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Abstract.

In this paper we give some new results for controlled g-frames and controlled dual g-frames

in Hilbert C∗-modules. First, we talk about controlled g-frame characterisation and find

certain conditions that are equal to them. Then, we explain the purpose controlled dual

g-frames and controlled dual g-frames operator and discuss some of their characteristics.
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1. Introduction

The notion of frame is a recent active mathematical research topic, signal processing, com-

puter science, etc. Frames for Hilbert spaces were first introduced in 1952 by Duffin and

Schaefer [5] for study of nonharmonic Fourier series. Daubechies, Grossmann, and Meyer [4]

revived and developed them in 1986, and popularized from then on.

In recent years, many mathematicians generalized the frame theory from Hilbert spaces to

Hilbert C∗-modules. For more details of frames in Hilbert C∗-modules we refer to [8, 10,

13, 7]. Currently, the study of g-frames has yielded many results. Controlled frames have

been introduced by Balazs et al.[1] to improve the numerical efficiency of iterative algorithms

for inverting frame operator on abstract Hilbert spaces. Recently, Kouchi and Rahimi [11]

introduced Controlled frames in Hilbert C∗-modules.
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In this paper we give the characterization of controlled g-frames and controlled dual g-frames

in Hilbert C∗-modules and also we characterize controlled g-frames and get some comparable

conditions for them. In the end we present the notion of controlled dual frames in Hilbert

C∗-modules and give fundamental characterizations of these frames via operator machinery.

2. Preliminaries

Definition 2.1. [3]. Let A be a Banach algebra, an involution is a map x→ x∗ of A into itself

such that for all x and y in A and all scalars α the following conditions hold:

(1) (x∗)∗ = x.

(2) (xy)∗ = y∗x∗.

(3) (αx+ y)∗ = ᾱx∗ + y∗.

Definition 2.2. [3]. A C∗-algebra A is a Banach algebra with involution such that :

‖x∗x‖ = ‖x‖2

for every x in A.

Definition 2.3. [9]. Let A be a unital C∗-algebra and H be a left A-module, such that the

linear structures of A and U are compatible. H is a pre-Hilbert A-module if H is equipped

with an A-valued inner product 〈., .〉 : H ×H → A, such that is sesquilinear, positive definite

and respects the module action. In the other words,

(i) 〈x, x〉 ≥ 0 for all x ∈ H and 〈x, x〉 = 0 if and only if x = 0.

(ii) 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉 for all a ∈ A and x, y, z ∈ H.

(iii) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ H.

For x ∈ H, we define ||x|| = ||〈x, x〉|| 12 . If H is complete with ||.|| is a norm on H, it is called

a Hilbert A-module or a Hilbert C∗-module over A. For every a in C∗-algebra A, we have

|a| = (a∗a)
1
2

Let Θ be a finite or countably index sets, N the set of natural numbers. For each ξ ∈ Θ, we

also reserve the notation End∗A (H,Ki) for the collection of all adjointable A-linear maps from

H to Kξ and End∗A(H,H) is denoted by End∗A(H). The set of all bounded linear operators on

H with a bounded inverse is denoted by GL(H) and GL+(H) be the set of all positive bounded

linear invertible operators on H with bounded inverse. We also denote

⊕
ξ∈Θ

Kξ = {α = {αξ} : αξ ∈ Kξ and
∑
ξ∈Θ

〈αξ, αξ〉 is norm convergent in A }

.

Let f = {fξ}ξ∈Θ and g = {gξ}ξ∈Θ, the inner product is defined by 〈f, g〉 =
∑
ξ∈Θ 〈fξ, gξ〉,

we have
⊕

ξ∈ΘKξ is a Hilbert A-module (see [12]).

10
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Definition 2.4. [14] A sequence {Υξ ∈ End∗A (H,Ki)}i∈J is called a g-frame in H, if there exist

two constants A,B > 0 such that for every f ∈ H,

(2.1) A〈f, f〉 ≤
∑
i∈J
〈Υif,Υξf〉 ≤ B〈f, f〉.

The numbers A and B are called the g-frames bounds of {Υi ∈ End∗A (H,Ki)}i. If A = B = δ,

the g-frame is called δ-tight and if A = B = 1, it is called a Parseval g-frame. If only the right-

hand inequality of (2.1) is satisfied, {Υξ}ξ∈J is called a g-Bessel sequence for H.

Definition 2.5. Let {Υξ ∈ End∗A (H,Kξ)}ξ be a g-frames for H if

f =
∑
ξ∈Θ

Φ∗ξΥξf for f ∈ H

{Φξ}ξ∈Θ is called an alternate dual g-frame for {Υξ}ξ∈Θ. Furthermore, {Υξ}ξ∈Θ is an alternate

dual g-frame for {Φξ}ξ∈Θ, that is to say

f =
∑
ξ∈Θ

Υ∗ξΦξf for f ∈ H.

Definition 2.6. Let C1, C2 ∈ GL+(H). A sequence of adjointable operators {Υξ}ξ∈Θ is called

a (C1, C2)-controlled g-frame for H. If there exist two positive constants A,B > 0 such that

(2.2) A〈f, f〉 ≤
∑
ξ∈Θ

〈ΥξC1f,ΥξC2f〉 ≤ B〈f, f〉. ∀f ∈ H

the numbers A and B are called the lower and upper frame bounds for (C1, C2)-controlled

g-frame, respectively.

If
∑
ξ∈Θ 〈ΥξC1f,ΥξC2f〉 ≤ B〈f, f〉 for all f ∈ H, then {Υξ}ξ∈Θ is called a (C1, C2)-controlled

g-Bessel sequence for H If C2 = IH, we call {Υξ}ξ∈Θ a C1-controlled g-frame for H.

Lemma 2.7. [2] Let H be a Hilbert A-module, All positive and bounded operator P : H → H

has a unique positive and bounded square root Q. We have

(1) P is self-adjoint ⇒ Q is self-adjoint

(2) P is invertible ⇒ Q is invertible

Let {Υξ}ξ∈J be (C1, C2)-controlled g-Bessel sequence with bound B, the operator :

TC1ΥC2
:
⊕
ξ∈Θ

Kξ → H, TC1ΥC2

(
{fξ}ξ∈Θ

)
=
∑
ξ∈Θ

(C1C2)
1
2 Υ∗ξfξ, ∀ {fξ}ξ∈Θ ∈

⊕
ξ∈Θ

Kξ

is called the synthesis operator of {Υξ}ξ∈Θ and

T ∗C1ΥC2
: H →

⊕
ξ∈Θ

Kξ, T ∗C1ΥC2
f =

{
Υξ(C2C1)

1
2 f
}
ξ∈Θ

, ∀f ∈ H.

312
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T ∗C1ΥC2
is called the analysis operator of {Υξ}ξ∈Θ.

When C1, C2 commute between them, and commute with the operator Υ∗ξΥξ for every ξ, the

operator

SC1ΥC2
: H → H, SC1ΥC2

f =
∑
ξ∈Θ

C2Υ∗ξΥξC1f, ∀f ∈ H

is called the frame operator of {Υξ}ξ∈Θ. We have, SC1ΥC2 = C1SΥC2 is positive and invertible,

where SΥ is frame operator of g-frame {Υξ}ξ∈Θ, and is positive, invertible, bounded, self-

adjoint, and AIH ≤ SΥ ≤ BIH.

For the above result one is referred to Hua and Huang [6]. therefore from now on we suppose

that C1, C2 commute between them, and commute with the operator Υ∗ξΥξ for every ξ.

3. Controlled g-frames in Hilbert C∗− modules

Theorem 3.1. [11] Let T : H → H be a linear operator. Then there exist two constants

0 < C1 ≤ C2 <∞, such that C1IH ≤ T ≤ C2IH if and only if T ∈ GL+(H)

Lemma 3.2. Let C1, C2 ∈ GL+(H). Then the following assertions are equivalent:

(1) {Υξ}ξ∈Θ is a (C1, C2)-controlled g-frame for H with respect to {Kξ}ξ∈Θ

(2) {Υξ}ξ∈Θ is a g-frame for H with respect to {Kξ}ξ∈Θ.

Proof. (1) ⇒ (2) Let{Υξ}ξ∈Θ is a (C1, C2)-controlled g-frame for H with respect to {Kξ}ξ∈Θ

with bounds A,B, and h ∈ H, we have

A〈h, h〉 = A〈(C1C2)
1
2 (C1C2)−

1
2h, (C1C2)

1
2 (C1C2)−

1
2h〉

≤ A
∥∥∥(C1C2)

1
2

∥∥∥2

〈(C1C2)−
1
2h, (C1C2)−

1
2h〉

≤
∥∥∥(C1C2)

1
2

∥∥∥2 ∑
ξ∈Θ

〈
ΥiC1(C1C2)−

1
2h,ΥξC2(C1C2)−

1
2h
〉

=
∥∥∥(C1C2)

1
2

∥∥∥2
〈
C2

∑
ξ∈Θ

ΥξC1(C1C2)−
1
2h,Υξ(C1C2)−

1
2h

〉

=
∥∥∥(C1C2)

1
2

∥∥∥2 〈
C2SΥC1(C1C2)−

1
2h, (C1C2)−

1
2h
〉

=
∥∥∥(C1C2)

1
2

∥∥∥2

〈SΥh, h〉 .

So

A∥∥∥(C1C2)
1
2

∥∥∥2 〈h, h〉 ≤
∑
ξ∈Θ

〈Υih,Υξh〉 , ∀h ∈ H

141313
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For h ∈ H,

〈SΥh, h〉 =
∑
ξ∈Θ

〈Υih,Υξh〉 =
〈

(C1C2)−
1
2 (C1C2)

1
2SΥh, h

〉
=
〈

(C1C2)
1
2SΥh, (C1C2)−

1
2h
〉

=
〈
SΥ(C1C2)(C1C2)−

1
2h, (C1C2)−

1
2h
〉

=
〈
C1SΥC2(C1C2)−

1
2h, (C1C2)−

1
2h
〉

≤ B
∥∥∥(C1C2)−

1
2

∥∥∥2

〈h, h〉

Which implies that {Υξ}ξ∈Θ is a g-frame for H with respect to {Kξ}ξ∈Θ. (2) ⇒ (1) Suppose

that {Υξ}ξ∈Θ is a g-frame for H with respect to {Kξ}ξ∈Θ with bounds A1, B1. Then

〈A1h, h〉 ≤ 〈SΥh, h〉 ≤ 〈B1h, h〉 for any h ∈ H.

Since C1, C2 ∈ GL+(H), by Lemma 3.1, there exist constants r, r1, R,R1 (0 < r, r1, R,R1 <∞)

such that

rIH ≤ C1 ≤ RIH, r1IH ≤ C2 ≤ R1IH.

Using 〈C1SΥh, h〉 = 〈h, SΥC1h〉 = 〈h,C1SΥh〉, we get

rA ≤ SΥC1 = C1SΥ ≤ RB.

Identically, we have

rr1A ≤ C2SΥC1 ≤ RR1B.

Thus

rr1A〈h, h〉 ≤
∑
ξ∈Θ

〈ΥξC1h,ΥξC2h〉 ≤ RR1B〈h, h〉, ∀h ∈ H.

We conclude that {Υi ∈ End∗A (H,Ki)}ξ∈J is a (C1, C2)-controlled g-frame for H with respect

to {Kξ}ξ∈Θ. �

Lemma 3.3. Let C1, C2 ∈ GL+(H). Then {Υξ ∈ End∗A (H,Kξ)}ξ is a (C1, C2)-controlled

g-frame for H with respect to {Kξ}ξ∈Θ if and only if

A〈f, f〉 ≤
∑
ξ∈Θ

〈
Υξ(C2C1)

1
2 f,Υξ(C2C1)

1
2 f
〉
≤ B〈f, f〉, ∀f ∈ H,

14
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Proof. Let f ∈ H, we have∑
ξ∈Θ

〈ΥξC1f,ΥξC2f〉 =

〈∑
ξ∈Θ

C2Υ∗ξΥξC1f, f

〉
= 〈C2SΥC1f, f〉

= 〈C2C1SΥf, f〉 =
〈

(C2C1)
1
2SΥ(C2C1)

1
2 f, f

〉
=

〈∑
ξ∈Θ

(C2C1)
1
2 Υ∗ξΥξ(C2C1)

1
2 f, f

〉

=
∑
ξ∈Θ

〈
Υξ(C2C1)

1
2 f,Υξ(C2C1)

1
2 f
〉

consequently, {Υξ : ξ ∈ Θ} is a (C1, C2)-controlled g-frame for H with respect to {Kξ}ξ∈Θ is

equivalent to

A〈f, f〉 ≤
∑
ξ∈Θ

〈
Υξ(C2C1)

1
2 f,Υξ(C2C1)

1
2 f
〉
≤ B〈f, f〉, ∀f ∈ H,

Thus {Υξ : ξ ∈ Θ} is a
(

(C2C1)
1
2 , (C2C1)

1
2

)
-controlled g-frame for H with respect to {Kξ}ξ∈Θ.

�

Lemma 3.4. Let C1, C2 ∈ GL+(H). Then the following statements are equivalent:

(1) {Υξ}ξ∈Θ is a (C1, C2)-controlled g-frame for H with respect to {Kξ}ξ∈Θ

(2) {Υξ}ξ∈Θ is a C2C1-controlled g-frame for H with respect to {Kξ}ξ∈Θ.

Proof. Let C1, C2 ∈ GL+(H),for f ∈ H, we have∑
ξ∈Θ

〈ΥξC1f,ΥξC2f〉 =

〈∑
ξ∈Θ

C2Υ∗ξΥξC1f, f

〉

= 〈C2SΥC1f, f〉

= 〈C2C1SΥf, f〉

=

〈∑
ξ∈Θ

(C2C1)Υ∗ξΥξf, f

〉

=
∑
ξ∈Θ

〈Υξ(C2C1)f,Υξf〉

and we have

A〈f, f〉 ≤
∑
ξ∈Θ

〈Υξ(C2C1)f, f〉 ≤ B〈f, f〉, ∀f ∈ H,

Hence, {Υξ}ξ∈Θ is a C2C1-controlled g-frame for H with respect to {Kξ}ξ∈Θ �

Lemma 3.5. Let C1, C2 ∈ GL+(H). Then the following statements are equivalent:

(1) {Υξ}ξ∈Θ is a (C1, C2)-controlled g-frame for H with respect to {Kξ}ξ∈Θ

(2) {vξ,k}ξ∈Θ,k∈Kξ
is a (C1, C2)-controlled for H, where vξ,k = Υ∗ξeξ,k, for ξ ∈ Θ and k ∈

Kξ

15
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Proof. Let {eξ,k}k∈Kξ
be an orthonormal basis for Kξ for each ξ ∈ Θ, consequently for any

h ∈ H, we have Υξh ∈ Kξ. It follows that

ΥξC1h =
∑
k∈Kξ

〈ΥξC1h, eξ,k〉 eξ,k =
∑
k∈Kξ

〈
h,C1Υ∗ξeξ,k

〉
eξ,k.

and

ΥξC2h =
∑
k∈Kξ

〈ΥξC2h, eξ,k〉 eξ,k =
∑
k∈Kξ

〈
h,C2Υ∗ξeξ,k

〉
eξ,k.

We have

〈ΥξC1h,ΥξC2h〉 =
∑
k∈Kξ

〈
h,C1Υ∗ξeξ,k

〉 〈
C2Υ∗ξeξ,K , h

〉
=
∑
k∈Kξ

〈h,C1vξ,k〉 〈C2vξ,k, h〉 .

Hence

A〈h, h〉 ≤
∑
ξ∈Θ

〈ΥξC1h,ΥξC2h〉 =
∑
ξ∈Θ

∑
k∈Kξ

〈h,C1vξ,k〉 〈C2vξ,k, h〉 ≤ B〈h, h〉

is equivalent to

A〈h, h〉 ≤
∑
ξ∈Θ

∑
k∈Kξ

〈h,C1vξ,k〉 〈C2vξ,k, h〉 ≤ B〈h, h〉 for any h ∈ H.

�

Lemma 3.6. Let C1, C2 ∈ GL+(H). Then the following assertions are equivalent:

(1) {Υξ}ξ∈Θ is a (C1, C2)-controlled g-frame for H with respect to {Kξ}ξ∈Θ.

(2) {C1vξ,k}ξ∈Θ,k∈Kξ
is a C2C

−1
1 -controlled for H, where vξ,k = Υ∗ξeξ,k, for ξ ∈ Θ and k ∈

Kξ.

Proof. By the proof of Lemma 3.5, we have

∑
ξ∈Θ

〈ΥξC1f,ΥξC2f〉 =
∑
ξ∈Θ

∑
k∈kξ

〈
f, C1Υ∗ξeξ,k

〉 〈
C2Υ∗ξeξ,K , f

〉
.

Let’s put fξ,k = C1vξ,k, vξ,k = Υ∗ξeξ,k, so

A〈f, f〉 ≤
∑
ξ∈Θ

〈ΥξC1f,ΥξC2f〉 ≤ B〈f, f〉

is equivalent to

A〈f, f〉 ≤
∑
ξ∈Θ

∑
k∈Kξ

〈f, fξ,k〉
〈
C2C

−1
1 vξ,k, f

〉
≤ B〈f, f〉 for any f ∈ H.

�
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4. Controlled dual g-frames in Hilbert C∗−modules

Definition 4.1. Let C1, C2 ∈ GL+(H), {Υξ}ξ∈Θ and {Φξ}ξ∈Θ be (C1, C1)-controlled and

(C2, C2)-controlled g-Bessel sequences for H with respect to {Kξ}ξ∈Θ, respectively. If for every

h ∈ H,

h =
∑
ξ∈Θ

C1Υ∗ξΦξC2h

Then {Φξ}ξ∈Θ is called a (C1, C2)-controlled dual g-frame of {Υξ}ξ∈Θ.

Definition 4.2. Let C1, C2 ∈ GL+(H), {Υξ}ξ∈Θ and {Φξ}ξ∈Θ be (C1, C1)-controlled and

(C2, C2)-controlled g Bessel sequence for H with respect to {Kξ}ξ∈Θ, respectively. if for any

h ∈ H,

SC1ΥΦC2
h =

∑
ξ∈Θ

C1Υ∗ξΦξC2h.

SC1ΥΦC2 is called a (C1, C2)-controlled dual g-frame operator for this pair of controlled g-Bessel

sequence.

We clearly see that {Υξ}ξ∈Θ and {Φξ}ξ∈Θ are also two g-Bessel sequences. SC1ΥΦC2
is a

well-defined and bounded , and we have

SC1ΥΦC2
= TC1ΥC1

T ∗C2ΦC2
= C1TΥT ∗ΦC2 = C1SΥΦC2,

Proposition 4.3. Let C1, C2 ∈ GL+(H), {Υξ}ξ∈Θ and {Φξ}ξ∈Θ be (C1, C1)-controlled and

(C2, C2)-controlled g-Bessel sequences with bounds BΥ and BΦ, respectively.

If SC1ΥΦC2
is bounded below, then {Υξ}ξ∈Θ and {Φξ}ξ∈Θ are (C1, C1)-controlled and (C2, C2)-

controlled g-frames, respectively.

Proof. Let us assume there is a constant λ > 0 such that

‖SC1ΥΦC2
f‖ ≥ λ〈f, f〉 for all f ∈ H.

By Cauchy-Schwartz’s inequality, we have

λ‖〈f, f〉‖ 1
2 ≤ ‖SC1ΥΦC2

f‖ = sup
‖g‖=1

∥∥∥∥∥∥
〈∑
ξ∈Θ

C1Υ∗ξΦξC2f, g

〉∥∥∥∥∥∥
= sup
‖g‖=1

∥∥∥∥∥∥
∑
ξ∈Θ

〈ΦξC2f,ΥξC1g〉

∥∥∥∥∥∥
≤ sup
‖g‖=1

√√√√√
∥∥∥∥∥∥
∑
ξ∈Θ

〈ΦξC2f,ΦξC2f〉

∥∥∥∥∥∥
√√√√√
∥∥∥∥∥∥
∑
ξ∈Θ

〈ΥξC1g,ΥξC1g〉

∥∥∥∥∥∥
≤
√
BΥ

√√√√√
∥∥∥∥∥∥
∑
ξ∈Θ

〈ΦξC2f,ΦξC2f〉

∥∥∥∥∥∥ .

17
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Thus

λ2

BΥ
〈f, f〉 ≤

∑
ξ∈Θ

〈ΦξC2f,ΦξC2f〉 for f ∈ H

On the other hand, Since

S∗C1ΥΦC2
= (C1SΥΦC2)

∗
= C2S

∗
ΥΦC1 = C2SΦΥC1 = SC2ΦΥC1

,

then SC2Φ∧C1 is also bound below. Similarly, we can prove that

λ2

BΦ
〈f, f〉 ≤

∑
ξ∈Θ

〈ΥξC2f,ΥξC2f〉 for f ∈ H

Hence we conclude that {Υξ}ξ∈Θ is a (C1, C1)-controlled g-frames. �

Theorem 4.4. Let C1, C2 ∈ GL+(H), {Υξ}ξ∈Θ and {Φξ}ξ∈Θ be (C1, C1)-controlled and

(C2, C2)-controlled g Bessel sequences for H with respect to {Kξ}ξ∈Θ, respectively. Then the

following statements are equivalent:

(1) f =
∑
ξ∈Θ C1Υ∗ξΦξC2f, ∀f ∈ H.

(2) f =
∑
ξ∈Θ C2Φ∗ξΥξC1f, ∀f ∈ H.

(3) 〈f, g〉 =
∑
ξ∈Θ 〈ΥξC1f,ΦξC2g〉 =

∑
ξ∈Θ 〈ΦξC2f,ΥξC1g〉 ,∀f, g ∈ H.

(4) 〈f, f〉 =
∑ξ∈Θ
ξ∈Θ 〈ΥξC1f,ΦξC2f〉 =

∑ξ∈Θ
ξ∈Θ 〈ΦξC2f,ΥξC1f〉 ,∀f ∈ H.

In case the equivalent conditions are satisfied, {Υξ}ξ∈Θ and {Φξ}ξ∈Θ are (C1, C1)-controlled

and (C2, C2) controlled g-frames, respectively.

Proof. (1) ⇔ (2). Let TC1ΥC1 and TC1ΦC1 be the synthesis operator of the (C1, C1)-controlled

g-Bessel sequence {Υξ}ξ∈Θ and (C2, C2)-controlled g-Bessel sequence {Φξ}ξ∈Θ respectively.

Moreover, we see that TC1AC1
T ∗C2ΦC2

= IH, wich is equivalent to TC2ΦC2
T ∗C1AC1

= IH, which is

identical to the statement (2). Conversely, (2) implies (1) similarly.

(2) ⇒ (3). suppose that for any f, g ∈ H we have f =
∑
ξ∈Θ C2Φ∗ξΥξC1f, then

〈f, g〉 = 〈
∑
ξ∈Θ

C2Φ∗ξΥξC1f, g〉 =
∑
ξ∈Θ

〈ΥξC1f,ΦξC2g〉 =
∑
ξ∈Θ

〈ΦξC2f,ΥξC1g〉

(2) ⇐ (3). suppose that for any f, g ∈ H, 〈f, g〉 =
∑
ξ∈Θ 〈ΥξC1f,ΦξC2g〉 shows that

〈
f −

∑
ξ∈Θ

C2Φ∗ξΥξC1f, g

〉
= 0, ∀g ∈ H

Hence (2) is followed.

(3) ⇒ (4) is evident .

18
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(4) ⇒ (3). using condition (4), we have

〈f + g, f + g〉 =
∑
ξ∈Θ

〈ΥξC1(f + g),ΦξC2(f + g)〉

=
∑
ξ∈Θ

〈ΥξC1f + ΥξC1g,ΦξC2f + ΦξC2g〉

=
∑
ξ∈Θ

〈ΥξC1f,ΦξC2f〉+
∑
ξ∈Θ

〈ΥξC1f,ΦξC2g〉

+
∑
ξ∈Θ

〈ΥξC1g,ΦξC2f〉+
∑
ξ∈Θ

〈ΥξC1g,ΦξC2g〉 .

Also,

〈f − g, f − g〉 =
∑
ξ∈Θ

〈ΥξC1f,ΓξC2f〉 −
∑
ξ∈Θ

〈ΥξC1f,ΦξC2g〉

−
∑
ξ∈Θ

〈ΥξC1g,ΦξC2f〉+
∑
ξ∈Θ

〈ΥξC1g,ΦξC2g〉 .

〈f + ig, f + ig〉 =
∑
ξ∈Θ

〈ΥξC1f,ΦξC2f〉 − i
∑
ξ∈Θ

〈ΥξC1f,ΦξC2g〉

+ i
∑
ξ∈Θ

〈ΥξC1g,ΦξC2f〉+
∑
ξ∈Θ

〈ΥξC1g,ΦξC2g〉 .

〈f − ig, f − ig〉 =
∑
ξ∈Θ

〈ΥξC1f,ΦξC2f〉+ i
∑
ξ∈Θ

〈ΥξC1f,ΦξC2g〉

−i
∑
ξ∈Θ

〈ΥξC1g,ΦξC2f〉+
∑
ξ∈Θ

〈ΥξC1g,ΦξC2g〉 .

and from the polarization identity,

〈f, g〉 =
1

4
(〈f + g, f + g〉 − 〈f − g, f − g〉+ i〈f + ig, f + ig〉 − i〈f − ig, f − ig〉)

=
∑
ξ∈Θ

〈ΥξC1f,ΦξC2g〉 .

�

Lemma 4.5. [15] Let C1, C2 ∈ GL+(H), the operator

TC1ΥC2
:
⊕
ξ∈Θ

Kξ → H, TC1ΥC2

(
{fξ}ξ∈Θ

)
=
∑
ξ∈Θ

√
C1C2Υ∗ξfξ

is well-defined and bounded with ‖TC1ΥC2
‖ ≤

√
B. If and only if {Υξ : ξ ∈ Θ} is (C1, C2)-

controlled g-Bessel sequence for H with respect to {Kξ}ξ∈Θ with bound B.

Theorem 4.6. Let C1, C2 ∈ GL+(H). A sequence {Υξ : ξ ∈ Θ} ⊂ End∗A (H,Kξ) be a (C1, C1)-

controlled g-frame for H with respect to {Kξ}ξ∈Θ. Then the following statements are equivalent:

(1) a (C2, C2)-controlled g-frame {Φξ}ξ∈Θ is a (C1, C2)-controlled dual g-frame of {Υξ}ξ∈Θ

(2) C2Φ∗ξeξ,k = U (eξ,kδξ) , ξ ∈ Θ, k ∈ Kξ ⊂ Z, where U :
⊕

ξ∈ΘKξ → H is a bounded

left-inverse of T ∗C1∧C1
.

19
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Proof. We suppose that {kξ}ξ∈Θ ∈
⊕

ξ∈ΘKξ, thus

(4.1) {kξ}ξ∈Θ =
∑
ξ∈Θ

kξδξ =
∑
ξ∈Θ

∑
k∈Kξ

〈kξ, eξ,k〉 eξ,kδξ.

where δ is the Kronecker symbol.

We have {eξ,kδξ}ξ∈Θ,k∈Kξ
is an orthonormal basis of

⊕
ξ∈ΘKξ. If there exist U :

⊕
ξ∈ΘKξ → H

is a bounded left-inverse of T ∗C1ΥC1
such that

U (eξ,kδξ) = C2Φ∗ξeξ,k, ξ ∈ Θ, k ∈ Kξ.

applying Lemma 4.1,{Φξ}ξ∈Θ is a (C2, C2)-controlled g-Bessel sequence for H with respect to

{Kξ}ξ∈Θ. For every h ∈ H, the equation (4,1) gives us

h = UT ∗C1ΥC1
h = U

∑
ξ∈Θ

∑
k∈Kξ

〈ΥξC1h, eξ,k〉 eξ,kδξ


=
∑
ξ∈Θ

∑
k∈Kξ

〈
h,C1Υ∗ξeξ,k

〉
U (eξ,kδξ)

=
∑
ξ∈Θ

C2Φ∗ξ
∑
k∈Kξ

〈h,C1vξ,k〉 eξ,k

=
∑
ξ∈Θ

C2Φ∗ξΥξC1h,

where vξ,k = Υ∗ξeξ,k. we have, {Φξ}ξ∈Θ is a (C1, C2)-controlled dual g-frame of {Υξ}ξ∈Θ

Conversely, For h ∈ H, we have

h =
∑
ξ∈Θ

C1Υ∗ξΦξC2h =
∑
ξ∈Θ

C2Φ∗ξΥξC1h

which is TC2ΦC2T ∗C1ΥC1
= IH. Let U = TC2ΦC2 , then U :

⊕
ξ∈ΘKξ → H is a bounded left-inverse

of T ∗C1ΥC1
. Then

h =
∑
ξ∈Θ

∑
k∈Kξ

〈h,C1vξ,k〉C2Φ∗ξeξ,k =
∑
ξ∈Θ

∑
k∈Kξ

〈h,C1vξ,k〉 U (eξ,kδξ) , ∀h ∈ H

since {eξ,k}k∈Kξ
is an orthonormal basis of Kξ, we have

C2Φ∗ξeξ,k = U (eξ,kδξ) , ξ ∈ Θ, k ∈ Kξ.

�

Theorem 4.7. Let ∆ ∈ GL+(H), {Υξ}ξ∈Θ be a (∆,∆)-controlled g-frame for H with respect to

{Kξ}ξ∈Θ with the frame operator and synthesis operator S∆Υ∆ and T∆Υ∆, respectively. Then

A sequence {Φξ : ξ ∈ Θ} ⊂ End∗A (H,Kξ) is a ∆-controlled dual g-frame of {Υξ}ξ∈Θ if and only

if

Φξh = (T h)ξ + ΥξS
−1
∆Υ∆∆h, ξ ∈ Θ, h ∈ H

where T : H →
⊕

ξ∈ΘKξ is a bounded linear operator satisfying T∆Υ∆T = 0

20
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Proof. If T : H →
⊕

ξ∈ΘKξ is a bounded linear operator satisfying T∆Υ∆T = 0. Then

{Φξ : ξ ∈ Θ} ⊂ End∗A (H,Kξ) is a g-Bessel sequence for H with respect to {Kξ}ξ∈Θ. In fact, for

any h ∈ H we have∑
ξ∈Θ

〈Φξh,Φξh〉 =
∑
ξ∈Θ

〈(T h)ξ + ΥξS
−1
∆Υ∆∆h, (T h)ξ + ΥξS

−1
∆Υ∆∆h〉

≤ 2

∑
ξ∈Θ

〈ΥξS
−1
∆Υ∆Pf,ΥξS

−1
∆Υ∆∆h〉+ ‖T h‖2


≤ 2

∑
ξ∈Θ

〈ΥξS
−1
∆Υ∆∆,ΥξS

−1
∆Υ∆∆〉〈h, h〉+ ‖T ‖2〈h, h〉


≤ 2

(
B
∥∥S−1

∆Υ∆∆
∥∥2

+ ‖T ‖2
)
〈h, h〉,

where B is the upper bound of {Υξ}ξ∈Θ. Furthermore,

∑
ξ∈Θ

∆Υ∗ξΦξh =
∑
ξ∈Θ

∆Υ∗ξ
(
(T h)ξ + ΥξS

−1
∆Υ∆∆h

)
= T∆Υ∆T h+

∑
ξ∈Θ

∆Υ∗ξΥξS
−1
∆Υ∆∆h

= 0 + S−1
∆Υ∆

∑
ξ∈Θ

∆Υ∗ξΥξ∆h

= h.

Thus {Φξ : ξ ∈ Θ} ⊂ End∗A (H,Kξ) is a ∆-controlled dual g-frame of {Υξ}ξ∈Θ. On the other

hand. Suppose that {Φξ ∈ End∗A (H,Kξ) : ξ ∈ Θ} is a ∆-controlled dual g-frame of {Υξ}ξ∈Θ.

Now we consider the operator T which is defined by

T : H →
⊕
ξ∈Θ

Kξ, h 7→ Sh (∀h ∈ H)

satisfying

Φξh = (T h)ξ + ΥξS
−1
∆Υ∆∆h, ξ ∈ Θ.

Hence

‖T h‖2 =
∑
ξ∈Θ

〈Φξh−ΥξS
−1
∆Υ∆∆h,Φξh−ΥξS

−1
∆Υ∆∆h〉

≤
∑
ξ∈Θ

〈Φξh,Φξh〉+
∑
ξ∈Θ

〈ΥξS
−1
∆Υ∆∆h,ΥξS

−1
∆Υ∆∆h〉

+ 2

∑
ξ∈Θ

〈Φξh,Φξh〉

 1
2
∑
ξ∈Θ

〈ΥξS
−1
∆Υ∆∆h,ΥξS

−1
∆Υ∆∆h〉

 1
2

≤
(
C +D−1 + 2

√
CD−1

)
〈h, h〉,
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then T is a linear bounded operator. Furthermore, for any h, g ∈ H, we have

〈T∆Υ∆T h, g〉 =
∑
ξ∈Θ

〈
∆Υ∗ξT h, g

〉
=
∑
ξ∈Θ

〈
∆Υ∗ξ

(
Φξh−ΥξS

−1
∆Υ∆∆h

)
, g
〉

=
∑
ξ∈Θ

〈
∆Υ∗ξΦξh, g

〉
−
∑
ξ∈Θ

〈
∆Υ∗ξΥξS

−1
∆Υ∆∆h, g

〉
= 〈h, g〉 − 〈h, g〉 = 0.

Hence we conclude that T∆Υ∆T = 0. �
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