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Abstract.

In this paper we give some new results for controlled g-frames and controlled dual g-frames
in Hilbert C*-modules. First, we talk about controlled g-frame characterisation and find
certain conditions that are equal to them. Then, we explain the purpose controlled dual

g-frames and controlled dual g-frames operator and discuss some of their characteristics.
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1. Introduction

The notion of frame is a recent active mathematical research topic, signal processing, com-
puter science, etc. Frames for Hilbert spaces were first introduced in 1952 by Duffin and
Schaefer [5] for study of nonharmonic Fourier series. Daubechies, Grossmann, and Meyer [4]
revived and developed them in 1986, and popularized from then on.

In recent years, many mathematicians generalized the frame theory from Hilbert spaces to
Hilbert C*-modules. For more details of frames in Hilbert C*-modules we refer to [8, 10,
13, 7]. Currently, the study of g-frames has yielded many results. Controlled frames have
been introduced by Balazs et al.[1] to improve the numerical efficiency of iterative algorithms
for inverting frame operator on abstract Hilbert spaces. Recently, Kouchi and Rahimi [11]

introduced Controlled frames in Hilbert C*-modules.
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In this paper we give the characterization of controlled g-frames and controlled dual g-frames
in Hilbert C*-modules and also we characterize controlled g-frames and get some comparable
conditions for them. In the end we present the notion of controlled dual frames in Hilbert

C*-modules and give fundamental characterizations of these frames via operator machinery.

2. Preliminaries

Definition 2.1. [3]. Let A be a Banach algebra, an involution is a map x — z* of A into itself

such that for all  and y in A and all scalars « the following conditions hold:

(3) (ar +y)* = ax* +y*.
Definition 2.2. [3]. A C*-algebra A is a Banach algebra with involution such that :
" ]| = |||
for every z in A.

Definition 2.3. [9]. Let A be a unital C*-algebra and H be a left A-module, such that the
linear structures of A and U are compatible. H is a pre-Hilbert A-module if H is equipped
with an A-valued inner product (.,.) : H x H — A, such that is sesquilinear, positive definite
and respects the module action. In the other words,
(i) (z,z) > 0for all z € X and (z,z) = 0 if and only if x = 0.
(ii) (ax+y,z) =a{z,z) + (y,z) for all a € A and z,y,z € H.
(iii) (z,y) = (y,z)* for all x,y € H.

For & € H, we define ||z|| = ||(x, z)||2. If H is complete with ||.]| is a norm on #, it is called
a Hilbert A-module or a Hilbert C*-module over A. For every a in C*-algebra A, we have
la] = (a*a)2

Let © be a finite or countably index sets, N the set of natural numbers. For each £ € O, we
also reserve the notation End’ (H, ;) for the collection of all adjointable A-linear maps from
H to K¢ and End’y (H,H) is denoted by End’ (). The set of all bounded linear operators on
H with a bounded inverse is denoted by GL(H) and GL™ (H) be the set of all positive bounded

linear invertible operators on H with bounded inverse. We also denote

@ Ke={a={as}: o € K¢ and Z (0, ae) is norm convergent in A }
£co ¢eo

Let f = {fe}cco and g = {ge}cco, the inner product is defined by (f,g) = > ¢co (fe, 9¢)
we have P K¢ is a Hilbert A-module (see [12]).
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Definition 2.4. [14] A sequence {Y¢ € End’y (H,K;)},.; is called a g-frame in 4, if there exist
two constants A, B > 0 such that for every f € H,
(2.1) A(f, f) <Y (Xif . Yef) < BUE ).
=
The numbers A and B are called the g-frames bounds of {Y; € End’ (H,K;)};. If A= B =4,

the g-frame is called -tight and if A = B =1, it is called a Parseval g-frame. If only the right-
hand inequality of (2.1) is satisfied, {T¢}. ; is called a g-Bessel sequence for H.

Definition 2.5. Let {Y¢ € Endy (H,K¢)}¢ be a g-frames for H if
= ®Ycffor feH
€

{®¢}ece is called an alternate dual g-frame for {T¢},o. Furthermore, {T¢}, g is an alternate
dual g-frame for {®¢}, g, that is to say

f=> Yi®f for feH.
£€co

Definition 2.6. Let C1,C> € GLT(H). A sequence of adjointable operators {Te¢}eco is called

a (C1, Cy)-controlled g-frame for H. If there exist two positive constants A, B > 0 such that
(2:2) A(f, ) <Y (TeCLf, TeCof) < B(f.f). VfeH
£€€O

the numbers A and B are called the lower and upper frame bounds for (C4, Cs)-controlled
g-frame, respectively.
If > cco (TeCLf, YeCof) < B(f, f) for all f € H, then {Y¢}, g is called a (Cy, Cz)-controlled
g-Bessel sequence for ‘H If Cy = I, we call {Ti}ge@ a C1-controlled g-frame for H.

Lemma 2.7. [2] Let H be a Hilbert A-module, All positive and bounded operator P : H — H

has a unique positive and bounded square root QQ. We have

(1) P is self-adjoint = @Q is self-adjoint

(2) P is invertible = Q is invertible

Let {Y¢}.; be (C1, C2)-controlled g-Bessel sequence with bound B, the operator :

Torres @D Ke =+ H, Terres (eheeo) = Y (1O Te e, ¥{Jeheeo € EDKe
£eo £eo £e€o
is called the synthesis operator of {Y¢}, o and

Tero,: H @Ko Texeuf = {TdG0N T} . VieH.
€O
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Té\rc, 1s called the analysis operator of {Ye}, q-
When Cy, C2 commute between them, and commute with the operator T¢Te for every £, the

operator

Sevre, i H—=H, Sere,f =) CaTiYeCif, VfeH
£eo

is called the frame operator of {Tﬁ}ge@' We have, Sc,rc, = C157Cy is positive and invertible,
where Sy is frame operator of g-frame {Y,} cco and is positive, invertible, bounded, self-
adjoint, and Aly < Sy < Bly.

For the above result one is referred to Hua and Huang [6]. therefore from now on we suppose

that C'y, Cy commute between them, and commute with the operator Y¢ Y, for every &.

3. Controlled g-frames in Hilbert C*— modules
Theorem 3.1. [I1] Let T : H — H be a linear operator. Then there exist two constants
0 < Cy <0y < o0, such that CiIy < T < Coly if and only if T € GLT(H)
Lemma 3.2. Let C1,Cy € GLT(H). Then the following assertions are equivalent:
(1) {Ye¢}eeo is a (C1,Ca)-controlled g-frame for H with respect to {Ke}ecq

(2) {Te}eeo is a g-frame for H with respect to {K¢} e

Proof. (1) = (2) Let{Y¢}, g is a (C1, C2)-controlled g-frame for H with respect to {K¢},q
with bounds A, B, and h € H, we have

Alh, by = A((C1C2)% (C1C) ™2 h, (C1C2) ¥ (C1C) "2 h)

< al@ent| (o) th (rcniny

1 2 1 1
[T EIDY <T¢C1(C102)_5h7T502(C102)_§h>
£€O

1|2 1 1
= (0102)5 <02ZTgCl(Clc’Q)_Qh,Tg(clcg)_2h>
£€o

12 1 1
= (0102)5 <C25T01(0102)_§h,(0102)_§h>
112
= ||(C1C)=2|| (Svh,h).
So
A

s(hh) <> (Tih,Yeh), VheH
£€O
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For h € H,

(Sth,h) = (Yih, Teh) = <(0102)—%(0102)%5Th,h>
€O

- <(0102)%5Th, (clcz)*%h>

:<5T(0102)(0102) *h, (C1C2)” : >

)

t\:\.-‘

- <015T02(0102)*%h (ChCo)~

<B H(Clc’Z)ié i (h, h)

Which implies that {T¢}, g is a g-frame for H with respect to {K¢},co. (2) = (1) Suppose
that {T¢}. o is a g-frame for H with respect to {K¢}, g with bounds Ay, By. Then

(Arh,h) < (Syh,h) < (Byh,h) for any h € H.

Since C1,Cy € GLT(H), by Lemma 3.1, there exist constants r,r1, R, Ry (0 < r,71, R, Ry < o0)
such that

rly <C1 < Rly, rily <Cy < Rily.

Using (C1Svh, h) = (h, SyC1h) = (h,C1Svh), we get
rA < SyC; =C1Sy < RB.

Identically, we have

7“7“114 S CQSTCl S RRlB
Thus

rr Al h) <Y (YeCih, Y¢Coh) < RRyB(h,h), VheH.
£co

We conclude that {Y; € End’y (H,K;)}ees is a (C1, Ca)-controlled g-frame for H with respect
to {K§}£€®' D

Lemma 3.3. Let C1,Cy € GLT(H). Then {YT¢ € End}y (H,K¢)}e is a (Ci,Cs)-controlled
g-frame for H with respect to {Kf}§e® if and only if

A1) < Y (Tl OO L TGO F) < BUL ), Vf €L,

£€ee
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Proof. Let f € H, we have

Z (TeOLf, YeCof) = <Z CzTZTgle,f> = (CaSyCLf, f)

€0 £€oe

= (G011, f) = ((C201)E e (C2C0)A )

_ <Z(czol>érzn<czcl>5f,f>

£€0

= > (TGl £ T(CaC) )

£co
consequently, {T¢ : { € O} is a (C1, Cz)-controlled g-frame for H with respect to {K¢}, g is
equivalent to

A $) <Y (Te(CaC)F T(CoC)EF) < BULS), VF R,

£€O

Thus {Y¢: £ €O}isa ((0201)%, (0201)%)—controlled g-frame for H with respect to {K¢},q-

|
Lemma 3.4. Let C1,Cy € GLT(H). Then the following statements are equivalent:
(1) {Ye}eeo is a (C1, Ca)-controlled g-frame for H with respect to {K¢}, g
(2) {Te¢}eeo is a C2Ci-controlled g-frame for H with respect to {Ke},cq-
Proof. Let C1,Co € GLT(H),for f € H, we have
D (YO f, TeCof) = <Z CyYEXCL f, f>
£€0 £€o
= (C25vCh S, f)
= (C2015+ 1, f)
= <Z(C2C1)T2Tegf»f>
£€o
=) (Te(C2C) f, Tef)
£€O
and we have
A(f, 1) <D (0e(CoCf, f) < B, f), VfEH,
£€O
Hence, {T¢} . g is a C2C1-controlled g-frame for H with respect to {Ke}. g O

Lemma 3.5. Let C1,Cy € GLT(H). Then the following statements are equivalent:

(1) {Ye¢}eeo is a (C1, Ca)-controlled g-frame for H with respect to {Ke},cq
(2) {vg,k}£€@7k€K§ is a (C1, Ca)-controlled for H, where ve p = Yiecy, for § € © and k €
Ke
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Proof. Let {e¢ i} Ke be an orthonormal basis for K¢ for each £ € O, consequently for any

h € H, we have Y¢h € K¢. It follows that

YeCih= Y (YeCihyecr)ech = > (h,Ci¥ieck) e

keKe keEK,
and
TgCQh = Z <T502h,€5’k> €ek = Z <h,CQT2€§’k>€§’k.
keKe keEK,
We have

<T§C1h, T502h> = Z <h, Cszeg’k> <C2T265,K, h> = Z <h, Clvg,k> <Cgv£,k, h> .

kEK; kEK,
Hence
A(h By <3 (XeCrh, TeCoh)y = > > (h, Crvg 1) (Cove i, h) < B(h, h)
£€O ECOKEK,
is equivalent to

A(h by <373 (B, Crvg k) (Cove k, h) < B(h, h) for any h € H.

£€O keK,

Lemma 3.6. Let C1,Co € GLT(H). Then the following assertions are equivalent:

(1) {Ye¢}eeo is a (C1, Ca)-controlled g-frame for H with respect to {Ke},cq-
(2) {Clvak}ge@,kng is a CoCy ' -controlled for H, where ve 1, = Tieen, for €O andk €
Ke.

Proof. By the proof of Lemma 3.5, we have

S (YO, TeCof) =Y (f,CiTieer) (CaTiec i, f) -
£€o £€O keke
Let’s put fex = Crvgk, ve s = Tiegk, s0
A(f, ) < (TeCif, TeCof) < B(f, f)

£eo

is equivalent to

ALY <D0 A fer) (CoCr Mve ik, £) < BUf, f) for any f € H.

£€O keK,
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4. Controlled dual g-frames in Hilbert C*—modules

Definition 4.1. Let C1,Cy € GLT(H), {Y¢}e o and {Pc}, o be (C1,Cr)-controlled and
(Cy, Cs)-controlled g-Bessel sequences for H with respect to {K¢} tco respectively. If for every
heH,

h=Y CiY{®cCoh
£€0
Then {®¢}, g is called a (C1, C2)-controlled dual g-frame of {Ye}, o

Definition 4.2. Let C1,Cy € GLT(H), {Te}eco and {Pe}o g be (C1, Cr)-controlled and
(Cq, Cy)-controlled g Bessel sequence for H with respect to {K§}§ co» respectively. if for any
heH,

Scyrec,h = Z C1Ti P Coh.
€O
Se,rec, s called a (Cy, Cy)-controlled dual g-frame operator for this pair of controlled g-Bessel

sequence.

We clearly see that {Y¢}, o and {®¢}. o are also two g-Bessel sequences. Sc,rec, is a

well-defined and bounded , and we have
Scirec, = Toyre, Teyec, = C1TxTg Co = C1SveCa;,

Proposition 4.3. Let C1,Cy € GLT(H), {Te}eco and {Pelecq be (Cr,C1)-controlled and
(Cq, Cy)-controlled g-Bessel sequences with bounds By and Be, respectively.
If Scirec, is bounded below, then {Y¢}, o and {P¢}.cq are (C1, Ch)-controlled and (C2,Cs)-

controlled g-frames, respectively.

Proof. Let us assume there is a constant A > 0 such that

[Scirec, fIl = A(f, f) for all f € H.

By Cauchy-Schwartz’s inequality, we have

A DI < 186 taca /1 = s <Z Cszfbfcgf,g>

gll=1 £€O

= sup [ (PCsf, TeCug)
llgllI=1 I3=E)

< sup Z(‘I)Eczﬁ 0 f) Z(TEC’lg,TgClm

lgl=1'\| ||{co ¢eo

< /By Z((I)gczf, PO f)

£eo
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Thus

(£, 1) D (®Caf, 0cCof) for feH

)\2
Br ¢co

On the other hand, Since
Sérec, = (C181eC2)" = C2574C1 = CoSerCy = Scyarcy

then Sc,aac, is also bound below. Similarly, we can prove that

(f, 1) <D (XeCof, YeCof) for f €H

)\2
Be £eo

Hence we conclude that {T¢}, g is a (C1, C1)-controlled g-frames. O

Theorem 4.4. Let C1,Cy € GLT(H), {Teleco and {Petecq be (C1,Ch)-controlled and
(Cq, Cy)-controlled g Bessel sequences for H with respect to {Kg}&@, respectively. Then the

following statements are equivalent:

(1) f=Ycco CrTi00af,Yf € H.
(2) f=Yeeo Co®iTcCLf,Vf € H.

(3) {f,9) =2 cco (YcC1f, @cCag) = 3 cco (PeCaf, TeCig) ., Vf,g € H.
(4) (f.f) = YEE0 (TeOLf, ®eCaf) = Y 5E0 (RO f, TcC1f) VS € H.

In case the equivalent conditions are satisfied, {Ye},cq and {®c}. o are (C1,Ch)-controlled
and (Cq, C3) controlled g-frames, respectively.

Proof. (1) < (2). Let Te,ve, and T a0, be the synthesis operator of the (Cy, C)-controlled
g-Bessel sequence {Té}g co and (O3, Cy)-controlled g-Bessel sequence {®¢ }5 co Tespectively.
Moreover, we see that To, a0, 75,0, = I1, wich is equivalent to Tc,e0, 75, a0, = I3, which is
identical to the statement (2). Conversely, (2) implies (1) similarly.

(2) = (3). suppose that for any f,g € H we have f =3 . g C2@;T¢Ch f, then

(f.9) = (D C2®iYcCif g) = Y (YeCif, @cCag) = Y (2cCaf, TeChyg)
¢eo ¢eo £€o
(2) <= (3). suppose that for any f,g € H,(f,9) = > ¢cq (YeC1f, PCag) shows that
<f - ZCQ@grgclf,g> =0, VgeH
£€O

Hence (2) is followed.
(3) = (4) is evident .
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(4) = (3). using condition (4), we have

(f+9.f+9) = (YeCi(f +9), ®cCalf +9))
£€o

= Z <T§le + TgClg, <I)§Cgf + @5029)
£€O

=Y (YeOrf, ®cCaf) + D (TeCif, ®cCag)

£€O0 I3C)

+ 3 (TeCig, ®Cof) + 3 (YeCig, eCag)
£€O €€

Also,
(f=9,F—9) =Y (XcCrif,TeCaf) = > (YeCif, ®cCag)

€O €O

- Z (YeCrg, @cCaf) + Z (YeCrg, @cCag) .
£€0 £co

(f+ig, [ +ig) = D> (YeCif, cCof) —i) (YO f, DeChg)
£€O £€o

+1) (TeCig, 2:Cof) + > (TeCig, &:Cag).
£€0 £€o

(f —ig, f —ig) = Y _(YLeCif, ®eCof) +1)  (TeCrf, 2cCag)

£€o £€O

—i Y (YeCig, PeCaf) + Y (YeCug, PeChag) .
£€O £€o
and from the polarization identity,

€

=Y (YeCif, ®eCag) .
¢eo

Lemma 4.5. [15] Let C1,Cy € GLT(H), the operator
Teire, - @’Cg —=H, To,ro, ({fﬁ}geg) = Z vV C1C T fe
£eo £eo

is well-defined and bounded with ||Te,ye,| < VB. If and only if {Y¢: & € O} is (C1,Ca)-
controlled g-Bessel sequence for H with respect to {Ici}ge@ with bound B.

Theorem 4.6. Let Cy,Cy € GLT(H). A sequence {Y¢ : £ € ©} C End’y (H,K¢) be a (Cy,Ch)-
controlled g-frame for H with respect to {’Ci}ge@' Then the following statements are equivalent:
(1) a(C2,C2)-controlled g-frame {®¢}, o is a (C1, C2)-controlled dual g-frame of {Y¢} o
(2) Co®iec = Ulegrde), & € O,k € Ke CZ, where U : Do Ke — H is a bounded

left-inverse of T& nc, -
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Proof. We suppose that {ki}ge@ € @566 K¢, thus
(4.1) {keteco = O kede =Y > (ke,ecn) ec ke
§€O £€O keK,
where § is the Kronecker symbol.
We have {e¢,i0¢}eco ke, is an orthonormal basis of Deco Ke. I there exist U : Pece Ke = H

is a bounded left-inverse of 7 v, such that
U (e nde) = Co®iecr, €€O,ke K.

applying Lemma 4.1,{@5}569 is a (Co, Cy)-controlled g-Bessel sequence for H with respect to
{ICE}&@. For every h € H, the equation (4,1) gives us

h = uTc*lTClh =U Z Z <T501h, 657k> 657;655

£€O keK,

= Z Z <h,01'rz€57k>1/[(65)]€(55)

£€o k‘EKg

= ZCQ@E Z (h, Crve k) €c i

£€O keK,

=) P YcChh,
£€O

where ve ; = Tee . we have, {®¢}, g is a (C1, Cz)-controlled dual g-frame of {T¢}, o
Conversely, For h € H, we have
h=> CiYi®eCoh = Co®;YcCih
£€0 £€o
which is To,e0, 78, vo, = In- LetU = To,e0,, then U 69566 K¢ — M is a bounded left-inverse
of T, yo,- Then
h=>"3" (h,Crogk)Ca®fec = Y (h,Croew) U (eeide), VYheH
€O keK, £€O keK,

since {eg’k}kng is an orthonormal basis of K¢, we have
02(1)265,;9 = U(eg’k(&), § S @,k S Kg.
0

Theorem 4.7. Let A € GLT(H), {Te}eco be a (A, A)-controlled g-frame for H with respect to
{]Cf}ge@ with the frame operator and synthesis operator Sava and Tava, respectively. Then
A sequence {®¢ : £ € O} C End’y (H,K¢) is a A-controlled dual g-frame of{Tg}geg if and only
if

Beh = (Th)e + YeSayaAh, £€O,heH

where T : H — @ec Ke is a bounded linear operator satisfying TaxaT =0
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Proof. If T : H — @569 K¢ is a bounded linear operator satisfying 7aya7 = 0. Then

{®¢ : £ € ©} C End} (H, K¢) is a g-Bessel sequence for H with respect to {K¢}, . In fact, for
any h € ‘H we have

Z@gh, Deh) = Z((Th)g + YeSara A, (Th)e + TeSara Ah)
£eo £€O

<2 (stg%mPf, TeSiralh) + ||Th||2)
£€O

<2 (zms;m YeSaya ) h) + | T2 (R, h>)
(€O

<2(BSakald| + ITI2) b, ),

where B is the upper bound of {Y¢}, . Furthermore,
D ATikeh =3 ATL((Th)e + TeSaralh)
£€o £eo

=TavaTh+ > AT{YeS A AR
£€O

=0+ Saya Y AYITAR
£€o

= h.

Thus {®¢ : £ € ©} C Endy (H,K¢) is a A-controlled dual g-frame of {Te}ico- On the other
hand. Suppose that {®¢ € End’y (H,K¢) : £ € O} is a A-controlled dual g-frame of {Telico-

Now we consider the operator 7 which is defined by

T:H—EKe, hSh (YheH)
£€o

satisfying
Peh = (Th)e + YeSayalh, £€0O.

Hence

ITHI? =D (®ch = TeSxyalh, Deh — TeSxyaAh)

£€O
<D (Deh, ®eh) + Y (TS a AR, TSRy AAR)
£€e (€O
+2 Z@gh, Deh) Z(Tgs;}lmm, TSt A AR)
e I3SE)

< (C +D 4 2@) (h, h),
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then 7 is a linear bounded operator. Furthermore, for any h,g € H, we have
(TaxaTh,g) = Y _(AY{Th,g) => (AY; (®ch — TeSxyaAR) ,g)
£€O €0
=Y (AT{Och, g) — Y (ATiYeS A AR, g)
£€O £€o
Hence we conclude that Taora7 = 0. O
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