JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI Published by Departement of Mathematics, Hasanuddin University, Indonesia

https://journal.unhas.ac.id/index.php/jmsk/index

Vol. 20, No. 1, September 2023, pp. 10-23 DOI: 10.20956/j.v20i1.26361

Controlled g-frames and their dual in Hilbert C^* -modules

Abdelilah Karara¹, Mohamed Rossafi², Samir Kabbaj³

¹Laboratory Analysis, Geometry and Applications Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco ²LaSMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco ³Laboratory of Partial Differential Equations, Spectral Algebra and Geometry, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco

 ${\tt E-mail:} \ \ ^1 {\tt abdelilah.karara.sm@gmail.com,} \ \ ^2 {\tt samkabbaj@yahoo.fr,} \ \ ^3 {\tt samkabbaj@yahoo.fr}$

Abstract.

In this paper we give some new results for controlled g-frames and controlled dual g-frames in Hilbert C^* -modules. First, we talk about controlled g-frame characterisation and find certain conditions that are equal to them. Then, we explain the purpose controlled dual g-frames and controlled dual g-frames operator and discuss some of their characteristics.

Keywords: g-frame, controlled g-frame, C^* -algebras, Hilbert C^* -modules.

1. Introduction

The notion of frame is a recent active mathematical research topic, signal processing, computer science, etc. Frames for Hilbert spaces were first introduced in **1952** by Duffin and Schaefer [5] for study of nonharmonic Fourier series. Daubechies, Grossmann, and Meyer [4] revived and developed them in **1986**, and popularized from then on.

In recent years, many mathematicians generalized the frame theory from Hilbert spaces to Hilbert C^* -modules. For more details of frames in Hilbert C^* -modules we refer to [8, 10, 13, 7]. Currently, the study of g-frames has yielded many results. Controlled frames have been introduced by Balazs et al.[1] to improve the numerical efficiency of iterative algorithms for inverting frame operator on abstract Hilbert spaces. Recently, Kouchi and Rahimi [11] introduced Controlled frames in Hilbert C^* -modules.

In this paper we give the characterization of controlled g-frames and controlled dual g-frames in Hilbert C^* -modules and also we characterize controlled g-frames and get some comparable conditions for them. In the end we present the notion of controlled dual frames in Hilbert C^* -modules and give fundamental characterizations of these frames via operator machinery.

2. Preliminaries

Definition 2.1. [3]. Let \mathcal{A} be a Banach algebra, an involution is a map $x \to x^*$ of \mathcal{A} into itself such that for all x and y in \mathcal{A} and all scalars α the following conditions hold:

- (1) $(x^*)^* = x$.
- (2) $(xy)^* = y^*x^*$.
- (3) $(\alpha x + y)^* = \bar{\alpha} x^* + y^*.$

Definition 2.2. [3]. A C^* -algebra \mathcal{A} is a Banach algebra with involution such that :

$$||x^*x|| = ||x||^2$$

for every x in \mathcal{A} .

Definition 2.3. [9]. Let \mathcal{A} be a unital C^* -algebra and \mathcal{H} be a left \mathcal{A} -module, such that the linear structures of \mathcal{A} and \mathcal{U} are compatible. \mathcal{H} is a pre-Hilbert \mathcal{A} -module if \mathcal{H} is equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$, such that is sesquilinear, positive definite and respects the module action. In the other words,

- (i) $\langle x, x \rangle \ge 0$ for all $x \in \mathcal{H}$ and $\langle x, x \rangle = 0$ if and only if x = 0.
- (ii) $\langle ax + y, z \rangle = a \langle x, z \rangle + \langle y, z \rangle$ for all $a \in \mathcal{A}$ and $x, y, z \in \mathcal{H}$.
- (iii) $\langle x, y \rangle = \langle y, x \rangle^*$ for all $x, y \in \mathcal{H}$.

For $x \in \mathcal{H}$, we define $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. If \mathcal{H} is complete with ||.|| is a norm on \mathcal{H} , it is called a Hilbert \mathcal{A} -module or a Hilbert C^* -module over \mathcal{A} . For every a in C^* -algebra \mathcal{A} , we have $|a| = (a^*a)^{\frac{1}{2}}$

Let Θ be a finite or countably index sets, N the set of natural numbers. For each $\xi \in \Theta$, we also reserve the notation $\operatorname{End}_{\mathcal{A}}^*(\mathcal{H},\mathcal{K}_i)$ for the collection of all adjointable \mathcal{A} -linear maps from \mathcal{H} to \mathcal{K}_{ξ} and $\operatorname{End}_{\mathcal{A}}^*(\mathcal{H},\mathcal{H})$ is denoted by $\operatorname{End}_{\mathcal{A}}^*(\mathcal{H})$. The set of all bounded linear operators on \mathcal{H} with a bounded inverse is denoted by $GL(\mathcal{H})$ and $GL^+(\mathcal{H})$ be the set of all positive bounded linear invertible operators on \mathcal{H} with bounded inverse. We also denote

$$\bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi} = \{ \alpha = \{ \alpha_{\xi} \} : \alpha_{\xi} \in \mathcal{K}_{\xi} \text{ and } \sum_{\xi \in \Theta} \langle \alpha_{\xi}, \alpha_{\xi} \rangle \text{ is norm convergent in } \mathcal{A} \}$$

Let $f = \{f_{\xi}\}_{\xi \in \Theta}$ and $g = \{g_{\xi}\}_{\xi \in \Theta}$, the inner product is defined by $\langle f, g \rangle = \sum_{\xi \in \Theta} \langle f_{\xi}, g_{\xi} \rangle$, we have $\bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi}$ is a Hilbert A-module (see [12]).

Definition 2.4. [14] A sequence $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H},\mathcal{K}_{i})\}_{i\in J}$ is called a *g*-frame in \mathcal{H} , if there exist two constants A, B > 0 such that for every $f \in \mathcal{H}$,

(2.1)
$$A\langle f, f \rangle \leq \sum_{i \in J} \langle \Upsilon_i f, \Upsilon_{\xi} f \rangle \leq B\langle f, f \rangle.$$

The numbers A and B are called the g-frames bounds of $\{\Upsilon_i \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{K}_i)\}_i$. If $A = B = \delta$, the g-frame is called δ -tight and if A = B = 1, it is called a Parseval g-frame. If only the righthand inequality of (2.1) is satisfied, $\{\Upsilon_{\xi}\}_{\xi \in J}$ is called a g-Bessel sequence for \mathcal{H} .

Definition 2.5. Let $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H},\mathcal{K}_{\xi})\}_{\xi}$ be a *g*-frames for \mathcal{H} if

$$f = \sum_{\xi \in \Theta} \Phi_{\xi}^* \Upsilon_{\xi} f \text{ for } f \in \mathcal{H}$$

 $\{\Phi_{\xi}\}_{\xi\in\Theta}$ is called an alternate dual g-frame for $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$. Furthermore, $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is an alternate dual g-frame for $\{\Phi_{\xi}\}_{\xi\in\Theta}$, that is to say

$$f = \sum_{\xi \in \Theta} \Upsilon_{\xi}^* \Phi_{\xi} f \text{ for } f \in \mathcal{H}.$$

Definition 2.6. Let $C_1, C_2 \in GL^+(\mathcal{H})$. A sequence of adjointable operators $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is called a (C_1, C_2) -controlled *g*-frame for \mathcal{H} . If there exist two positive constants A, B > 0 such that

(2.2)
$$A\langle f, f \rangle \leq \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_1 f, \Upsilon_{\xi} C_2 f \rangle \leq B \langle f, f \rangle. \quad \forall f \in \mathcal{H}$$

the numbers A and B are called the lower and upper frame bounds for (C_1, C_2) -controlled g-frame, respectively.

If $\sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_1 f, \Upsilon_{\xi} C_2 f \rangle \leq B \langle f, f \rangle$ for all $f \in \mathcal{H}$, then $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$ is called a (C_1, C_2) -controlled g-Bessel sequence for \mathcal{H} If $C_2 = I_{\mathcal{H}}$, we call $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$ a C_1 -controlled g-frame for \mathcal{H} .

Lemma 2.7. [2] Let \mathcal{H} be a Hilbert \mathcal{A} -module, All positive and bounded operator $P : \mathcal{H} \to \mathcal{H}$ has a unique positive and bounded square root Q. We have

- (1) P is self-adjoint $\Rightarrow Q$ is self-adjoint
- (2) P is invertible $\Rightarrow Q$ is invertible

Let $\{\Upsilon_{\xi}\}_{\xi \in J}$ be (C_1, C_2) -controlled g-Bessel sequence with bound B, the operator :

$$\mathcal{T}_{C_1 \Upsilon C_2} : \bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi} \to \mathcal{H}, \quad \mathcal{T}_{C_1 \Upsilon C_2} \left(\{ f_{\xi} \}_{\xi \in \Theta} \right) = \sum_{\xi \in \Theta} (C_1 C_2)^{\frac{1}{2}} \Upsilon_{\xi}^* f_{\xi}, \quad \forall \{ f_{\xi} \}_{\xi \in \Theta} \in \bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi}$$

is called the synthesis operator of $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ and

$$\mathcal{T}^*_{C_1 \Upsilon C_2} : \mathcal{H} \to \bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi}, \quad \mathcal{T}^*_{C_1 \Upsilon C_2} f = \left\{ \Upsilon_{\xi} (C_2 C_1)^{\frac{1}{2}} f \right\}_{\xi \in \Theta}, \quad \forall f \in \mathcal{H}.$$

 $\mathcal{T}^*_{C_1 \Upsilon C_2}$ is called the analysis operator of $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$.

When C_1, C_2 commute between them, and commute with the operator $\Upsilon_{\xi}^* \Upsilon_{\xi}$ for every ξ , the operator

$$S_{C_1 \Upsilon C_2} : \mathcal{H} \to \mathcal{H}, \quad S_{C_1 \Upsilon C_2} f = \sum_{\xi \in \Theta} C_2 \Upsilon_{\xi}^* \Upsilon_{\xi} C_1 f, \quad \forall f \in \mathcal{H}$$

is called the frame operator of $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$. We have, $S_{C_1\Upsilon C_2} = C_1S_{\Upsilon}C_2$ is positive and invertible, where S_{Υ} is frame operator of g-frame $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$, and is positive, invertible, bounded, selfadjoint, and $AI_{\mathcal{H}} \leq S_{\Upsilon} \leq BI_{\mathcal{H}}$.

For the above result one is referred to Hua and Huang [6]. therefore from now on we suppose that C_1, C_2 commute between them, and commute with the operator $\Upsilon_{\xi}^* \Upsilon_{\xi}$ for every ξ .

3. Controlled g-frames in Hilbert C^* – modules

Theorem 3.1. [11] Let $\mathcal{T} : \mathcal{H} \to \mathcal{H}$ be a linear operator. Then there exist two constants $0 < C_1 \leq C_2 < \infty$, such that $C_1 I_{\mathcal{H}} \leq \mathcal{T} \leq C_2 I_{\mathcal{H}}$ if and only if $\mathcal{T} \in GL^+(\mathcal{H})$

Lemma 3.2. Let $C_1, C_2 \in GL^+(\mathcal{H})$. Then the following assertions are equivalent:

- (1) $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is a (C_1, C_2) -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$
- (2) $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is a g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$.

Proof. (1) \Rightarrow (2) Let{ Υ_{ξ} }_{$\xi \in \Theta$} is a (C_1, C_2) -controlled g-frame for \mathcal{H} with respect to { \mathcal{K}_{ξ} }_{$\xi \in \Theta$} with bounds A, B, and $h \in \mathcal{H}$, we have

$$\begin{split} A\langle h,h\rangle &= A\langle (C_1C_2)^{\frac{1}{2}}(C_1C_2)^{-\frac{1}{2}}h, (C_1C_2)^{\frac{1}{2}}(C_1C_2)^{-\frac{1}{2}}h\rangle \\ &\leq A \left\| (C_1C_2)^{\frac{1}{2}} \right\|^2 \langle (C_1C_2)^{-\frac{1}{2}}h, (C_1C_2)^{-\frac{1}{2}}h\rangle \\ &\leq \left\| (C_1C_2)^{\frac{1}{2}} \right\|^2 \sum_{\xi\in\Theta} \left\langle \Upsilon_i C_1(C_1C_2)^{-\frac{1}{2}}h, \Upsilon_\xi C_2(C_1C_2)^{-\frac{1}{2}}h \right\rangle \\ &= \left\| (C_1C_2)^{\frac{1}{2}} \right\|^2 \left\langle C_2 \sum_{\xi\in\Theta} \Upsilon_\xi C_1(C_1C_2)^{-\frac{1}{2}}h, \Upsilon_\xi (C_1C_2)^{-\frac{1}{2}}h \right\rangle \\ &= \left\| (C_1C_2)^{\frac{1}{2}} \right\|^2 \left\langle C_2 S_\Upsilon C_1(C_1C_2)^{-\frac{1}{2}}h, (C_1C_2)^{-\frac{1}{2}}h \right\rangle \\ &= \left\| (C_1C_2)^{\frac{1}{2}} \right\|^2 \left\langle S_\Upsilon h,h \right\rangle. \end{split}$$

So

$$\frac{A}{\left\| (C_1 C_2)^{\frac{1}{2}} \right\|^2} \langle h, h \rangle \leq \sum_{\xi \in \Theta} \left\langle \Upsilon_i h, \Upsilon_{\xi} h \right\rangle, \quad \forall h \in \mathcal{H}$$

For $h \in \mathcal{H}$,

$$\begin{split} \langle S_{\Upsilon}h,h\rangle &= \sum_{\xi\in\Theta} \langle \Upsilon_ih,\Upsilon_{\xi}h\rangle = \left\langle (C_1C_2)^{-\frac{1}{2}}(C_1C_2)^{\frac{1}{2}}S_{\Upsilon}h,h\right\rangle \\ &= \left\langle (C_1C_2)^{\frac{1}{2}}S_{\Upsilon}h, (C_1C_2)^{-\frac{1}{2}}h\right\rangle \\ &= \left\langle S_{\Upsilon}(C_1C_2)(C_1C_2)^{-\frac{1}{2}}h, (C_1C_2)^{-\frac{1}{2}}h\right\rangle \\ &= \left\langle C_1S_{\Upsilon}C_2(C_1C_2)^{-\frac{1}{2}}h, (C_1C_2)^{-\frac{1}{2}}h\right\rangle \\ &\leq B \left\| (C_1C_2)^{-\frac{1}{2}} \right\|^2 \langle h,h\rangle \end{split}$$

Which implies that $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is a g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$. (2) \Rightarrow (1) Suppose that $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is a g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$ with bounds A_1, B_1 . Then

$$\langle A_1h,h\rangle \leq \langle S_{\Upsilon}h,h\rangle \leq \langle B_1h,h\rangle$$
 for any $h \in \mathcal{H}$.

Since $C_1, C_2 \in GL^+(\mathcal{H})$, by Lemma 3.1, there exist constants $r, r_1, R, R_1 (0 < r, r_1, R, R_1 < \infty)$ such that

$$rI_{\mathcal{H}} \leq C_1 \leq RI_{\mathcal{H}}, \quad r_1I_{\mathcal{H}} \leq C_2 \leq R_1I_{\mathcal{H}}.$$

Using $\langle C_1 S_{\Upsilon} h, h \rangle = \langle h, S_{\Upsilon} C_1 h \rangle = \langle h, C_1 S_{\Upsilon} h \rangle$, we get

$$rA \le S_{\Upsilon}C_1 = C_1 S_{\Upsilon} \le RB.$$

Identically, we have

$$rr_1A \leq C_2S_{\Upsilon}C_1 \leq RR_1B.$$

Thus

$$rr_1A\langle h,h\rangle \leq \sum_{\xi\in\Theta} \langle \Upsilon_{\xi}C_1h,\Upsilon_{\xi}C_2h\rangle \leq RR_1B\langle h,h\rangle, \quad \forall h\in\mathcal{H}.$$

We conclude that $\{\Upsilon_i \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{H},\mathcal{K}_i)\}_{\xi \in J}$ is a (C_1,C_2) -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi \in \Theta}$.

Lemma 3.3. Let $C_1, C_2 \in GL^+(\mathcal{H})$. Then $\{\Upsilon_{\xi} \in \operatorname{End}^*_{\mathcal{A}}(\mathcal{H}, \mathcal{K}_{\xi})\}_{\xi}$ is a (C_1, C_2) -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$ if and only if

$$A\langle f, f \rangle \leq \sum_{\xi \in \Theta} \left\langle \Upsilon_{\xi}(C_2 C_1)^{\frac{1}{2}} f, \Upsilon_{\xi}(C_2 C_1)^{\frac{1}{2}} f \right\rangle \leq B \langle f, f \rangle, \quad \forall f \in \mathcal{H},$$

Proof. Let $f \in \mathcal{H}$, we have

$$\begin{split} \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_1 f, \Upsilon_{\xi} C_2 f \rangle &= \left\langle \sum_{\xi \in \Theta} C_2 \Upsilon_{\xi}^* \Upsilon_{\xi} C_1 f, f \right\rangle = \langle C_2 S_{\Upsilon} C_1 f, f \rangle \\ &= \left\langle C_2 C_1 S_{\Upsilon} f, f \right\rangle = \left\langle (C_2 C_1)^{\frac{1}{2}} S_{\Upsilon} (C_2 C_1)^{\frac{1}{2}} f, f \right\rangle \\ &= \left\langle \sum_{\xi \in \Theta} (C_2 C_1)^{\frac{1}{2}} \Upsilon_{\xi}^* \Upsilon_{\xi} (C_2 C_1)^{\frac{1}{2}} f, f \right\rangle \\ &= \sum_{\xi \in \Theta} \left\langle \Upsilon_{\xi} (C_2 C_1)^{\frac{1}{2}} f, \Upsilon_{\xi} (C_2 C_1)^{\frac{1}{2}} f \right\rangle \end{split}$$

consequently, $\{\Upsilon_{\xi} : \xi \in \Theta\}$ is a (C_1, C_2) -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi \in \Theta}$ is equivalent to

$$A\langle f, f \rangle \leq \sum_{\xi \in \Theta} \left\langle \Upsilon_{\xi}(C_2 C_1)^{\frac{1}{2}} f, \Upsilon_{\xi}(C_2 C_1)^{\frac{1}{2}} f \right\rangle \leq B\langle f, f \rangle, \quad \forall f \in \mathcal{H},$$

Thus $\{\Upsilon_{\xi} : \xi \in \Theta\}$ is a $((C_2C_1)^{\frac{1}{2}}, (C_2C_1)^{\frac{1}{2}})$ -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$.

Lemma 3.4. Let $C_1, C_2 \in GL^+(\mathcal{H})$. Then the following statements are equivalent:

- (1) $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is a (C_1, C_2) -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$
- (2) $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is a C_2C_1 -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$.

Proof. Let $C_1, C_2 \in GL^+(\mathcal{H})$, for $f \in \mathcal{H}$, we have

$$\begin{split} \sum_{\xi \in \Theta} \left\langle \Upsilon_{\xi} C_{1} f, \Upsilon_{\xi} C_{2} f \right\rangle &= \left\langle \sum_{\xi \in \Theta} C_{2} \Upsilon_{\xi}^{*} \Upsilon_{\xi} C_{1} f, f \right\rangle \\ &= \left\langle C_{2} S_{\Upsilon} C_{1} f, f \right\rangle \\ &= \left\langle C_{2} C_{1} S_{\Upsilon} f, f \right\rangle \\ &= \left\langle \sum_{\xi \in \Theta} (C_{2} C_{1}) \Upsilon_{\xi}^{*} \Upsilon_{\xi} f, f \right\rangle \\ &= \sum_{\xi \in \Theta} \left\langle \Upsilon_{\xi} (C_{2} C_{1}) f, \Upsilon_{\xi} f \right\rangle \end{split}$$

and we have

$$A\langle f, f \rangle \leq \sum_{\xi \in \Theta} \langle \Upsilon_{\xi}(C_2 C_1) f, f \rangle \leq B\langle f, f \rangle, \quad \forall f \in \mathcal{H},$$

Hence, $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is a C_2C_1 -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$

Lemma 3.5. Let $C_1, C_2 \in GL^+(\mathcal{H})$. Then the following statements are equivalent:

- (1) $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is a (C_1, C_2) -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$
- (2) $\{v_{\xi,k}\}_{\xi\in\Theta,k\in K_{\xi}}$ is a (C_1,C_2) -controlled for \mathcal{H} , where $v_{\xi,k} = \Upsilon^*_{\xi}e_{\xi,k}$, for $\xi\in\Theta$ and $k\in K_{\xi}$

Proof. Let $\{e_{\xi,k}\}_{k\in K_{\xi}}$ be an orthonormal basis for \mathcal{K}_{ξ} for each $\xi \in \Theta$, consequently for any $h \in \mathcal{H}$, we have $\Upsilon_{\xi}h \in \mathcal{K}_{\xi}$. It follows that

$$\Upsilon_{\xi}C_{1}h = \sum_{k \in K_{\xi}} \left\langle \Upsilon_{\xi}C_{1}h, e_{\xi,k} \right\rangle e_{\xi,k} = \sum_{k \in K_{\xi}} \left\langle h, C_{1}\Upsilon_{\xi}^{*}e_{\xi,k} \right\rangle e_{\xi,k}.$$

and

$$\Upsilon_{\xi}C_{2}h = \sum_{k \in K_{\xi}} \left\langle \Upsilon_{\xi}C_{2}h, e_{\xi,k} \right\rangle e_{\xi,k} = \sum_{k \in K_{\xi}} \left\langle h, C_{2}\Upsilon_{\xi}^{*}e_{\xi,k} \right\rangle e_{\xi,k}.$$

We have

$$\left< \Upsilon_{\xi} C_1 h, \Upsilon_{\xi} C_2 h \right> = \sum_{k \in K_{\xi}} \left< h, C_1 \Upsilon_{\xi}^* e_{\xi,k} \right> \left< C_2 \Upsilon_{\xi}^* e_{\xi,K}, h \right> = \sum_{k \in K_{\xi}} \left< h, C_1 v_{\xi,k} \right> \left< C_2 v_{\xi,k}, h \right>.$$

Hence

$$A\langle h,h\rangle \leq \sum_{\xi\in\Theta} \left< \Upsilon_{\xi}C_{1}h, \Upsilon_{\xi}C_{2}h \right> = \sum_{\xi\in\Theta} \sum_{k\in K_{\xi}} \left< h, C_{1}v_{\xi,k} \right> \left< C_{2}v_{\xi,k},h \right> \leq B\langle h,h\rangle$$

is equivalent to

$$A\langle h,h\rangle \leq \sum_{\xi\in\Theta} \sum_{k\in K_{\xi}} \langle h,C_1 v_{\xi,k}\rangle \, \langle C_2 v_{\xi,k},h\rangle \leq B\langle h,h\rangle \text{ for any } h\in\mathcal{H}.$$

Lemma 3.6. Let $C_1, C_2 \in GL^+(\mathcal{H})$. Then the following assertions are equivalent:

- (1) $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ is a (C_1, C_2) -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$.
- (2) $\{C_1 v_{\xi,k}\}_{\xi \in \Theta, k \in K_{\xi}}$ is a $C_2 C_1^{-1}$ -controlled for \mathcal{H} , where $v_{\xi,k} = \Upsilon_{\xi}^* e_{\xi,k}$, for $\xi \in \Theta$ and $k \in K_{\xi}$.

Proof. By the proof of Lemma 3.5, we have

$$\sum_{\xi \in \Theta} \left\langle \Upsilon_{\xi} C_1 f, \Upsilon_{\xi} C_2 f \right\rangle = \sum_{\xi \in \Theta} \sum_{k \in k_{\xi}} \left\langle f, C_1 \Upsilon_{\xi}^* e_{\xi,k} \right\rangle \left\langle C_2 \Upsilon_{\xi}^* e_{\xi,K}, f \right\rangle.$$

Let's put $f_{\xi,k} = C_1 v_{\xi,k}, v_{\xi,k} = \Upsilon_{\xi}^* e_{\xi,k}$, so

$$A\langle f,f\rangle \leq \sum_{\xi\in\Theta} \langle \Upsilon_{\xi}C_1f,\Upsilon_{\xi}C_2f\rangle \leq B\langle f,f\rangle$$

is equivalent to

$$A\langle f, f \rangle \leq \sum_{\xi \in \Theta} \sum_{k \in K_{\xi}} \langle f, f_{\xi,k} \rangle \left\langle C_2 C_1^{-1} v_{\xi,k}, f \right\rangle \leq B \langle f, f \rangle \text{ for any } f \in \mathcal{H}.$$

4. Controlled dual g-frames in Hilbert C^* -modules

Definition 4.1. Let $C_1, C_2 \in GL^+(\mathcal{H})$, $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$ and $\{\Phi_{\xi}\}_{\xi \in \Theta}$ be (C_1, C_1) -controlled and (C_2, C_2) -controlled *g*-Bessel sequences for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi \in \Theta}$, respectively. If for every $h \in \mathcal{H}$,

$$h = \sum_{\xi \in \Theta} C_1 \Upsilon_{\xi}^* \Phi_{\xi} C_2 h$$

Then $\{\Phi_{\xi}\}_{\xi\in\Theta}$ is called a (C_1, C_2) -controlled dual g-frame of $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$.

Definition 4.2. Let $C_1, C_2 \in GL^+(\mathcal{H})$, $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ and $\{\Phi_{\xi}\}_{\xi\in\Theta}$ be (C_1, C_1) -controlled and (C_2, C_2) -controlled g Bessel sequence for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$, respectively. if for any $h \in \mathcal{H}$,

$$S_{C_1\Upsilon\Phi C_2}h = \sum_{\xi\in\Theta} C_1\Upsilon_{\xi}^*\Phi_{\xi}C_2h$$

 $S_{C_1\Upsilon\Phi C_2}$ is called a (C_1, C_2) -controlled dual g-frame operator for this pair of controlled g-Bessel sequence.

We clearly see that $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ and $\{\Phi_{\xi}\}_{\xi\in\Theta}$ are also two g-Bessel sequences. $S_{C_1\Upsilon\Phi C_2}$ is a well-defined and bounded, and we have

$$S_{C_1\Upsilon\Phi C_2} = \mathcal{T}_{C_1\Upsilon C_1}\mathcal{T}_{C_2\Phi C_2}^* = C_1\mathcal{T}_\Upsilon\mathcal{T}_{\Phi}^*C_2 = C_1S_{\Upsilon\Phi}C_2,$$

Proposition 4.3. Let $C_1, C_2 \in GL^+(\mathcal{H})$, $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$ and $\{\Phi_{\xi}\}_{\xi \in \Theta}$ be (C_1, C_1) -controlled and (C_2, C_2) -controlled g-Bessel sequences with bounds B_{Υ} and B_{Φ} , respectively.

If $S_{C_1\Upsilon\Phi C_2}$ is bounded below, then $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ and $\{\Phi_{\xi}\}_{\xi\in\Theta}$ are (C_1, C_1) -controlled and (C_2, C_2) -controlled g-frames, respectively.

Proof. Let us assume there is a constant $\lambda > 0$ such that

$$||S_{C_1\Upsilon\Phi C_2}f|| \ge \lambda \langle f, f \rangle$$
 for all $f \in \mathcal{H}$.

By Cauchy-Schwartz's inequality, we have

$$\begin{split} \lambda \|\langle f, f \rangle \|^{\frac{1}{2}} &\leq \|S_{C_{1}\Upsilon\Phi C_{2}}f\| = \sup_{\|g\|=1} \left\| \left\langle \sum_{\xi \in \Theta} C_{1}\Upsilon_{\xi}^{*}\Phi_{\xi}C_{2}f, g \right\rangle \right\| \\ &= \sup_{\|g\|=1} \left\| \sum_{\xi \in \Theta} \left\langle \Phi_{\xi}C_{2}f, \Upsilon_{\xi}C_{1}g \right\rangle \right\| \\ &\leq \sup_{\|g\|=1} \sqrt{\left\| \sum_{\xi \in \Theta} \left\langle \Phi_{\xi}C_{2}f, \Phi_{\xi}C_{2}f \right\rangle \right\|} \sqrt{\left\| \sum_{\xi \in \Theta} \left\langle \Upsilon_{\xi}C_{1}g, \Upsilon_{\xi}C_{1}g \right\rangle \right\|} \\ &\leq \sqrt{B_{\Upsilon}} \sqrt{\left\| \sum_{\xi \in \Theta} \left\langle \Phi_{\xi}C_{2}f, \Phi_{\xi}C_{2}f \right\rangle \right\|} . \end{split}$$

Thus

$$\frac{\lambda^2}{B_{\Upsilon}}\langle f, f \rangle \leq \sum_{\xi \in \Theta} \langle \Phi_{\xi} C_2 f, \Phi_{\xi} C_2 f \rangle \text{ for } f \in \mathcal{H}$$

On the other hand, Since

$$S^*_{C_1 \Upsilon \Phi C_2} = (C_1 S_{\Upsilon \Phi} C_2)^* = C_2 S^*_{\Upsilon \Phi} C_1 = C_2 S_{\Phi \Upsilon} C_1 = S_{C_2 \Phi \Upsilon C_1},$$

then $S_{C_2\Phi\wedge C_1}$ is also bound below. Similarly, we can prove that

$$\frac{\lambda^2}{B_{\Phi}} \langle f, f \rangle \leq \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_2 f, \Upsilon_{\xi} C_2 f \rangle \text{ for } f \in \mathcal{H}$$

Hence we conclude that $\{\Upsilon_\xi\}_{\xi\in\Theta}$ is a $(C_1,C_1)\text{-controlled}$ g-frames.

Theorem 4.4. Let $C_1, C_2 \in GL^+(\mathcal{H})$, $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$ and $\{\Phi_{\xi}\}_{\xi \in \Theta}$ be (C_1, C_1) -controlled and (C_2, C_2) -controlled g Bessel sequences for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi \in \Theta}$, respectively. Then the following statements are equivalent:

$$\begin{aligned} (1) \ f &= \sum_{\xi \in \Theta} C_1 \Upsilon_{\xi}^* \Phi_{\xi} C_2 f, \forall f \in \mathcal{H}. \\ (2) \ f &= \sum_{\xi \in \Theta} C_2 \Phi_{\xi}^* \Upsilon_{\xi} C_1 f, \forall f \in \mathcal{H}. \\ (3) \ \langle f, g \rangle &= \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_1 f, \Phi_{\xi} C_2 g \rangle = \sum_{\xi \in \Theta} \langle \Phi_{\xi} C_2 f, \Upsilon_{\xi} C_1 g \rangle, \forall f, g \in \mathcal{H}. \\ (4) \ \langle f, f \rangle &= \sum_{\xi \in \Theta}^{\xi \in \Theta} \langle \Upsilon_{\xi} C_1 f, \Phi_{\xi} C_2 f \rangle = \sum_{\xi \in \Theta}^{\xi \in \Theta} \langle \Phi_{\xi} C_2 f, \Upsilon_{\xi} C_1 f \rangle, \forall f \in \mathcal{H}. \end{aligned}$$

In case the equivalent conditions are satisfied, $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$ and $\{\Phi_{\xi}\}_{\xi\in\Theta}$ are (C_1, C_1) -controlled and (C_2, C_2) controlled g-frames, respectively.

Proof. (1) \Leftrightarrow (2). Let $\mathcal{T}_{C_1 \Upsilon C_1}$ and $\mathcal{T}_{C_1 \Phi C_1}$ be the synthesis operator of the (C_1, C_1) -controlled g-Bessel sequence $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$ and (C_2, C_2) -controlled g-Bessel sequence $\{\Phi_{\xi}\}_{\xi \in \Theta}$ respectively. Moreover, we see that $\mathcal{T}_{C_1 A C_1} \mathcal{T}^*_{C_2 \Phi C_2} = I_{\mathcal{H}}$, wich is equivalent to $\mathcal{T}_{C_2 \Phi C_2} \mathcal{T}^*_{C_1 A C_1} = I_{\mathcal{H}}$, which is identical to the statement (2). Conversely, (2) implies (1) similarly.

(2) \Rightarrow (3). suppose that for any $f, g \in \mathcal{H}$ we have $f = \sum_{\xi \in \Theta} C_2 \Phi_{\xi}^* \Upsilon_{\xi} C_1 f$, then

$$\langle f,g\rangle = \langle \sum_{\xi\in\Theta} C_2 \Phi_\xi^* \Upsilon_\xi C_1 f,g\rangle = \sum_{\xi\in\Theta} \langle \Upsilon_\xi C_1 f, \Phi_\xi C_2 g\rangle = \sum_{\xi\in\Theta} \langle \Phi_\xi C_2 f, \Upsilon_\xi C_1 g\rangle$$

(2) \Leftarrow (3). suppose that for any $f, g \in \mathcal{H}, \langle f, g \rangle = \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_1 f, \Phi_{\xi} C_2 g \rangle$ shows that

$$\left\langle f - \sum_{\xi \in \Theta} C_2 \Phi_{\xi}^* \Upsilon_{\xi} C_1 f, g \right\rangle = 0, \quad \forall g \in \mathcal{H}$$

Hence (2) is followed.

 $(3) \Rightarrow (4)$ is evident .

 $(4) \Rightarrow (3)$. using condition (4), we have

$$\begin{split} \langle f+g,f+g\rangle &= \sum_{\xi\in\Theta} \left< \Upsilon_{\xi}C_{1}(f+g), \Phi_{\xi}C_{2}(f+g) \right> \\ &= \sum_{\xi\in\Theta} \left< \Upsilon_{\xi}C_{1}f + \Upsilon_{\xi}C_{1}g, \Phi_{\xi}C_{2}f + \Phi_{\xi}C_{2}g \right> \\ &= \sum_{\xi\in\Theta} \left< \Upsilon_{\xi}C_{1}f, \Phi_{\xi}C_{2}f \right> + \sum_{\xi\in\Theta} \left< \Upsilon_{\xi}C_{1}f, \Phi_{\xi}C_{2}g \right> \\ &+ \sum_{\xi\in\Theta} \left< \Upsilon_{\xi}C_{1}g, \Phi_{\xi}C_{2}f \right> + \sum_{\xi\in\Theta} \left< \Upsilon_{\xi}C_{1}g, \Phi_{\xi}C_{2}g \right> . \end{split}$$

Also,

$$\begin{split} \langle f - g, f - g \rangle &= \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} f, \Gamma_{\xi} C_{2} f \rangle - \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} f, \Phi_{\xi} C_{2} g \rangle \\ &- \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} g, \Phi_{\xi} C_{2} f \rangle + \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} g, \Phi_{\xi} C_{2} g \rangle \\ \langle f + \mathrm{i}g, f + \mathrm{i}g \rangle &= \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} f, \Phi_{\xi} C_{2} f \rangle - \mathrm{i} \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} f, \Phi_{\xi} C_{2} g \rangle \\ &+ \mathrm{i} \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} g, \Phi_{\xi} C_{2} f \rangle + \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} g, \Phi_{\xi} C_{2} g \rangle \\ \langle f - \mathrm{i}g, f - \mathrm{i}g \rangle &= \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} f, \Phi_{\xi} C_{2} f \rangle + \mathrm{i} \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} g, \Phi_{\xi} C_{2} g \rangle \\ &- \mathrm{i} \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} g, \Phi_{\xi} C_{2} f \rangle + \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} C_{1} g, \Phi_{\xi} C_{2} g \rangle \,. \end{split}$$

and from the polarization identity,

$$\begin{split} \langle f,g \rangle &= \frac{1}{4} \left(\langle f+g,f+g \rangle - \langle f-g,f-g \rangle + \mathrm{i} \langle f+\mathrm{i}g,f+\mathrm{i}g \rangle - \mathrm{i} \langle f-\mathrm{i}g,f-\mathrm{i}g \rangle \right) \\ &= \sum_{\xi \in \Theta} \left\langle \Upsilon_{\xi} C_1 f, \Phi_{\xi} C_2 g \right\rangle. \end{split}$$

Lemma 4.5. [15] Let $C_1, C_2 \in GL^+(\mathcal{H})$, the operator

$$\mathcal{T}_{C_1 \Upsilon C_2} : \bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi} \to \mathcal{H}, \quad \mathcal{T}_{C_1 \Upsilon C_2} \left(\{ f_{\xi} \}_{\xi \in \Theta} \right) = \sum_{\xi \in \Theta} \sqrt{C_1 C_2} \Upsilon_{\xi}^* f_{\xi}$$

is well-defined and bounded with $\|\mathcal{T}_{C_1 \Upsilon C_2}\| \leq \sqrt{B}$. If and only if $\{\Upsilon_{\xi} : \xi \in \Theta\}$ is (C_1, C_2) -controlled g-Bessel sequence for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi \in \Theta}$ with bound B.

Theorem 4.6. Let $C_1, C_2 \in GL^+(\mathcal{H})$. A sequence $\{\Upsilon_{\xi} : \xi \in \Theta\} \subset \operatorname{End}^*_{\mathcal{A}}(\mathcal{H}, \mathcal{K}_{\xi})$ be a (C_1, C_1) controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi \in \Theta}$. Then the following statements are equivalent:

- (1) a (C_2, C_2) -controlled g-frame $\{\Phi_{\xi}\}_{\xi\in\Theta}$ is a (C_1, C_2) -controlled dual g-frame of $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$
- (2) $C_2 \Phi_{\xi}^* e_{\xi,k} = \mathcal{U}(e_{\xi,k}\delta_{\xi}), \quad \xi \in \Theta, k \in K_{\xi} \subset \mathbb{Z}, \text{ where } \mathcal{U} : \bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi} \to \mathcal{H} \text{ is a bounded left-inverse of } \mathcal{T}^*_{C_1 \wedge C_1}.$

Proof. We suppose that $\{k_{\xi}\}_{\xi\in\Theta} \in \bigoplus_{\xi\in\Theta} \mathcal{K}_{\xi}$, thus

(4.1)
$$\{k_{\xi}\}_{\xi\in\Theta} = \sum_{\xi\in\Theta} k_{\xi}\delta_{\xi} = \sum_{\xi\in\Theta} \sum_{k\in K_{\xi}} \langle k_{\xi}, e_{\xi,k} \rangle e_{\xi,k}\delta_{\xi}.$$

where δ is the Kronecker symbol.

We have $\{e_{\xi,k}\delta_{\xi}\}_{\xi\in\Theta,k\in K_{\xi}}$ is an orthonormal basis of $\bigoplus_{\xi\in\Theta}\mathcal{K}_{\xi}$. If there exist $\mathcal{U}: \bigoplus_{\xi\in\Theta}\mathcal{K}_{\xi} \to \mathcal{H}$ is a bounded left-inverse of $\mathcal{T}^*_{C_1\Upsilon C_1}$ such that

$$\mathcal{U}\left(e_{\xi,k}\delta_{\xi}\right) = C_2 \Phi_{\xi}^* e_{\xi,k}, \quad \xi \in \Theta, k \in K_{\xi}.$$

applying Lemma 4.1, $\{\Phi_{\xi}\}_{\xi\in\Theta}$ is a (C_2, C_2) -controlled g-Bessel sequence for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Theta}$. For every $h \in \mathcal{H}$, the equation (4,1) gives us

$$h = \mathcal{UT}_{C_1 \Upsilon C_1}^* h = \mathcal{U} \left(\sum_{\xi \in \Theta} \sum_{k \in K_{\xi}} \langle \Upsilon_{\xi} C_1 h, e_{\xi,k} \rangle e_{\xi,k} \delta_{\xi} \right)$$
$$= \sum_{\xi \in \Theta} \sum_{k \in K_{\xi}} \langle h, C_1 \Upsilon_{\xi}^* e_{\xi,k} \rangle \mathcal{U} (e_{\xi,k} \delta_{\xi})$$
$$= \sum_{\xi \in \Theta} C_2 \Phi_{\xi}^* \sum_{k \in K_{\xi}} \langle h, C_1 v_{\xi,k} \rangle e_{\xi,k}$$
$$= \sum_{\xi \in \Theta} C_2 \Phi_{\xi}^* \Upsilon_{\xi} C_1 h,$$

where $v_{\xi,k} = \Upsilon_{\xi}^* e_{\xi,k}$. we have, $\{\Phi_{\xi}\}_{\xi \in \Theta}$ is a (C_1, C_2) -controlled dual g-frame of $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$

Conversely, For $h \in \mathcal{H}$, we have

$$h = \sum_{\xi \in \Theta} C_1 \Upsilon_{\xi}^* \Phi_{\xi} C_2 h = \sum_{\xi \in \Theta} C_2 \Phi_{\xi}^* \Upsilon_{\xi} C_1 h$$

which is $\mathcal{T}_{C_2\Phi C_2}\mathcal{T}^*_{C_1\Upsilon C_1} = I_{\mathcal{H}}$. Let $\mathcal{U} = \mathcal{T}_{C_2\Phi C_2}$, then $\mathcal{U} : \bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi} \to \mathcal{H}$ is a bounded left-inverse of $\mathcal{T}^*_{C_1\Upsilon C_1}$. Then

$$h = \sum_{\xi \in \Theta} \sum_{k \in K_{\xi}} \left\langle h, C_1 v_{\xi,k} \right\rangle C_2 \Phi_{\xi}^* e_{\xi,k} = \sum_{\xi \in \Theta} \sum_{k \in K_{\xi}} \left\langle h, C_1 v_{\xi,k} \right\rangle \mathcal{U}\left(e_{\xi,k} \delta_{\xi}\right), \quad \forall h \in \mathcal{H}$$

since $\{e_{\xi,k}\}_{k\in K_{\xi}}$ is an orthonormal basis of \mathcal{K}_{ξ} , we have

$$C_2 \Phi_{\xi}^* e_{\xi,k} = \mathcal{U}\left(e_{\xi,k}\delta_{\xi}\right), \quad \xi \in \Theta, k \in K_{\xi}.$$

Theorem 4.7. Let $\Delta \in GL^+(\mathcal{H}), \{\Upsilon_{\xi}\}_{\xi \in \Theta}$ be a (Δ, Δ) -controlled g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi \in \Theta}$ with the frame operator and synthesis operator $S_{\Delta\Upsilon\Delta}$ and $\mathcal{T}_{\Delta\Upsilon\Delta}$, respectively. Then A sequence $\{\Phi_{\xi} : \xi \in \Theta\} \subset \operatorname{End}^*_{\mathcal{A}}(\mathcal{H}, \mathcal{K}_{\xi})$ is a Δ -controlled dual g-frame of $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$ if and only if

$$\Phi_{\xi}h = (\mathcal{T}h)_{\xi} + \Upsilon_{\xi}S_{\Delta\Upsilon\Delta}^{-1}\Delta h, \quad \xi \in \Theta, h \in \mathcal{H}$$

where $\mathcal{T}: \mathcal{H} \to \bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi}$ is a bounded linear operator satisfying $\mathcal{T}_{\Delta \Upsilon \Delta} \mathcal{T} = 0$

Proof. If $\mathcal{T} : \mathcal{H} \to \bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi}$ is a bounded linear operator satisfying $\mathcal{T}_{\Delta \Upsilon \Delta} \mathcal{T} = 0$. Then $\{\Phi_{\xi} : \xi \in \Theta\} \subset \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{K}_{\xi})$ is a g-Bessel sequence for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi \in \Theta}$. In fact, for any $h \in \mathcal{H}$ we have

$$\begin{split} \sum_{\xi \in \Theta} \langle \Phi_{\xi} h, \Phi_{\xi} h \rangle &= \sum_{\xi \in \Theta} \langle (\mathcal{T}h)_{\xi} + \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta h, (\mathcal{T}h)_{\xi} + \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta h \rangle \\ &\leq 2 \left(\sum_{\xi \in \Theta} \langle \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} Pf, \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta h \rangle + \|\mathcal{T}h\|^2 \right) \\ &\leq 2 \left(\sum_{\xi \in \Theta} \langle \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta, \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta \rangle \langle h, h \rangle + \|\mathcal{T}\|^2 \langle h, h \rangle \right) \\ &\leq 2 \left(B \left\| S_{\Delta\Upsilon\Delta}^{-1} \Delta \right\|^2 + \|\mathcal{T}\|^2 \right) \langle h, h \rangle, \end{split}$$

where B is the upper bound of $\{\Upsilon_{\xi}\}_{\xi\in\Theta}$. Furthermore,

$$\begin{split} \sum_{\xi \in \Theta} \Delta \Upsilon_{\xi}^{*} \Phi_{\xi} h &= \sum_{\xi \in \Theta} \Delta \Upsilon_{\xi}^{*} \left((\mathcal{T}h)_{\xi} + \Upsilon_{\xi} S_{\Delta \Upsilon \Delta}^{-1} \Delta h \right) \\ &= \mathcal{T}_{\Delta \Upsilon \Delta} \mathcal{T}h + \sum_{\xi \in \Theta} \Delta \Upsilon_{\xi}^{*} \Upsilon_{\xi} S_{\Delta \Upsilon \Delta}^{-1} \Delta h \\ &= 0 + S_{\Delta \Upsilon \Delta}^{-1} \sum_{\xi \in \Theta} \Delta \Upsilon_{\xi}^{*} \Upsilon_{\xi} \Delta h \\ &= h. \end{split}$$

Thus $\{\Phi_{\xi} : \xi \in \Theta\} \subset \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{K}_{\xi})$ is a Δ -controlled dual g-frame of $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$. On the other hand. Suppose that $\{\Phi_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{K}_{\xi}) : \xi \in \Theta\}$ is a Δ -controlled dual g-frame of $\{\Upsilon_{\xi}\}_{\xi \in \Theta}$. Now we consider the operator \mathcal{T} which is defined by

$$\mathcal{T}: \mathcal{H} \to \bigoplus_{\xi \in \Theta} \mathcal{K}_{\xi}, \quad h \mapsto Sh \quad (\forall h \in \mathcal{H})$$

satisfying

$$\Phi_{\xi}h = (\mathcal{T}h)_{\xi} + \Upsilon_{\xi}S_{\Delta\Upsilon\Delta}^{-1}\Delta h, \quad \xi \in \Theta.$$

Hence

$$\begin{split} |\mathcal{T}h||^2 &= \sum_{\xi \in \Theta} \langle \Phi_{\xi}h - \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta h, \Phi_{\xi}h - \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta h \rangle \\ &\leq \sum_{\xi \in \Theta} \langle \Phi_{\xi}h, \Phi_{\xi}h \rangle + \sum_{\xi \in \Theta} \langle \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta h, \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta h \rangle \\ &\quad + 2 \left(\sum_{\xi \in \Theta} \langle \Phi_{\xi}h, \Phi_{\xi}h \rangle \right)^{\frac{1}{2}} \left(\sum_{\xi \in \Theta} \langle \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta h, \Upsilon_{\xi} S_{\Delta\Upsilon\Delta}^{-1} \Delta h \rangle \right)^{\frac{1}{2}} \\ &\leq \left(C + D^{-1} + 2\sqrt{CD^{-1}} \right) \langle h, h \rangle, \end{split}$$

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

Abdelilah Karara, Mohamed Rossa, Samir Kabbaj

then \mathcal{T} is a linear bounded operator. Furthermore, for any $h, g \in \mathcal{H}$, we have

$$\begin{split} \langle \mathcal{T}_{\Delta\Upsilon\Delta}\mathcal{T}h,g\rangle &= \sum_{\xi\in\Theta} \left\langle \Delta\Upsilon_{\xi}^{*}\mathcal{T}h,g \right\rangle = \sum_{\xi\in\Theta} \left\langle \Delta\Upsilon_{\xi}^{*} \left(\Phi_{\xi}h - \Upsilon_{\xi}S_{\Delta\Upsilon\Delta}^{-1}\Delta h\right),g \right\rangle \\ &= \sum_{\xi\in\Theta} \left\langle \Delta\Upsilon_{\xi}^{*}\Phi_{\xi}h,g \right\rangle - \sum_{\xi\in\Theta} \left\langle \Delta\Upsilon_{\xi}^{*}\Upsilon_{\xi}S_{\Delta\Upsilon\Delta}^{-1}\Delta h,g \right\rangle \\ &= \left\langle h,g \right\rangle - \left\langle h,g \right\rangle = 0. \end{split}$$

Hence we conclude that $\mathcal{T}_{\Delta\Upsilon\Delta}\mathcal{T} = 0$.

Declarations

Availablity of data and materials

Not applicable.

Competing interest

The authors declare that they have no competing interests.

Fundings

Authors declare that there is no funding available for this article.

Authors' contributions

The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

References

- Balazs P, Antoine J. P, Grybos A, 2010. Weighted and controlled frames, Int. J. Wavelets Multiresolut. Inf. Process., 8(1) 109-132.
- 2. Christensen O, 2016. An Introduction to Frames and Riesz bases, Birkhäuser.
- 3. Conway J. B, 2000. A Course In Operator Theory, Am. Math. Soc., Providence, RI.
- Daubechies I, Grossmann A, Meyer Y, 1986. Painless nonorthogonal expansions, J. Math. Phys. 27, 1271– 1283.
- 5. Duffin R. J, Schaeffer A. C, 1952. A class of nonharmonic fourier series, Trans. Am. Math. Soc. 72, 341-366.
- 6. Hua D, Huang Y, 2017. Controlled K g-frames in Hilbert spaces, Results in Math., 72(3), 1227-1238.
- 7. Jing W, 2006. Frames in Hilbert C*-modules, Doctoral Dissertation.
- 8. Kabbaj S, Rossafi M, 2018. *-operator Frame for $End^*_{\mathcal{A}}(\mathcal{H})$, Wavelet Linear Algebra, 5, (2), 1-13.
- 9. Kaplansky I, 1953. Modules over operator algebras, Am. J. Math. 75, 839–858.
- Khorsavi A, Khorsavi B, 2008. Fusion frames and g-frames in Hilbert C^{*}-modules, Int. J. Wavelet, Multiresolution and Information Processing 6, 433-446. Doi: doi.org/10.1142/S0219691308002458
- Kouchi M. R, Rahimi A, 2017. On controlled frames in Hilbert C*-modules, Int. J. Walvelets Multi. Inf. Process., 15(4), 1750038.

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI

- Lance E. C, 1995. Hilbert C*-Modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge Univ. Press.
- 13. Rossafi M, Kabbaj S, 2020. *-K-operator Frame for $End^*_{\mathcal{A}}(\mathcal{H}),$ Asian-Eur. J. Math. 13, 2050060.
- Xiao X. C, Zeng X. M, 2010. Some properties of g-frames in Hilbert C*-modules, J. Math. Anal. Appl., 363, 399-408.
- Sahu N. K, 2021. Controlled g-frames in Hilbert C*-modules, Mathematical Analysis and its Contemporary Applications Volume 3, Issue 3, 65–82.
- 16. Sun W, 2006. G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, no 1, 437-452.