T^*)^{-1} x, \Lambda_w P_{H_w} T^*(T^*)^{-1} x \rangle d\mu(w)$$

$$= \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^* P_{H_w}(T^*)^{-1} x, \Lambda_w P_{H_w} T^* P_{H_w}(T^*)^{-1} x \rangle d\mu(w)$$

$$\leq B \langle (T^*)^{-1} x, (T^*)^{-1} x \rangle$$

$$\leq B ||(T^*)^{-1}|| \langle x, x \rangle.$$

Also we have, for all $x \in U$,

$$\begin{aligned} A\langle (T^{-1}KT)^*x, (T^{-1}KT)^*x \rangle &= A\langle T^*K^*(T^{-1})^*x, T^*K^*(T^{-1})^*x \rangle \\ &\leq A||T||^2 \langle K^*(T^{-1})^*x, K^*(T^{-1})^*x \rangle \\ &\leq ||T||^2 \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^* P_{TH_w}(T^{-1})^*x, \Lambda_w P_{H_w} T^* P_{TH_w}(T^{-1})^*x \rangle d\mu(w) \\ &\leq ||T||^2 \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w). \end{aligned}$$

Hence

(0.19)
$$A||T||^{-2}\langle (T^{-1}KT)^*x, (T^{-1}KT)^*x \rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^*x, \Lambda_w P_{H_w} T^*x \rangle d\mu(w).$$

From (0.18) and (0.19), we conclude that $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous $T^{-1}KT$ -g-fusion frame for U.

Theorem 0.34. Let $K \in End^*_{\mathcal{A}}(U)$ be an invertible operator, $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion frame for U with frame bounds A, B and S_{Λ} be an associated continuous g-fusion frame operator. Then $\{KS^{-1}_{\Lambda}H_w, \Lambda_w P_{H_w}S^{-1}_{\Lambda}K^*, v_w\}_{w \in \Omega}$ is a continuous K-g-fusion frame for U.

Proof. Put $T = KS_{\Lambda}^{-1}$, which is invertible and $T^* = (KS_{\Lambda}^{-1})^* = S_{\Lambda}^{-1}K^*$. Then by Lemma 0.26, for all $x \in U$,

$$\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^* P_{TH_w} x, \Lambda_w P_{H_w} T^* P_{TH_w} x \rangle d\mu(w) = \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^* x, \Lambda_w P_{H_w} T^* x \rangle d\mu(w)$$

$$\leq B \langle T^* x, T^* x \rangle$$

$$(0.20) \qquad \qquad \leq B ||T||^2 \langle x, x \rangle$$

We have, for all $x \in U$,

$$\begin{split} \langle K^*x, K^*x \rangle &= \langle S_{\Lambda}S_{\Lambda}^{-1}K^*x, S_{\Lambda}S_{\Lambda}^{-1}K^*x \rangle \leq ||S_{\Lambda}||^2 \langle S_{\Lambda}^{-1}K^*x, S_{\Lambda}^{-1}K^*x \rangle \\ &\leq B^2 \langle S_{\Lambda}^{-1}K^*x, S_{\Lambda}^{-1}K^*x \rangle \end{split}$$

and

$$\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} T^* P_{TH_w} x, \Lambda_w P_{H_w} T^* P_{TH_w} x \rangle d\mu(w) \ge A \langle S_{\Lambda}^{-1} K^* x, S_{\Lambda}^{-1} K^* x \rangle$$
$$\ge \frac{A}{B^2} \langle K^* x, K^* x \rangle.$$

Therefore, $\{KS_{\Lambda}^{-1}H_w, \Lambda_w P_{H_w}S_{\Lambda}^{-1}K^*, v_w\}_{w\in\Omega}$ is a *K*-g-fusion frame for *U*.

Theorem 0.35. Let $K \in End^*_{\mathcal{A}}(U)$ and $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous K-gfusion frame for U with frame bounds A and B. Suppose that $G \in End^*_{\mathcal{A}}(U), \mathcal{R}(G) \subset \mathcal{R}(K)$ and $\overline{\mathcal{R}(K^*)}$ is orthogonally complemented. Then Λ is a continuous G-g-fusion frame for U.

Proof. Since $\mathcal{R}(G) \subseteq \mathcal{R}(K)$ and $\overline{\mathcal{R}(K^*)}$ is orthogonally complemented, by Lemma 0.9, there exists $\lambda > 0$ such that $GG^* \leq \lambda KK^*$ and hence

$$\frac{A}{\lambda}\langle G^*x, G^*x\rangle \le A\langle K^*x, K^*x\rangle \le \langle S_{\Lambda}x, x\rangle \le B\langle x, x\rangle, \qquad \forall x \in U.$$

So $\{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ is a continuous *G*-*g*-fusion frame for *U*.

Theorem 0.36. Let $K \in End^*_{\mathcal{A}}(U)$ and $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous g-fusion Bessel sequence for U with synthesis operator T_{Λ} . Suppose that $\overline{\mathcal{R}(T^*_{\Lambda})}$ and $\overline{\mathcal{R}(K^*)}$ are orthogonally complemented. Then the following statements hold:

- (1) If Λ is a tight K-g-fusion frame for U, then $\mathcal{R}(K) = \mathcal{R}(T_{\Lambda})$.
- (2) $\mathcal{R}(K) = \mathcal{R}(T_{\Lambda})$ if and only if there exist two constants A and B such that

$$A\langle K^*x, K^*x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle K^*x, K^*x \rangle, \qquad \forall x \in U.$$

Proof. (1) Suppose that Λ is a continuous tight *K*-*g*-fusion frame for *U*. Then for all $x \in U$,

$$A\langle K^*x, K^*x\rangle = \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) = \langle T_{\Lambda}^*x, T_{\Lambda}^*x \rangle.$$

 So

$$A\langle KK^*x, x\rangle = \langle T_{\Lambda}T_{\Lambda}^*x, x\rangle$$

and hence

$$AKK^* = T_\Lambda T_\Lambda^*.$$

By Lemma 0.9, we have $\mathcal{R}(T_{\Lambda}) = \mathcal{R}(K)$.

(2) Assume that $\mathcal{R}(K) = \mathcal{R}(T_{\Lambda})$. Then by Lemma 0.9, there exist two constants A and B such that

$$AKK^* \leq T_\Lambda T_\Lambda^* \leq BKK^*.$$

Hence

$$A\langle K^*x, K^*x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle K^*x, K^*x \rangle.$$

Conversely, suppose that there exist two constants A and B such that

$$A\langle K^*x, K^*x\rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \leq B\langle K^*x, K^*x \rangle, \qquad \forall x \in U.$$

Thus

$$A\langle KK^*x, x\rangle \leq \langle T_{\Lambda}T^*_{\Lambda}x, x\rangle \leq B\langle KK^*x, x\rangle, \qquad \forall x \in U,$$

So

$$AKK^* \leq T_\Lambda T^*_\Lambda \leq BKK^*.$$

By Lemma 0.9, we have $\mathcal{R}(K) = \mathcal{R}(T_{\Lambda})$.

Theorem 0.37. Let $K \in End^*_{\mathcal{A}}(U)$ and $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$. Suppose that $T : U \to \bigoplus_{w \in \Omega} V_w$ is given by $T(x) = \{v_w \Lambda_w P_{H_w} x\}_{w \in \Omega}$. Then Λ is a continuous K-g-fusion frame for U if and only if there exists two constants A and B such that

(0.21)
$$A||K^*x||^2 \le ||\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w)|| \le B||x||^2, \quad \forall x \in U.$$

Proof. Suppose that Λ is a continuous K-g-fusion frame for U. Then we have (0.21).

Conversely, assume that (0.21) holds. Then we have, for all $x \in U$,

$$\begin{split} ||\int_{\Omega} v_w P_{H_w} \Lambda_w^* x_w d\mu(w)|| &= \sup_{||y||=1} ||\langle \int_{\Omega} v_w P_{H_w} \Lambda_w^* x d\mu(w), y\rangle|| \\ &= \sup_{||y||=1} ||\int_{\Omega} \langle x_w, v_w \Lambda_w P_{H_w} y\rangle d\mu(w)|| \\ &\leq \sup_{||y||=1} ||\int_{\Omega} \langle x_w, x_w \rangle d\mu(w)||^{\frac{1}{2}} ||\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} y, \Lambda_w P_{H_w} y\rangle||^{\frac{1}{2}} \\ &\leq \sqrt{B} ||\{x_w\}_{w \in \Omega}||. \end{split}$$

Thus the series $\int_{\Omega} v_w P_{H_w} \Lambda_w^* x_w d\mu(w)$ converge in U and we have, for all $x \in U$ and $\{x_w\}_{w \in \Omega} \in \bigoplus_{w \in \Omega} V_w$,

$$\langle Tx, \{x_w\}_{w \in \Omega} \rangle = \langle \{v_w \Lambda_w P_{H_w} x_w\}_{w \in \Omega}, \{x_w\}_{w \in \Omega} \rangle$$

$$= \int_{\Omega} \langle v_w \Lambda_w P_{H_w} x, x_w \rangle d\mu(w)$$

$$= \int_{\Omega} \langle x, v_w P_{H_w} \Lambda_w^* x_w \rangle d\mu(w)$$

$$= \langle x, \int_{\Omega} v_w P_{H_w} \Lambda_w^* x_w d\mu(w) \rangle.$$

Hence T is adjointable and so, for all $x \in U$,

$$\langle Tx, Tx \rangle = \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \le ||T||^2 \langle x, x \rangle.$$

On the other hand, from (0.21), we have, for all $x \in U$,

$$||K^*x||^2 \le \frac{1}{A}||Tx||^2$$

and by Lemma 0.9, there exists a constant $\lambda > 0$ such that $KK^*x \leq \lambda T^*Tx$. Therefore,

$$\frac{1}{\lambda} \langle K^* x, K^* x \rangle \leq \langle T x, T x \rangle = \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w)$$

for all $x \in U$.

Theorem 0.38. Let $K_i \in End^*_{\mathcal{A}}(U)$ for all $i \in \{1, ..., n\}$ and $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous K_i -g-fusion frame for U with frame bounds A_i and B. Suppose that $T: U \to \bigoplus_{w \in \Omega} V_w$ is given by $Tx = \{v_w \Lambda_w P_{H_w} x\}_{w \in \Omega}$ and $\overline{\mathcal{R}(T)}$ is orthogonally complemented. Then Λ is a continuous $\sum_{i=1}^n K_i$ -g-fusion frame for U.

Proof. Let $x \in U$. Then

$$\begin{aligned} ||\langle \left(\sum_{i=1}^{n} K_{i}\right)^{*}x, \left(\sum_{i=1}^{n} K_{i}\right)^{*}x\rangle ||^{\frac{1}{2}} &= ||\left(\sum_{i=1}^{n} K_{i}\right)^{*}x|| \\ &= ||\sum_{i=1}^{n} K_{i}^{*}x|| \\ &\leq \sum_{i=1}^{n} ||K_{i}^{*}x|| \\ &\leq \sum_{i=1}^{n} \frac{1}{\sqrt{A_{i}}}||\int_{\Omega} v_{w}^{2} \langle \Lambda_{w} P_{H_{w}}x, \Lambda_{w} P_{H_{w}}x \rangle d\mu(w)||^{\frac{1}{2}} \end{aligned}$$

and so

$$(0.22) \quad \left(\sum_{i=1}^{n} \frac{1}{\sqrt{A_i}}\right)^2 ||\langle \left(\sum_{i=1}^{n} K_i\right)^* x, \left(\sum_{i=1}^{n} K_i\right)^* x\rangle || \le || \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) ||.$$

On the other hand, for all $x \in U$,

(0.23)
$$|| \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) || \le B ||x||^2.$$

From (0.22) and (0.23), we conclude that Λ is a continuous $\sum_{i=1}^{n} K_i$ -g-fusion frame for U.

Theorem 0.39. Let $K_i \in End^*_{\mathcal{A}}(U)$ for all $i \in \{1, ..., n\}$ and $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous K_i -g-fusion frame for U with frame bounds A_i and B. Then Λ is a continuous $\prod_{i=1}^n K_i$ -g-fusion frame for U.

260

Proof. Let $x \in U$. Then

$$A_1 \langle \left(\prod_{i=1}^n K_i\right)^* x, \left(\prod_{i=1}^n K_i\right)^* x \rangle = A_1 \langle \prod_{i=n}^1 K_i^* x, \prod_{i=n}^1 K_i^* x \rangle$$
$$\leq A_1 || \prod_{i=n}^2 K_i^* ||^2 \langle K_1^* x, K_1^* x \rangle$$
$$\leq \prod_{i=n}^2 ||K_i||^2 \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w)$$

and hence

$$A_1 \left(\prod_{i=n}^2 ||K_i||^2\right)^{-1} \langle \left(\prod_{i=1}^n K_i\right)^* x, \left(\prod_{i=1}^n K_i\right)^* x \rangle \leq \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w).$$

And we have, for all $x \in U$,

$$\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) \le B \langle x, x \rangle.$$

Therefore, Λ is a continuous $\prod_{i=1}^{n} K_i$ -g-fusion frame for U.

4. Perturbation of continuous K-g-fusion frames

Theorem 0.40. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous K-g-fusion frame for U with bounds A and B and $\{\Gamma_w\}_{w \in \Omega} \in End^*_{\mathcal{A}}(U, V_w)$. Suppose that

(1) for all $x \in U$,

$$\begin{aligned} &||\{(v_w\Lambda_w P_{H_w} - z_w\Gamma_w P_{Z_w})x\}_{w\in\Omega}|| \\ &\leq \lambda_1||\{(v_w\Lambda_w P_{H_w})x\}_{w\in\Omega}|| + \lambda_2||\{(z_w\Gamma_w P_{Z_w})x\}_{w\in\Omega}|| + \epsilon||K^*x||, \end{aligned}$$

where $0 < \lambda_1, \lambda_2 < 1$ and $\epsilon < (1 - \lambda_1)\sqrt{A}$;

(2) $T: U \to \bigoplus_{w \in \Omega} V_w$ is given by $T(x) = \{z_w \Gamma_w P_{Z_w} x\}_{w \in \Omega}$ and $\overline{\mathcal{R}(T)}$ is orthogonally complemented.

Then $\{Z_w, \Gamma_w, z_w\}_{w \in \Omega}$ is a continuous K-g-fusion frame for U.

Proof. We have, for all $x \in U$,

$$\begin{split} ||\{(z_{w}\Gamma_{w}P_{Z_{w}})x\}_{w\in\Omega}|| &\leq ||\{(v_{w}\Lambda_{w}P_{H_{w}} - z_{w}\Gamma_{w}P_{Z_{w}})x\}_{w\in\Omega}|| + ||\{v_{w}\Lambda_{w}P_{H_{w}}x\}_{w\in\Omega}|| \\ &\leq \lambda_{1}||\{(v_{w}\Lambda_{w}P_{H_{w}})x\}_{w\in\Omega}|| + \lambda_{2}||\{(z_{w}\Gamma_{w}P_{Z_{w}})x\}_{w\in\Omega}|| + \epsilon||K^{*}x|| \\ &+ ||\{(v_{w}\Lambda_{w}P_{H_{w}})x\}_{w\in\Omega}|| \\ &\leq (\lambda_{1} + 1)||\{(v_{w}\Lambda_{w}P_{H_{w}})x\}_{w\in\Omega}|| + \lambda_{2}||\{(z_{w}\Gamma_{w}P_{Z_{w}})x\}_{w\in\Omega}|| + \epsilon||K^{*}x|| \end{split}$$

and hence

$$(1 - \lambda_2) ||\{(z_w \Gamma_w P_{Z_w})x\}_{w \in \Omega}|| \le (1 + \lambda_1) ||\{(v_w \Lambda_w P_{H_w})x\}_{w \in \Omega}|| + \epsilon ||K^*x||.$$

 So

$$(1 - \lambda_2) || \int_{\Omega} z_w^2 \langle \Gamma_w P_{Z_w} x, \Gamma_w P_{Z_w} x \rangle d\mu(w) ||^{\frac{1}{2}} \le (1 + \lambda_1) \sqrt{B} ||x|| + \epsilon ||K|| ||x||$$

Thus

$$(0.24) \qquad ||\int_{\Omega} z_w^2 \langle \Gamma_w P_{Z_w} x, \Gamma_w P_{Z_w} x \rangle d\mu(w)|| \le \left(\frac{(1+\lambda_1)\sqrt{B}+\epsilon||K||}{1-\lambda_2}\right)^2 ||x||^2.$$

On the other hand, for all $x \in U$,

and so

$$(1+\lambda_2)||\{(z_w\Gamma_w P_{Z_w})x\}_{w\in\Omega}|| \ge (1-\lambda_1)||\{v_w\Lambda_w P_{H_w}x\}_{w\in\Omega}||-\epsilon||K^*x||.$$

Thus

$$\left|\left|\int_{\Omega} z_w^2 \langle \Gamma_w P_{Z_w} x, \Gamma_w P_{Z_w} x \rangle d\mu(w)\right|\right|^{\frac{1}{2}} \ge \left(\frac{(1-\lambda_1)\sqrt{A}-\epsilon}{1+\lambda_2}\right) \left|\left|K^* x\right|\right|$$

and hence

$$(0.25) \qquad ||\int_{\Omega} z_w^2 \langle \Gamma_w P_{Z_w} x, \Gamma_w P_{Z_w} x \rangle d\mu(w)|| \ge \left(\frac{(1-\lambda_1)\sqrt{A}-\epsilon}{1+\lambda_2}\right)^2 ||K^* x||^2.$$

From (0.24) and (0.25), we conclude that $\{Z_w, \Gamma_w, z_w\}_{w \in \Omega}$ is a continuous *K*-*g*-fusion frame for *U*.

Theorem 0.41. Let $\Lambda = \{H_w, \Lambda_w, v_w\}_{w \in \Omega}$ be a continuous K-g-fusion frame for U with frame bounds A and B and $\{\Gamma_w\}_{w \in \Omega} \in End^*_{\mathcal{A}}(U, V_w)$. Suppose that

- (1) there exists M > 0 such that, for all $x \in U$, $\begin{aligned} &|| \int_{\Omega} \langle (v_w \Lambda_w P_{H_w} - z_w \Gamma_w P_{Z_w}) x, (v_w \Lambda_w P_{H_w} - z_w \Gamma_w P_{Z_w}) x \rangle d\mu(w) || \\ &\leq M \bigg(|| \int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w) ||; || \int_{\Omega} z_w^2 \langle \Gamma_w P_{Z_w} x, \Gamma_w P_{Z_w} x \rangle d\mu(w) || \bigg); \end{aligned}$
- (2) $T: U \to \bigoplus_{w \in \Omega} V_w$ is given by $T(x) = \{z_w \Gamma_w P_{Z_w} x\}_{w \in \Omega}$ and $\overline{\mathcal{R}(T)}$ is orthogonally complemented.

Then $\{Z_w, \Gamma_w, z_w\}_{w \in \Omega}$ is a continuous K-g-fusion frame for U.

Proof. For all $x \in U$,

$$\begin{split} \sqrt{A} ||K^*x|| &\leq ||\int_{\Omega} v_w^2 \langle \Lambda_w P_{H_w} x, \Lambda_w P_{H_w} x \rangle d\mu(w)||^{\frac{1}{2}} \\ &= ||\{(v_w \Lambda_w P_{H_w})x\}|| \\ &\leq ||\{(v_w \Lambda_w P_{H_w} - z_w \Gamma_w P_{Z_w})x\}_{w \in \Omega}|| + ||\{(z_w \Gamma_w P_{Z_w})x\}_{w \in \Omega}|| \\ &= ||\int_{\Omega} \langle (v_w \Lambda_w P_{H_w} - z_w \Gamma_w P_{Z_w})x, (v_w \Lambda_w P_{H_w} - z_w \Gamma_w P_{Z_w})x \rangle d\mu(w)||^{\frac{1}{2}} \\ &+ ||\int_{\Omega} z_w^2 \langle \Gamma_w P_{Z_w} x, \Gamma_w P_{Z_w} x \rangle d\mu(w)||^{\frac{1}{2}} \\ &\leq (1 + \sqrt{M})||\int_{\Omega} z_w^2 \langle \Gamma_w P_{Z_w} x, \Gamma_w P_{Z_w} x \rangle d\mu(w)||^{\frac{1}{2}} \end{split}$$

and so

(0.26)
$$\frac{\sqrt{A}}{1+\sqrt{M}}||K^*x|| \le ||\int_{\Omega} z_w^2 \langle \Gamma_w P_{Z_w} x, \Gamma_w P_{Z_w} x \rangle d\mu(w)||^{\frac{1}{2}}.$$

On the other hand, for $all x \in U$,

$$\begin{split} \|\int_{\Omega} z_{w}^{2} \langle \Gamma_{w} P_{Z_{w}} x, \Gamma_{w} P_{Z_{w}} x \rangle d\mu(w) \|^{\frac{1}{2}} &= \|\{z_{w} \Lambda_{w} P_{Z_{w}} x\}_{w \in \Omega} \| \\ &\leq \|\{(z_{w} \Gamma_{w} P_{Z_{w}} - v_{w} \Lambda_{w} P_{V_{w}}) x\}_{w \in \Omega} \| + \|\{(v_{w} \Lambda_{w} P_{H_{w}}) x\}_{w \in \Omega} \| \\ &\leq \sqrt{M} \|\int_{\Omega} v_{w}^{2} \langle \Lambda_{w} P_{H_{w}} x, \Lambda_{w} P_{H_{w}} x \rangle d\mu(w) \|^{\frac{1}{2}} + \|\int_{\Omega} v_{w}^{2} \langle \Lambda_{w} P_{H_{w}} x, \Lambda_{w} P_{H_{w}} x \rangle d\mu(w) \|^{\frac{1}{2}} \\ &\leq (\sqrt{M} + 1) \|\int_{\Omega} v_{w}^{2} \langle \Lambda_{w} P_{H_{w}} x, \Lambda_{w} P_{H_{w}} x \rangle d\mu(w) \|^{\frac{1}{2}} \end{split}$$

$$(0.27) \\ &\leq (\sqrt{M} + 1) \sqrt{B} \|x\|. \end{split}$$

Then from (0.26) and (0.27), we conclude that $\{Z_w, \Gamma_w, z_w\}_{w \in \Omega}$ is a continuous *K*-*g*-fusion frame for *U*.

5. Conclusion

We introduced the concept of continuous g-fusion frame and K-g-fusion frame in Hilbert C^* -modules. Furthermore, we investigated some properties of them and discussed the perturbation problem for continuous K-g-fusion frames.

Declarations

Availablity of data and materials

Not applicable.

Competing interest

The authors declare that they have no competing interests.

Fundings

The authors declare that there is no funding available for this paper.

Authors' contributions

The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

REFERENCES

- Ali S. T, Antoine J. P, Gazeau J. P, 1993. Continuous frames in Hilbert spaces, Ann. Phys. 222, 1–37.
- [2] Alijani A, Dehghan M, 2011. *-Frames in Hilbert C*-modules, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73, no. 4, 89–106.
- [3] Arambašić L, 2007. On frames for countably generated Hilbert C*-modules, Proc. Am. Math. Soc. 135, 469–478.
- [4] Conway J. B, 2000. A Course In Operator Theory, Am. Math. Soc., Providence, RI.
- [5] Du D, Zhu Y.-C, 2020. Constructions of K-g-frames and tight K-g-frames in Hilbert spaces, Bull. Malays. Math. Sci. Soc. 43, 4107–4122.
- [6] Davidson F. R, 1996. C*-Algebra by Example, Fields Inst. Monog. 6, Am. Math. Soc., Providence, RI.
- [7] Duffin R. J, Schaeffer A. C, 1952. A class of nonharmonic fourier series, Trans. Am. Math. Soc. 72, 341–366.
- [8] Fang X, Yu J, Yao H, 2009. Solutions to operator equations on Hilbert C^{*}-modules, Linear Algebra Appl. 431, 2142–2153.
- [9] Frank M, Larson D. R, 2000. A-Module frame concept for Hilbert C*-modules, functional and harmonic analysis of wavelets, Contempt. Math. 247, 207–233.
- [10] Kabbaj S, Rossafi M, 2018. *-Operator frame for $End^*_{\mathcal{A}}(\mathcal{H})$, Wavelet Linear Algebra, 5, 1-13. https://doi.org/10.22072/WALA.2018.79871.1153
- [11] Kaiser G, 1994. A Friendly Guide to Wavelets, Birkhäuser, Boston.
- [12] Kaplansky I, 1953. Modules over operator algebras, Am. J. Math. 75, 839–858.

- [13] Kaushik S. K, Vashisht L. K, Sharma S. K., 2013. Some results concerning frames associated with measurable spaces, TWMS J. Pure Appl. Math. 4, no. 1, 52–62.
- [14] Khosravi A., Khosravi B., 2007. Frames and bases in tensor products of Hilbert spaces and Hilbert C*-modules, Proc. Indian Acad. Sci. Math. Sci. 117, 1-12.
- [15] Lance E. C, 1995. Hilbert C^{*}-Modules: A Toolkit for Operator Algebraist, London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge.
- [16] Li D, Leng J, Huang T, 2019. On some equalities and inequalities of fusion frame in Hilbert C^{*}modules, J. Math. Inequal. 13 (2019), 437–449.
- [17] Li Y.-Z, Hussain T, 2021. Duality principles for F_a -frame theory in $L^2(\mathbb{R}_+)$, Bull. Malays. Math. Sci. Soc. 44, 2401–2423.
- [18] Nhari F. D., Echarghaoui R., Rossafi M., 2021. K g-fusion frames in Hilbert C^{*}-modules, Int. J. Anal. Appl. 19 (6).
- [19] Paschke W, 1973. Inner product modules over B^{*}-algebras, Trans. Am. Math. Soc. 182, 443–468.
- [20] Rossafi M, Nhari FD, Park C, Kabbaj S, 2022. Continuous g-Frames with C*-Valued Bounds and Their Properties. Complex Anal. Oper. Theory 16, 44. https://doi.org/10.1007/s11785-022-01229-4
- [21] Rossafi M, Kabbaj S, 2018. *-K-g-frames in Hilbert A-modules, J. Linear Topol. Algebra, 7, 63-71.
- [22] Rossafi M, Kabbaj S, 2018. *-g-frames in tensor products of Hilbert C*-modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17, 17-25.
- [23] Rossafi M, Kabbaj S, 2019. Operator frame for $End^*_{\mathcal{A}}(\mathcal{H})$, J. Linear Topol. Algebra, 8, 85-95.
- [24] Rossafi M, Kabbaj S, 2020. *-K-operator frame for End^{*}_A(H), Asian-Eur. J. Math. 13, 2050060. https://doi.org/10.1142/S1793557120500606.
- [25] Rossafi M, Kabbaj S, 2022. Generalized frames for $B(\mathcal{H},\mathcal{K})$, Iran. J. Math. Sci. Inf. 17, no. 1, 1–9.
- [26] Vashisht L. K, 2015. Banach frames generated by compact operators associated with a boundary problem, TWMS J. Pure Appl. Math. 6, no. 2, 254–258.