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Abstract 
Discrete Wavelet Transform is a data transformation method that represents data in the time domain 

and frequency domain. This transformation appears to overcome the weakness of the Fourier 

transform which is only able to provide one domain information and is limited to certain windowing 

. The type of wavelet used is the Haar Wavelet. Identification of data periodicity using Periodogram 

analysis with Fisher's Test statistics. The transformed data is decomposed into two components, 

namely the Approximation Coefficient and the Detail Coefficient. Both components are predicted 

using the Box-Jenkins ARIMA method. Model selection was carried out using the Akaike 

Information Criterion (AIC ) and Mean Square Error (MSE) methods. This study uses secondary 

data, namely Air Humidity from September 2006 to Desember 2011 obtained from the Meteorology, 

Climatology and Geophysics Agency of Makassar City. The result shows that forecasting on the 

Approximation Coefficient obtained by the ARIMA model (0,0,3) with AIC = 112.2142 and MSE = 

29.673. While forecasting on Detailed Coefficients is obtained by the ARIMA model (2,1,0) with 

AIC = 89.2 and MSE = 15,989. 

 

Keywords: Discrete Wavelet Transform, Fourier Transform, Haar Wavelet, Periodogram, 

Fisher's Test. 

 

1. INTRODUCTION 
Forecasting is a way to predict future conditions by taking into account past data and current 

data. Forecasting is a study of historical data to find relationships, trends and systematic data 

patterns to predict future values [1]. Future circumstances that are full of uncertainty often make 

someone try to predict something so that later they can prepare and make the right decision. 

The forecasting process is done using time series data. In its implementation, time series data is 

a series of observational data that occurs based on the time index sequentially with fixed time 

intervals [2]. Time series analysis in general aims to study or create a stochastic model 

mechanism that is capable of analyzing observation series and predicting future time series 

values based on the history of the series itself [3]. The most frequently used forecasting method 

is the Autoregressive Integrated Moving Average (ARIMA) developed by Box and Jenkins. 

Analysis based on the domain is divided into two, namely time series analysis in the time domain 

and time series analysis in the frequency domain. The time domain uses autocorrelation and 

partial autocorrelation functions to study changes in time series data using parametric models. 

Meanwhile for the frequency domain, time series analysis is considered as a result of the 
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presence of cycle components at different frequencies which are difficult to obtain in the time 

domain. The data can then be represented in the time and frequency domain using 

transformations.  

Transformation is the process of changing data or signal into another form to make it easier to 

analyze, like the Fourier transform which turns the signal inward some sine or cosine wave with 

that frequency different, while the wavelet transform transforms the signal into various basic 

wavelet forms with various shifts and scaling [4].  

Wavelets can be used as a transformation tool that automatically dissects data into different 

components and studies each component at a resolution appropriate to its scale [5]. The data will 

be described based on a predetermined scale so that the movement of the amplitude of the data 

can be seen over time. The wavelet transform that is considered more suitable for time series 

data is the Discrete Wavelet Transform (DWT) because at each decomposition level there are 

wavelet coefficients and scales as much as the length of the data [6] . DWT can reduce filtering 

weaknesses that can be performed at any sample size. DWT has advantages including being easy 

to implement and efficient in terms of computation time[7] [8]. 

The wavelet transform that is considered more suitable for time series data is the Discrete 

Wavelet Transform because at each decomposition level there are wavelet coefficients and scales 

as much as the length of the data. DWT can reduce filtering weaknesses that can be performed 

on several sample sizes. Data analysis with DWT was performed at different frequencies with 

different resolutions by decomposing the data into detail components and approximation 

components. One type of wavelet is the Haar wavelet which is easier to use in calculations, 

especially in graph smoothing[7].  

The development of wavelets has progressed rapidly, namely the discovery of various types of 

existing wavelets. One of them is the Haar wavelet where it is easier to use in calculations, 

especially in graph smoothing .This transformation is generally used to solve broader issues such 

as rainfall, climate, or other national scale data. 

Previous research has discussed forecasting using time series data in the time domain or 

frequency domain [9]. While the time series data in this study were first transformed into the 

time and frequency domain, then Box-Jenkins forecasting methods were used. This is to find out 

how to get wavelet coefficients and their application to Makassar City air humidity data which 

tends to change every month. 

 

2. PRELIMINARIES 
2.1 Periodogram 

The periodogram is used to determine the hidden periodicity of time series data that is difficult 

to find in the time domain by looking at the periodogram plot. The period obtained from the 

periodogram plot will then be tested for the periodic component of the periodogram. This can be 

done using Fisher's test with test statistics, namely [10]: 

T =
I(1)(ω(1))

∑ I(ωk)

[
n
2
]

k=1

 
 

(2.1) 

Where I(1)(ω(1)) = max⁡{(ωk)} spectrum value for the Fourier frequency which has the 

maximum value of the periodogram ordinate. 

With the following hypothesis:  

H0 ∶ The periodogram does not have a periodic component 

H1 ∶ The periodogran has a periodic component. 

Decision Criteria is if the T value calculated from the time series is larger than the table value 

gα, then H0 is rejected which means that the Yt time series contains a periodic component. 
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2.2 Discrete Wavelet Transform 
Wavelet is a data model with the form of time and frequency. Wavelet transform is a function of 

the real variable t which is used to localize a function in space and scale L 2 (R), denoted ψ(t)⁡as 

a mother wavelet [11] . Doughter wavelet ψa,b(t)⁡produced by the parameters dilation a and 

translation/contraction b , which are expressed in the equation [5][12] : 

ψa,b(t) = a−1/2ψ(
t − b

a
) ; a > 0, b ∈ R 

(2.2) 

Where : 

a = Parameter of dilation or contraction  

b = Parameter of translation  

R = Conditional values of a and b in integer values  

The transformation can be divided into two forms namely low pass filter ℋ = {hk} dan 

high pass filter 𝒢 = {gk}, where hk and gk is the coefficient of scaling function ϕ(x) dan wavelet 

function ψ(x)⁡which is shown in equation [13] : 

ϕ(x) =∑hk√2ϕ(2x − k)

kϵℤ

 
(2.3) 

ψ(x) = ∑gk√2ψ(2x − k)

kϵℤ

 
(2.4) 

One type of wavelet that was first recognized and very simple to use, especially in 

quantitative calculations, is the Haar wavelet. The Haar wavelet function is given [14]: 

ψ(t) = {
1 ⁡⁡⁡⁡,0 ≤ t < 0.5
⁡⁡−1 , 0.5 ≤ t < 1

⁡⁡⁡⁡⁡⁡0 , untuk⁡yang⁡lain
 

 

(2.5) 

As well as the Haar scale function is defined : 

ϕ(t) = {⁡⁡
1⁡⁡⁡⁡⁡⁡⁡⁡ , 0 ≤ t ≤ 1⁡⁡

⁡⁡⁡0 , untuk⁡yang⁡lain⁡
 

(2.6) 

 

2.3 Forecasting 

One of the time series models is ARIMA. The general form of the ARIMA equation (p,d,q) 

is as follows [15][9]: 

(1 − ϕ1B −⋯− ϕpB
p)(1 − B)dYt = (1 − θ1B −⋯− θqB

q)at (2.7) 

Where 

Yt = Observation data 

at = Residual value ( error ) at time t 

𝑑  = Differencing order 

ϕP= The coefficient of the p -parameter autoregressive (AR) model 

θq = The coefficient of the parameter of the qth moving average (MA) model 

The forecasting process consists of five stages, namely: 



487 

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI 

Hartina Husain, Amran 

 
 

1. Data Identification Stage 

As for Model Identification the steps taken to identify the model are as follows[15]: 

a. Plot the time series data and if the time series data is not stationary in terms of variance, a 

Box-Cox transformation is performed. 

b. Calculating and examining the Autocorrelation function (ACF) and partial autocorrelation 

function (PACF) samples from the original series and if the time series data is indicated to be 

not stationary in the mean, a differencing process is carried out. 

c. Calculating and examining sample ACF and PACF from time series data resulting from Box-

Cox transformation and differencing to identify the order of the ARIMA model(p, d, q) 
d. Test the deterministic trend if⁡d > 0 

2. Parameter Estimation Stage 

Hypothesis: 

H0 ∶ ⁡θ = 0⁡(estimator not significant) 

H1 ∶ ⁡θ ≠ 0⁡(significant estimator) 

Test Statistics 

t =
θ̂

SE(θ̂)
 

(2.8) 

Decision Criteria is reject H0if |t| > tα
2
;(n−np)

; ⁡np =⁡the number of parameter  

3. Model Diagnostic Stage 

Model Diagnostics include model adequacy (test whether the rest is white noise) and normal 

distribution assumption test. 

4. Best Model Selection Stage 

The criteria for selecting the best model are carried out through the Akaike's Information 

Criterion (AIC)  and Mean Square Error (MSE) equations: 

AIC = Tlnσ̂a
2 + 2M (2.9) 

Where  

M⁡⁡⁡ =⁡The number of parameters in the model, the  

N⁡⁡⁡ =⁡⁡Number of observations, the  

σ̂a
2 ⁡=  Maximum Likelihood estimation of σa

2 
and to calculate the Mean Square Error (MSE) value used equation: 

MSE =
∑ eh

2H
h=1

(H − M)
 

(2.10) 

Where 

M = The number of parameters estimated to be  

e⁡⁡ =⁡The rest of the out sample 

5. Forecasting Stage 

 The forecasting results obtained are then compared with the validation data. 

 

2.4 Humidity 
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Air humidity is the amount of water vapor present in the air [16]. There are 2 types of air 

humidity as follows: 

a. Absolute humidity is a number indicating the amount of water vapor in grams in one cubic 

meter of air. 

b. Relative humidity (relative humidity), which is a number in percent that shows the ratio 

between the amount of water vapor actually contained in the air at a certain temperature. 

Relative humidity is calculated using the following formula: 

K = T/P⁡x⁡100% (2.11) 

Where  

K = relative humidity. 

T = water vapor contained in the air at a certain temperature. 

P = maximum water vapor content capacity. 

3. MAIN RESULTS 

3.1 Data Stationarity Test 

Stationarity of data is one of the assumptions that must be met before forecasting time series 

data. The stationarity of the data can be seen by looking at the data plots, correlograms, and unit 

root tests. Data plots, correlograms, and unit root test results are as follows

 

Figure 3.1 Air Humidity Data Plot 

 

Figure 3.2 Air Humidity Data ACF 

Diagram 

Based on figure 3.1 shows that the data plots are stationary because data changes from 

time to time do not increase or decrease significantly (does not have a slope or trend). 

Figure 3.2 shows the autocorrelation value fluctuates or does not decrease linearly close to 

zero. The results of the unit root test get the output as in p − value = 0.01 < 0,05⁡then 

H0⁡being rejected means there is no unit root or the data is stationary. 

3.2 Periodogram Analysis 

Periodic data will form a seasonal pattern, meaning that the SARIMA forecasting process 

will be carried out and conversely, non-periodic data or non-seasonal patterns are used by 

ARIMA in its forecasting. 

T= 
0.078125

2376.734
= 0.0000328⁡and⁡g0.05 = 0.19784 

Because of the value T = 0.0000328 < 0.19784⁡then the decision accept H0⁡or reject H1. 

Thus it can be concluded that the air humidity data does not contain a periodic component or 

non-seasonal data, so ARIMA is used in forecasting. 

3.3 Discrete Wavelet Transform 

This transformation uses a scaling filter ( hk ) and a wavelet function ( gk ) on the type 

wavelet Haar. This transformation decomposes the data into two coefficients, namely the 

approximation coefficient and the detail coefficient. 
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Table 3.1 Approximation Coefficient Value 

No 
Approximate 

Coefficient 
No 

Approximate 

Coefficient 
No. 

Approximate 

Coefficient 

1 94.7523 12 108.8944 23 115.9655 

2 109.6016 13 108.1873 24 112.4300 

3 119.5011 14 127.2792 25 113.1371 

4 115.2584 15 123.0366 26 115.9655 

5 111.0158 16 112.4300 27 125.1579 

6 101.8234 17 108.8944 28 125.1579 

7 101.1163 18 100.4092 29 107.4802 

8 116.6726 19 99.7021 30 101.1163 

9 122.3295 20 110.3087 31 103.9447 

10 114.5513 21 121.6224 32 116.6726 

11 111.0157 22 115.9655   

 

Table 3.2 Detailed Coefficient Values 

No 
Detail 

Coefficient 
No 

Detail 

Coefficient 
No. 

Detail 

Coefficient 

1 1.4142 12 -1.4142 23 -1.4142 

2 4.9497 13 2.1213 24 -2.1213 

3 0.7071 14 1.4142 25  0 

4 -0.7071 15 -4.2426 26 -2.8284 

5 3.5355 16 0.7071 27 -2.1213 

6 -2.8284 17 -2.8284 28 -0.7071 

7 3.5355 18 -4.2426 29 -2.8284 

8 4.9497 19 0.7071 30 -2.1213 

9 0.7071 20 5.65685 31 3.5355 

10 -2.8284 21 -2.8284 32 4.9497 

11 0.7071 22 1.4142   

 

3.4 ACF and PACF Diagrams  

Before making the ACF and PACF digrams, the approximate coefficient of approximation data 

is first tested for stationarity with DF. The value is obtained p − value = 0.02136 < α(0.05), 
which means that there is no unit root or the data is stationary in both the mean and variance. 
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Figure 3.3 ACF Coefficient Approximation Diagram, Figure 3.4 PACF diagram of 

approximation coefficients 

An ARIMA model (p,d,q) each consists of an order of Autoregressive (p) determined based 

on the truncated lag on the PACF diagram, the order of Integrated (d) shows how much 

differencing is done on the data, and the order of the Moving Average (q) determined based on 

the truncated lag on the ACF diagram. Figure 3.3 shows a truncated ACF diagram at lag 1 and 

lag 3, and decreases exponentially. While in Figure 3.4 the PACF diagram is truncated at lag 1 

and lag 2 and also decreases exponentially. Therefore the possible ARIMA models are ARIMA 

(0,0,3), ARIMA(0,0,1), ARIMA(1,0,0), ARIMA(2,0,0), ARIMA (1,0,3), ARIMA (1,0,1), and 

ARIMA (2,0,1). 

Tests carried out on the Coefficient of Detail data based on the Dickey Fuller test obtained 

a value p − value = 0.4822⁡greater than 0.05. It means reject H0, that is, there is a unit root or 

the data is not stationary. The non-stationary of the data is overcome by differencing once. 

 

 

 

Figure 3.5 Detail Coefficient ACF  Diagram              Figure 3.6 PACF Detail 

Coefficient  Diagram 

Based on figure 3.5 shows that the data is significant/truncated at lag 1 which shows the 

possible order of the Moving Average (q). While in Figure 3.6 the data is significant or 

truncated in lag 1 and lag 2 which shows the order of Autoregressive (p). And the Integrated 

order (d) shows the number of differencing done on the data, namely once. Thus, several 

possible models are ARIMA (0,1,1), ARIMA (1,1,0), ARIMA (1,1,1), ARIMA (2,1,0), and 

ARIMA (2,1,1). 

3.5 Parameter Estimation 

The results of estimation of possible model parameters for forecasting the Coefficient of 

Approximation were obtained using Minitab Software to obtain the following results: 
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Table 3.3 Estimation of ARIMA Model Parameters (0,0,3) 

Parameter Estimation p − value 

MA(1) -0.5932 0.000 

MA(2) 0.5511 0.005 

MA(3) 0.8523 0.000 

Constant 112,733 0.000 

 

Table 3.4 Estimation of ARIMA Model Parameters (0,0,1) 

Parameter Estimation p − value 

MA(1) -0.9795 0.000 

Constant 111,672 0.005 

 

Table 3.5 Estimation of ARIMA Model Parameters(1,0,0) 

Parameter Estimation p − value 

AR(1) 0.4581 0.008 

Constant 60,642 0.005 

 

Table 3.6 Estimation of ARIMA Model Parameters (2,0,0)  

Parameter Estimation p − value 

AR(1) 0.7909 0.000 

AR(2) -0.7431 0.000 

Constant 107,106 0.005 

 

Table 3.7 Estimation of ARIMA Model Parameters (1,0,3) 

Parameter Estimation p − value 

AR(1) 0.1290 0.572 

MA(1) -0.5806 0.002 

MA(2) 0.5489 0.009 

MA(3) 0.8536 0.000 

Constant 98.1837 0.005 

 

Table 3.8 Estimation of ARIMA Model Parameters (1,0,1)  

Parameter Estimation p − value 

AR(1) -0.0189 0.921 

MA(1) -0.9800 0.000 

Constant 113,782 0.000 
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Table 3.9 Estimation of ARIMA Model Parameters (2,0,1)  

Parameter Estimation p − value 

AR(1) 0.0320 0.868 

AR(2) -0.1505 0.436 

MA(1) -0.9413 0.000 

Constant 125,408 0.000 

 

Table 3.3 shows the model where all the parameters are significant, the remaining four 

models are ARIMA(0,0,3), ARIMA(0,0,1), ARIMA(1,0,0) and ARIMA(2,0,0) . 

The estimation results of possible model parameters for Detail Coefficient forecasting are 

obtained using Minitab Software to obtain the following results: 

Table 3.10 Estimation of ARIMA Model Parameters (0,1,1)  

Parameter Estimation p − value 

MA(1) 0.9427 0.001 

Constant 0.0457 0.794 

 

Table 3.11 Estimation of ARIMA Model Parameters (1,1,0)  

Parameter Estimation p − value 

AR(1) -0.6240 0.000 

Constant 0.1387 0.890 

 

Table 3.12 Estimation of ARIMA Model Parameters (1,1,1)  

Parameter Estimation p − value 

AR(1) -0.4688 0.014 

MA(1) 0.9367 0.000 

Constant 0.07494 0.434 

 

Table 3.13 Estimation of ARIMA Model Parameters (2,1,0)  

Parameter Estimation p − value 

AR(1) -1.0428 0.000 

AR(2) -0.7090 0.000 

Constant 0.3440 0.641 
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Table 3.14 Estimation of ARIMA Model Parameters (2,1,1)  

Parameter Estimation p − value 

AR(1) -1.5734 0.000 

AR(2) -0.7317 0.000 

MA(1) -0.9419 0.000 

Constant 0.517 0.778 

 

In the next stage, a diagnostic examination is carried out for the five forecasting models, 

namely ARIMA(0,1,1), ARIMA(1,1,0), ARIMA(1,1,1), ARIMA(2,1,0), and ARIMA (2,1,1,) 

because it has fulfilled the assumption of significance for each of its parameters. 

3.6 Test the Residual White Noise 

White noise is a process that is independent and identical if the forms of successive random 

variables are not correlated with each other and follow a certain distribution. Table 3.15 show 

the result of testing the residual white noise from the approximation coefficient: 

       Table 3.15 Testing the Ljung Box Approximation Coefficient 

Model 
lag 

12 24 

ARIMA(0,0,3) 0.115 0.297 

ARIMA(0,0,1) 0.000 0.000 

ARIMA(1,0,0) 0.000 0.000 

ARIMA(2,0,0) 0.09 0.174 

Errors in the lags of the model are said to be uncorrelated or H0⁡rejected if the p-value for 

each error in each lag is smaller than the error level of 0.05. Based on Table 3.15 the value is 

smaller than 0.05, namely the ARIMA(0,0,1) and ARIMA(1,0,0) models so that it does not 

meet the white noise error assumption. In other side, ARIMA (0,0,3) and ARIMA (1,0,0) that 

model meet the white noise error assumption. 

In other side, the results of testing the remaining white noise from the detail coefficient 

shown in Table 3.16. 

      Table 3.16 Ljung Box Test for Detail Coefficients 

Model 
lag 

12 24 

ARIMA(0,1,1) 0.000 0.000 

ARIMA(1,1,0) 0.000 0.000 

ARIMA(1,1,1) 0.000 0.000 

ARIMA(2,1,0) 0.100 0.090 

ARIMA(2,1,1) 0.000 0.000 

 

Based on Table 3.16, the model that meets the white noise error assumption is the ARIMA 

(2,1,0) model, namely the Ljung-Box value is 0.1 at lag 12 and 0.09 at lag 24. 

 

3.7 Normality Test 

 

The normality test was carried out to find out whether the residuals were normally 

distributed or not. The model that was tested for normality, namely the model meet the white 
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noise error assumption. Table 3.17 show the result of approximation coefficient  normality test 

using Kolmogorov Smirnov test of ARIMA(0,0,3) and ARIMA (2,0,0).  

        Table 3.17 Kolmogorov Smirnov Test 

Model ⁡𝐩 − 𝐯𝐚𝐥𝐮𝐞 

ARIMA(0,0,3) 0.307 

ARIMA(2,0,0) 0.208 

Table 3.17 shows that the ARIMA(0,0,3) model has p − value⁡0.307 and the 

ARIMA(2,0,0) model has 0.208. Obtained that valuep − value Both models are greater than 

0.05 so they H0are accepted, which means that both models are said to have normal distribution 

errors/residuals. 

Furthermore, the ARIMA(2,1,0) model in detail coefficient was tested for normality in  using 

the Kolmogorov Smirnov. 

 

Figure 3.7 Kolmogorov Smirnov Normality Test Plot 

From the Kolmogorov Smirnov test in Figure 3.7, a value is obtained p − value =
0.150⁡ > 0.05⁡or H0⁡accepted, which means that the model is said to have a normally 

distributed error. 

3.8 Selection of the Best Model 

Selection of the best model was carried out using the smallest Akaike Information 

Criterion (AIC) and Mean Square Error (MSE). 

Table 3.18 Value of AIC and MSE in Approximation Coefficient Model 

Model AIC MSE 

ARIMA(0,0,3) 112.2142 29,673 

ARIMA(2,0,0) 113.2602 31,511 

 

Table 3.18 shows that the smallest AIC and MSE values are in the ARIMA(0,0,3) model. 

Ŷt = 112.733 + 0.5932at−1 − 0.5511at−2 − 0.8523at−3 

In the ARIMA (0,0,3) model it can be seen that the change in the value of Ŷt⁡is equal to 

112,733 when the effects of at−1, at−2, and at−3 are zero. For an increase of one unit at−1 , it 

gives an effect of adding value of 0.5932 to the average variable Ŷt.⁡Meanwhile, a one-unit 

increase in at−2 and at−3 has a decreasing effect of 0.5511 and 0.8523 on the average Ŷt⁡ 
variable. 

494 



JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI 

Hartina Husain, Amran 

 
 

In detail coefficent model, namely the ARIMA model (2,1,0) has a MSE of 15,989 and 

also an AIC value of 89.2. The ARIMA(2,1,0) model is obtained as follows: 

Ŷt = 0.3440 − 0.0428yt−1 − 1.7518yt−2 + 0.7090yt−3 

The forecasting model on ARIMA (2,1,0) shows that if the values yt−1,⁡ yt−2,⁡and yt−3 are 

constant, then the value of Ŷt⁡is equal to 0.3340. Meanwhile, a one-unit increase in yt−1⁡gives 

a decrease in value of 0.0428 to the average response variable Ŷt⁡. Whereas for each increase of 

one unit the value yt−2⁡and the value yt−3⁡each decreased by 1.7518 for yt−2⁡and increased by 

0.7090 for yt−3. 
 

3.9 Forecasting 

For example c5,i
′ , the results of forecasting the coefficient of 

approximation level 1 (c5,i) and d5,i
′ ⁡the results of forecasting the coefficient of detail level 1 ( 

d5,i). Obtained forecasting results are: 

Table 3.19 Forecasting Results 

No Approximate 

Coefficient(𝐜𝟓,𝐢
′ ) 

Detail 

Coefficient(𝐝𝟓,𝐢
′ ) 

1 111,582 2.67301 

2 114,060 4.71229 

3 115,457 2.03737 

4 112,733 3.72485 

5 112,733 4.20566 

6 112,733 2.85192 

 

The results of the forecasting in Table 3.19 in the frequency domain are first transformed 

back to the time domain (inverse). The process of transforming back to the time domain can be 

used the following equation: If i is even cj,i
′ =

(cj−1,i
′ +dj−1,i

′ )√2

2
, if i is oddcj,i

′ =
(cj−1,i

′ −dj−1,i
′ )√2

2
 

4. CONCLUSION 

From this research, several conclusions were obtained, namely: 

1. Coefficients - wavelet coefficients consist of two, namely the approximation coefficient and 

the detail coefficient. Coefficient approximation (cj−1,i)⁡and detail coefficient 

(dj−1,i)⁡respectively are obtained by using the following formula: 

cj−1,i =∑hn−2icj,n
n

 

dj−1,i =∑gn−2icj,n
n

 

2. Models using discrete wavelet transforms applied to air humidity data obtained the best 

model for each component, namely 
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The forecasting model for the coefficient of approximation is obtained by ARIMA(0,0,3) as 

follows: 

Ŷt = 112.733 + 0.5932at−1 − 0.5511at−2 − 0.8523at−3 

From this model, the Akaike Information Criterion value = 112.2142 and Mean Square Error 

= 29.673 are obtained. 

The Detail Coefficient forecasting model is obtained by ARIMA(2,1,0) as follows: 

Ŷt = 0.3440 − 0.0428yt−1 − 1,7518yt−2 + 0.7090yt−3 

From this model, the value of Akaike Information Criterion = 89.2 and Mean Square Error = 

15,989 is obtained. 
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