Published by Departement of Mathematics, Hasanuddin University, Indonesia
 https://journal.unhas.ac.id/index.php/jmsk/index

Vol. 19, No. 2, January 2023, pp. 391-399

DOI: 10.20956/j.v19i2.24141

Determinant and inverse of T-Sequence-Sylvester-Kac Matrix

Jeki Saputra ${ }^{1 *}$, Amir Kamal Amir ${ }^{2 *}$, Andi Muhammad Anwar ${ }^{3 *}$
*Departemet of Mathematic, Hasanuddin University, Makassar, Indonesia
E-mail: Saputra18h@studentunhas.ac.idl${ }^{l}$,amirkamir@science.unhas.ac.id², andimuhammadanwar08@gmail.com

Received: 22 November 2022; Accepted: 17 December 2022; Published: 5 January 2023

Abstract

The Sylvester-Kac matrix is also known as the Clement matrix The Sylvester-Kac matrix is widely used and applied both in processing, graphs and other fields. The Sylvester-Kac matrix developed in the paper is the T-Sequence-Sylvester-Kac matrix The calculation of the determinant, and inverse has always been a challenge for mathematicians to find. In this paper will be given the formulation of determinant, and inverse of the T-Sequence-Sylvester-Kac matrix

Keyword : Determinant matrix, Inverse Matrix, Sylvester-Kac matrix

1. INTRODUCTION AND PREMILINARIES

The Sylvester-Kac matrix was first introduced by James J. Sylvester in 1854 [8], then research conducted by Kac found the determinant of the matrix. Some of the developments carried out by W. Chu, et al [2], [3], [4] then R. Bevilaqua, et al [1], C.M. da Fonseca, E. Kilic [5], [6] and by Z. Jiang, et al. [7] regarding the Sylvester-Kac matrix both spectrum, determinant and inverse search.

Definition 1.1. The Sylvester-Kac matrix is a tridiagonal matrix of order n with the main diagonal zero, one of the subdiagonals ($1,2, \ldots, \mathrm{n}-1$), and the other ($\mathrm{n}-1, \mathrm{n}-2, \ldots, 1$) i.e. [5]

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Jeki Saputra , Amir Kamal Amir , Andi Muhammad Anwar

$$
\left[\begin{array}{ccccc}
0 & 1 & & & \tag{1.1}\\
n-1 & 0 & 2 & & \\
& n-2 & \ddots & \ddots & \\
& & \ddots & 0 & n-1 \\
& & & 1 & 0
\end{array}\right]
$$

Definition 1.2. The T-Sequence-Sylvester-Kac matrix is a Sylvester-Kac matrix type with the main diagonal a constant and the subdiagonal a sequence which can be written $K_{a, n}^{*}$ if

$$
\left(K_{a, n}^{*}\right)_{i j}=\left\{\begin{array}{cc}
t, & i=j, \tag{1.2}\\
a_{i}, & j=i+1,1 \leq i \leq n-1, \\
a_{n+1-i} & j=i-1,2 \leq i \leq n \\
0, & \text { else },
\end{array}\right.
$$

where $a_{1}, a_{2}, \ldots, a_{n-1}$ is a sequence. Especially when $t=0$ the T-Sequence-Sylvester-Kac matrix is called the Sequence-Sylvester-Kac Matrix.

Note that the T-Sequence-Sylvester-Kac matrix satisfies $K_{a, n}^{*}=\hat{I}_{n} K_{a, n}^{*} \hat{I}_{n}$ where \hat{I}_{n} represents the counter identity matrix [7].

2. MAIN RESULTS

In this section we will find the determinant and inverse of the T-Sequence-Sylvester-Kac matrix.

2.1. Determinant of T-Sequence-Sylvester-Kac Matrix

Before giving the determinant of the T-Sequence-Sylvester-Kac matrix, the following theorem will be given:

Theorem 2.1

Suppose defined

$$
\begin{equation*}
C_{n, i}=\sum_{\left|x_{k}-x_{1}\right|>1, x_{j} \leq n} b_{x_{1}} b_{x_{2}} \ldots b_{x_{i}}, \quad x_{i}=1,2 \ldots, n \tag{2.1}
\end{equation*}
$$

with $C_{n, 0}=1$ for $n=0,1,2, \ldots$ and $b_{i}=a_{i} a_{n-i}$.

$$
\text { If } p_{i}=t p_{i-1}-b_{i-1} p_{i-2}(i=3,4, \ldots,) \text {, with } p_{1}=t \text {, and } p_{2}=t^{2}-a_{1} a_{n-1}=t^{2}-b_{1} \text {, }
$$ then holds

$$
p_{n}= \begin{cases}\sum_{i=0}^{\frac{n-1}{2}}(-1)^{i} C_{n-1, i} t^{n-2 i}, & n \text { odd } \tag{2.2}\\ \sum_{i=0}^{n}(-1)^{i} C_{n-1, i} t^{n-2 i}, & n \text { even }\end{cases}
$$

for $n=1,2, \ldots$
Proof :

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Jeki Saputra , Amir Kamal Amir , Andi Muhammad Anwar
By using strong induction, it will be proven that the above statement is true

1. Base step

$$
\begin{aligned}
P(1) & =p_{1} \\
& =\sum_{i=0}^{0}(-1)^{i} C_{0, i} t^{1-2 i} \\
& =(-1)^{0} C_{0,0} t^{1} \\
& =c
\end{aligned}
$$

2. Induction step

Assuming that $P(2), P(3), \ldots, P(n)$ is true then it will be proved that $P(n+1)$ is true.
Without of generality, suppose n is even then $n+1$ odd so that from equation 4.1 by substituting $i=n+1$, we get

$$
\begin{aligned}
p_{n+1} & =t p_{n}-b_{n} p_{n-1} \\
& =t \sum_{i=0}^{\frac{n}{2}}(-1)^{i} C_{n-1, i} c^{n-2 i}-b_{n} \sum_{i=0}^{\frac{n-2}{2}}(-1)^{i} C_{n-1, i} t^{n-1-2 i} \\
& =C_{n-1,0} t^{n+1}+\sum_{i=0}^{\frac{n}{2}}(-1)^{i} C_{n-1, i} t^{n+1-2 i}+\sum_{i=1}^{\frac{n}{2}}(-1)^{i} b_{n} C_{n-1, i} t^{n+1-2 i} \\
& =C_{n, 0} t^{n+1}+\sum_{i=1}^{\frac{n}{2}}(-1)^{i} C_{n, i} t^{n+1-2 i} \\
& =\sum_{i=0}^{\frac{n}{2}}(-1)^{i} C_{n, i} t^{n+1-2 i}
\end{aligned}
$$

Which of the last statement can be written

$$
p_{n^{*}}=\sum_{i=0}^{\frac{n^{*}-1}{2}}(-1)^{i} C_{n^{*}-1, i} t^{n^{*}-2 i}
$$

for $n^{*}=n+1$ odd (proven).
We will now give the determinant of the T-Sequence-Sylvester-Kac matrix as follows:
Note that the T-Sequence-Sylvester-Kac matrix can be written as

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Jeki Saputra , Amir Kamal Amir , Andi Muhammad Anwar

$$
K_{a, n}^{*}=\left[\begin{array}{ccccc}
t & a_{1} & & & \\
a_{n-1} & t & a_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{2} & t & a_{n-1} \\
& & & a_{1} & t
\end{array}\right]
$$

and suppose that $\operatorname{det}\left(K_{a, n}^{*}\right)=k_{n}$ By doing row expansion followed by the last column expansion, we get

$$
\begin{aligned}
k_{n} & =t k_{n-1}-a_{1} a_{n-1} k_{n-2} \\
& =t k_{n-1}-b_{1} k_{n-2}
\end{aligned}
$$

Note that $k_{1}=t, k_{2}=t^{2}-b_{1}$, so based on Theorem 2.1 we get that

$$
k_{n}= \begin{cases}\frac{n-1}{2}(-1)^{i} C_{n-1, i} t^{n-2 i}, & n \text { odd } \tag{2.3}\\ i=0 \\ \sum_{i=0}^{\frac{n}{2}}(-1)^{i} C_{n-1, i} t^{n-2 i}, & n \text { even }\end{cases}
$$

2.2. Inverse of T-Sequence-Sylvester-Kac Matrix

Lemma 2.2

The inverse of the T-Sequence-Sylvester-Kac matrix exists if t is not an eigenvalue of the Sequence-Sylvester-Kac matrix.

So, if t is not an eigenvalue of the Sequence-Sylvester-Kac matrix, then the T-Sequence-Sylvester-Kac matrix has an inverse which will be given by the following Theorem:

Theorem 2.3

Defined $d_{0}=1$, then the inverse entry of the T-Sequence -Sylvester-Kac matrix is

$$
\left(K_{a, n}^{*-1}\right)_{i j}=\left\{\begin{array}{cc}
\frac{d_{i-1} d_{n-i}}{d_{n}}, & i=j \tag{2.4}\\
(-1)^{i+j} \frac{d_{i-1} d_{n-j}}{d_{n}} \prod_{k=0}^{j-i-1} a_{i+k}, & i<j \\
(-1)^{i+j} \frac{d_{j-1} d_{n-i}}{d_{n}} \prod_{k=0}^{i-j-1} a_{n-(j+k)}, & i>j
\end{array}\right.
$$

where $d_{i}(i=0,1, \ldots, n)$ represents the determinant leading principal submatrix of order $i \times i$ of the T-Sequence -Sylvester-Kac matrix.

Proof:

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Jeki Saputra , Amir Kamal Amir , Andi Muhammad Anwar

$$
K_{a, n}^{*}{ }^{-1}=\frac{1}{\operatorname{det}\left(K_{a, n}^{*}\right)} \operatorname{adj}\left(K_{a, n}^{*}\right)
$$

Since $\operatorname{adj}\left(K_{a, n}^{*}\right)=K^{t}$ where K^{t} is a cofactor matrix of $K_{a, n}^{*}$, so by finding the entries of the cofactor matrix $K_{a, n}^{*}$ will get the inverse of the matrix $K_{a, n}^{*}$. For $i, j \neq\{1, n\}$,, the $i-$ th row contains $\left[0, \ldots, a_{n+1-i}, t, a_{i}, \ldots, 0\right]$, while the $j-$ th column contains $\left[0, \ldots, a_{j-1}, t, a_{n-j}, \ldots, 0\right]^{t}$. Therefore, to find the entries of the cofactor matrix $K_{a, n}^{*}$, we will divide by 3 cases, namely:

1. $i=j$

For $i=j$ represents the main diagonal entry of the inverse matrix $K_{a, n}^{*}$, so $K_{i j}=K_{i i} . K_{i i}$ declares the determinant of the matrix $K_{a, n}^{*}$ by first removing the $i-t h$ column. For $i=1$ it is obtained that

$$
\begin{aligned}
K_{11} & =(-1)^{1+1} M_{11} \\
& =d_{n-1} .
\end{aligned}
$$

And for $i=n$ we get that

$$
\begin{aligned}
K_{n n} & =(-1)^{n+n} M_{n n} \\
& =d_{n-1} .
\end{aligned}
$$

As for $i, j \neq\{1, n\}$, then the row containing $\left[0, \ldots, a_{n+1-i}, t, a_{i}, \ldots, 0\right]$, and the column containing $\left[0, \ldots, a_{i-1}, t, a_{n-i}, \ldots, 0\right]^{t}$ are removed, so that its obtained that

$$
\begin{gathered}
K_{i i}=(-1)^{i+i} M_{i i} \\
K_{i i}=\left|\begin{array}{cc}
A & O \\
O & B
\end{array}\right|
\end{gathered}
$$

with

$$
\begin{aligned}
& A=\left[\begin{array}{cccccc}
t & a_{1} & & & & \\
a_{n-1} & t & a_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{n+3-i} & t & a_{i-2} \\
& & & a_{n+2-i} & t
\end{array}\right] \\
& B=\left[\begin{array}{ccccc}
t & a_{i+1} & & & \\
a_{n-(1+i)} & t & a_{i+2} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{n-2} & t & a_{1} \\
& & & & a_{n-1}
\end{array}\right]
\end{aligned}
$$

so that

$$
K_{i i}=\operatorname{det}(A) \operatorname{det}(B)
$$

Note that $\operatorname{det}(A)=d_{i-1}$, and

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Jeki Saputra , Amir Kamal Amir , Andi Muhammad Anwar

$$
\begin{aligned}
\operatorname{det}(B) & =\left|\hat{I}_{i-1} B \hat{I}_{i-1}\right| \\
& =d_{n-i} .
\end{aligned}
$$

Therefore, $K_{i i}=d_{i-1} d_{n-i}$. Note that for $i=\{1, n\}$ then the equation $K_{i i}=d_{i-1} d_{n-i}$ is also satisfied because $d_{0}=0$. So,

$$
K_{i j}=d_{i-1} d_{n-i}, \quad i=j .
$$

2. $i<j$

Since $i<j$ on $\operatorname{adj}\left(K_{a, n}^{*}\right)$ then $i>j$ on $K_{i j}$. Therefore, by removing the $i-t h$ row containing $\left[0, \ldots, a_{n+1-i}, t, a_{i}, \ldots, 0\right]$, and deleting the $j-t h$ column containing $\left[0, \ldots, a_{j-1}, t, a_{n-j}, \ldots, 0\right]^{t}$, then we get

$$
K_{i j}=(-1)^{i+j}\left|\begin{array}{lll}
A & O & O \\
D & B & O \\
O & E & C
\end{array}\right|,
$$

with

$$
\begin{aligned}
& A=\left[\begin{array}{cccccc}
t & a_{1} & & & & \\
a_{n-1} & t & a_{2} & & \ddots & \\
& \ddots & \ddots & & \\
& & a_{n+3-j} & t & a_{j-2} \\
& & & a_{n+2-j} & t
\end{array}\right], \\
& B=\left[\begin{array}{cccccc}
a_{j} & & & & \\
t & a_{j+1} & & & \\
a_{n-(i+j)} & \ddots & \ddots & & \\
& \ddots & t & a_{i-2} & \\
& & a_{n+2-i} & t & a_{i-1}
\end{array}\right], \\
& C=\left[\begin{array}{ccccc}
t & a_{i+1} & & \\
a_{n-(1+i)} & t & a_{i+2} & & \\
& & \ddots & \ddots & \ddots
\end{array}\right] \\
& \\
& \\
&
\end{aligned}
$$

so that by using the determinant method for the block matrix, we get

$$
K_{i j}=(-1)^{i+j} \operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(C) .
$$

Since $\operatorname{det}(A)=d_{j-1}, \operatorname{det}(B)=a_{j} a_{j+1} \ldots a_{i-1}=\prod_{k=0}^{i-1-j} a_{j+k}$, and

$$
\operatorname{det}(C)=\left|\hat{I}_{n-i} C \hat{I}_{n-i}\right|
$$

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Jeki Saputra , Amir Kamal Amir , Andi Muhammad Anwar

$$
=d_{n-i}
$$

Therefore, $K_{i j}=(-1)^{i+j} d_{j-1} \prod_{k=0}^{i-j-1} a_{j+k} d_{n-i}$ for $i>j$, so on

$$
\left(\operatorname{adj}\left(K_{a, n}^{*}\right)\right)_{i j}=(-1)^{i+j} d_{i-1} d_{n-j} \prod_{k=0}^{j-i-1} a_{i+k}, \text { for } i<j
$$

3. $i>j$

Since $i>j$ on $\operatorname{adj}\left(K_{a, n}^{*}\right)$ then $i<j$ on $K_{i j}$. Therefore, by removing the i-th row containing $\left[0, \ldots, a_{n+1-i}, t, a_{i}, \ldots, 0\right]$, and deleting the $j-t h$ column containing $\left[0, \ldots, a_{j-1}, t, a_{n-j}, \ldots, 0\right]^{t}$, then we get

$$
K_{i j}=(-1)^{i+j}\left|\begin{array}{ccc}
A & D & O \\
O & B & E \\
O & O & C
\end{array}\right|,
$$

with

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
t & a_{1} & & & \\
a_{n-1} & t & a_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{n+3-i} & t & a_{i-2} \\
& & a_{n+2-i} & t
\end{array}\right], \\
& B=\left[\begin{array}{cccccc}
a_{n-i} & t & a_{i+1} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{n+3-j} & t & a_{j-2} \\
& & & a_{n+2-j} & t \\
& & & & & a_{n+1-j}
\end{array}\right], \\
& C=\left[\begin{array}{ccccc}
& & a_{j+1} & & \\
a_{n-(j+1)} & t & a_{j+2} & & \\
& & \ddots & \ddots & \ddots
\end{array}\right. \\
& \\
& D
\end{aligned}
$$

so that by using the determinant method for the block matrix, we get

$$
K_{i j}=(-1)^{i+j} \operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(C) .
$$

Since $\operatorname{det}(A)=d_{i-1}, \operatorname{det}(B)=a_{n-i} a_{n-(i+1)} \ldots a_{n-(j-1)}=\prod_{k=0}^{j-i-1} a_{n-(i+k)}$, and

$$
\begin{aligned}
\operatorname{det}(C) & =\left|\hat{I}_{n-i} C \hat{I}_{n-i}\right| \\
& =d_{n-j} .
\end{aligned}
$$

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Jeki Saputra , Amir Kamal Amir , Andi Muhammad Anwar
Therefore, $K_{i j}=(-1)^{i+j} d_{i-1} \prod_{k=0}^{i-j-1} a_{n-(i+k)} d_{n-j}$ for $i<j$, so on

$$
\left(\operatorname{adj}\left(K_{a, n}^{*}\right)\right)_{i j}=(-1)^{i+j} d_{j-1} d_{n-i} \prod_{k=0}^{i-j-1} a_{n-(j+k)}, \text { for } i>j
$$

So, by multiplying $\operatorname{adj}\left(K_{a, n}^{*}\right)$ by d_{n} then we get the entries of the matrix $K_{a, n}^{*}{ }^{-1}$, as expected.

3. CONCLUSION

From the main results above, it is found that the determinant of the T-Sequence-Sylvester-Kac matrix can be expressed as

$$
K_{a, n}^{*}= \begin{cases}\sum_{i=0}^{\frac{n-1}{2}}(-1)^{i} C_{n-1, i} t^{n-2 i}, & n \text { odd } \\ \sum_{i=0}^{\frac{n}{2}}(-1)^{i} C_{n-1, i} t^{n-2 i}, & n \text { even }\end{cases}
$$

where $C_{n-1, i}$ is stated in Theorem 2.1. While the inverse of T-Sequence-Sylvester-Kac matrix is expressed as

$$
\left(K_{a, n}^{*}-1\right)_{i j}=\left\{\begin{array}{cc}
\frac{d_{i-1} d_{n-i}}{d_{n}}, & i=j \\
(-1)^{i+j} \frac{d_{i-1} d_{n-j}}{d_{n}} \prod_{k=0}^{j-i-1} a_{i+k}, & i<j \\
(-1)^{i+j} \frac{d_{j-1} d_{n-i}}{d_{n}} \prod_{k=0}^{i-j-1} a_{n-(j+k)}, & i>j
\end{array}\right.
$$

where d_{i} represents the determinant leading principal submatrix determinant of the T-Sequence-Sylvester-Kac. The existence of the inverse matrix T-Sequence-Sylvester-Kac is given by Lemma 2.1.

ACKNOWLEDGEMENT

The author would like to thank the lecturers who have helped a lot in completing this paper

REFERENCES

[1] Bevilacqua, R., \& Bozzo, E., 2019. The Sylvester-Kac Matrix Space. Linear Algebra Applications, 430, 3131-3138.
[2] Chu, W., 2010. Fibonacci Polynomials and Sylvester Determinant of Tridiagonal Matrix. Applied Mathematics and Computation, 216(3), 1018-1023.
[3] Chu, W., 2019. Spectrum and Eigenvectors for a Class of Tridiagonal Matrices. Linear Algebra and Its Applications, 584, 499-516.

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Jeki Saputra , Amir Kamal Amir , Andi Muhammad Anwar
[4] Chu, W., \& Wang, X., 2008. Eigenvectors of Tridiagonal Matrices of Sylvester Type. Calcolo, 45(4), 217-233.
[5] Fonseca, C. M., \& Kılıç, E., 2020. A Short Note on The Determinant of a Sylvester-Kac Type Matrix. International Journal of Nonlinear Sciences and Numerical Simulation, 21, 361-362.
[6] Fonseca, C. M., \& Kılıç, E., 2021. A New Type of Sylvester-Kac Matrix and Its Spectrum. Linear and Multilinear Algebra, 69, 1072-1082.
[7] Jiang, Z., \& Zheng, Y. L., 2022. Characteristic Polynomial, Determinant and Inverse of a Fibonacci-Sylvester-Kac Matrix. Special Matrices, 10, 40-46.
[8] Sylvester, J., 1854. Théoreme Sur Les Déterminants. Nouvelles Annales De Mathématiques, 13, 305.

